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The role of Bézier extraction in adaptive isogeometric
analysis: Local refinement and hierarchical refinement
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Engineering, University of Sheffield, Summary

Sheffield, 1 31D, UK We present 2 adaptive refinement techniques, namely, adaptive local refine-
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geometry as well as for the approximation of the solution space in the analy-
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Numerical examples are given to examine the accuracy, the convergence, and
the condition number.
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1 | INTRODUCTION

Isogeometric analysis (IGA) has been used widely because it can result in a seamless integration of the design and analysis
processes: the non-uniform rational basis spline (NURBS) functions that are typically used in Computer Aided Geometric
Design packages can be reused in the analysis, and, in principle, no (re)meshing is required."* The ability of the spline
functions used in IGA to capture the geometry exactly and thus to reduce the approximation error that stems from the
geometry description is another major advantage of the technology. A drawback from the use of NURBS, however, is that
only global refinement is possible due to the tensor-product structure of the basis functions in two- and three-dimensional
analyses.

Ideally, IGA should pair an exact geometry representation capability with local adaptive mesh refinement to provide a
truly local & refinement. For this purpose, the concept of T-splines has been investigated.>® T-spline technology breaks
the rigid tensor-product structure of NURBS by inserting extra vertices into the tensor product mesh. The mathematical
properties of T-splines, such as the linear independence of the bases, have been discussed in Li et al, Morgenstern and
Peterseim, and May et al.”° More recently, local refinement of T-splines has been investigated,'*'? as it further increases the
flexibility of T-splines. Alternatively, PHT-spline can also provide local adaptivity since they are defined over hierarchical
T-meshes.!>1*

Adaptive hierarchical refinement, which can be considered as a special type of local mesh refinement, has recently
gained considerable attention.!®® The basic idea is to locally enrich the approximation space by replacing selected coarse
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
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grid T-splines by fine grid T-splines. The hierarchical and truncated hierarchical bases are considered for the geome-
try description as well as to span the approximation space for the solution. Locally refined (LR) B-splines have been
introduced to achieve a local & refinement.?”3* Since then, LR B-splines have been extended to LR NURBS* and LR
T-splines,** which enables a more flexible geometry description.

The element-based Bézier extraction operator is nowadays usually used to implement the basis functions used in isoge-
ometic analysis,**#-*¢ as it smoothly aligns with existing finite element codes. However, in addition to the implementation
of basis functions in a standard finite element framework, the Bézier extraction operator can be applied to hierarchical
refinement'>***® and local refinement.’** In this contribution, we will further pursue this role. Adaptive local refinement
as well as adaptive hierarchical refinement are considered, and the algorithms developed for the implementation will be
detailed.

This contribution starts with a discussion of Bézier extraction of refined T-splines. The construction of the Bézier extrac-
tion operator and the subdivision operator for T-splines are given. The implementation of adaptive local refinement is
discussed in Section 3, followed by an illustration of the use of the Bézier extraction operator for adaptive hierarchi-
cal refinement in Section 4. This section also provides the algorithm for element-based adaptive IGA. Some numerical
examples and concluding remarks finalise the manuscript.

2 | BEZIER EXTRACTION OF REFINED T-SPLINES

We first review the concepts of T-splines and Bézier extraction.>*° The Bézier extraction framework will be formulated
such that it includes refined T-splines, which can be used in adaptive IGA. It is noted that in the sequel, we consider
T-splines with the same polynomial degree p in all parametric directions.

2.1 | T-spline and Bézier extraction fundamentals

A T-mesh T is composed of quadrilateral elements with T-junctions. Elements are defined as nonzero parametric areas
which are confined by the edges of the T-mesh and the continuity reduction lines. An example of a quadratic T-spline
mesh is given in Figure 1.

In a T-mesh, anchors are prescribed in the index domain and in the parameter domain (Figure 1). A multivariate
blending function Nis attached to each anchor and is determined by the Cox-de Boor recursion formula.*”-** We define the
union of T-spline blending functions as a T-spline space N' = {N; : suppN; € 7 }. A local knot vector &; (i=1, --- , n)
is prescribed for each anchor to construct N, with n as the number of anchors on 7. A T-spline surface S (51, 52) is
described by anchors and blending functions:

1 2 1 2
S(& &) = Y PuN, (&' &) 1 ¢y
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FIGURE1 Example of a quadratic T-spline mesh. The object is given in the index domain (i, j), in the physical domain (x;, X,), and in the
parameter domain (&1, &2)
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where A is the index set of anchors, P, denotes the coordinates of anchors, and y,, the scaling weight, which enables the
T-splines to satisfy the partition of unity property.* The construction of the local knot vectors and the blending functions
has been described in May et al.’

For completeness, we also consider rational T-splines:

R (© woNg (&, &) weN, (&, &) @
' W(E &) Teawala (8 &)
where N, (51, 52) is the standard T-spline blending function and w, denotes the weight of anchor a. For rational T-splines,
the T-spline surface is defined as

S (51’ §2) = Z PyR, (51, 52) Yas (3)
a€A

where P, = (x(}, X2, w,,) contains the coordinates of anchor a. The weighted coordinates of anchor a are P} =
(Waxh, Wex2, We).

Generally, blending functions are defined over the entire support of an anchor. It is cumbersome to directly incor-
porate blending functions in standard finite element data structures. However, Bézier extraction provides an elegant
work-around by representing T-splines as element-wise Bernstein shape functions.® We consider that 7 is divided into E
elements with n anchors. For anchor i, the local knot vectors are Ell and El.z, and the blending function N; can be written as

N (€1, &) = ("B (¢, &) @

over element e with (p 4+ 1)* x 1 bivariate Bernstein shape functions B¢ (51, 52).9Cf is the Bézier extraction operator of
anchor i over element e.” For the Bézier extraction operator of anchor i, which extends over E elements, we have
cl

1

Ci = ©)

CE
1

with the dimension E(p + 1)* x 1. Writing the Bézier extraction operator for n anchors in a matrix form then leads to

Ny (&', &) cl1 1B
N, (&, &) cil LB*
The Bézier extraction operator for anchors with support over element e then gives
N (&', ¢%) = CBe (¢, &%) (7)

with C, the element Bézier extraction operator.

2.2 | Equivalence of anchor insertion and meshline insertion

There are basically 2 approaches for element refinement: anchor insertion'® and meshline insertion,? see Figure 2. We
will now show graphically that both approaches are, in fact, equivalent for adaptive refinement. We consider Figure 2A,

where the anchors A and B are inserted in the T-mesh 7. The local knot vectors of the anchors A and B are E}l =

{6 & & & Grand8l = {8, & &, &, &) andZy = {g, &, &, &, &fand &)= (&, &, &, &, &}, respec-
tively. Connecting the knots of anchors A and B, we obtain a new horizontal meshline ¢ = [531 5;] X ég. Hence, anchor
insertions lead to meshline insertions.

Next, we consider Figure 2B, where we insert a new meshline, ¢ = [5; 53] X §§ in 7. As a consequence of this, the
blending function of anchor C will be split into 2 separate blending functions that are associated with the anchors C’
and A. The local knot vectors of the anchors C, C’, and A are ], = {el, &, el &, &l and Bz = {&2, &, &, £, &4,
Eo ={& & & & G andE, = {8, & & & &handE, = {&, &, &, &, &) and &) = {&, &, & & &)
respectively. The positions of the anchors C and C’ are the same in the index domain and in the parameter domain, while
anchor A is newly inserted in the index domain and the parameter domain. If we consider the blending function splitting
for the remaining anchors, we obtain the anchor B in the index domain and the parameter domain, which is also newly
inserted. Accordingly, meshline insertions yield anchor insertions.
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(A) anchor insertion (B) meshline insertion

FIGURE 2 Example of anchor insertions and meshline insertions in a cubic T-spline mesh. The object is given in the index domain (i, j)
and in the parameter domain (&, £2)

In sum, anchor insertions and meshline insertions are equivalent techniques for adaptive refinement. Both approaches
lead to the same refined T-splines. In the remainder, we will exclusively use the term “meshline insertion.”

2.3 | Subdivision operator and control point

Now, we will extend the Bézier extraction framework to T-splines after meshline insertions. As point of departure, we
take a T-mesh, 7, with n anchors. Inserting a series of single meshlines, {¢;}_, in 7 results in 7, with n, anchors. The

T-splines N that are associated with 7~ are now described by the T-splines W, associated with 7;:
IN (&', &) =TSN, (&', &), (®)

where S is the refinement operator,*>*N and N, are the blending functions associated with 7 and 7, respectively, and
I is a diagonal matrix with the scaling weights y of N. Using Equation 6, we can now solve for S:

N = CB, = SC,B,, 9)

where C is the Bézier extraction operator of the anchors on 7 over the elements on T,, C, denotes the Bézier extraction
operator of the anchors on T, over the elements on T,, and B, contains the Bernstein polynomials of the elements on T,.
The row values of S can subsequently be obtained by expanding the right side of Equation 9, as follows:

[

cTy st ¢t
= | (10)
C,

Q
=
w2
=

where C; is the Bézier extraction operator of anchor i on 7 over the elements on T,, with dimension E,(p + 1)* X 1. Cy;
represents the Bézier extraction operator of anchor i over the elements on T, with dimension E, (p + 1)* x 1. E, is the
number of elements on T,. Then, the row values of S are obtained as

C; =CTs; for i=1,---,n (11)
r

Considering Equation 8, the scaling weight y" of N, is derived as

Y =YS with Y'=[q, r, -, m] and Y=[n, r -, ral. (12)

From Equation 3, the weighted surface S" is given as

SY (£ &) = Y ralNa (&', &) PY. 13)
a=1
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The weighted surface defined by T and T, should represent the same geometry, so that

SY (g &) =5y (e &) (14)
Inserting Equation 13 into (14) then yields
D vaNa (&1, &) Py = D yiNy (&, &) P (1s)
a=1 p=1

in which y,, N, (&, %), and P are geometrical properties associated with 7, while Yjs Nig (&', &%) and Py are those
associated with T,. Considering the Bézier extraction operator and Equations 9 and 10 results in

P =TI;!STTPY, (16)

whereT', is a diagonal matrix with the scaling weight y; of N, along the diagonal, see Equation 12. P" and P}’ are column
vectors with the control points P}y and P;‘;}, respectively.

3 | LOCAL REFINEMENT USING BEZIER EXTRACTION

The most common adaptive refinement technique for T-splines is adaptive local refinement by anchor insertions or
meshline insertions in a T-mesh. This technique is normally implemented using the T-spline blending function sub-
division approach.!’ Herein, we will use Bézier extraction. First, we review some basic aspects of a recent LR T-spline
technology.> Then, different refinement strategies will be given for adaptive local refinement on the basis of T-splines,
including implementation aspects.

3.1 | LR T-spline fundamentals

Locally refined T-splines are an extension of LR B-splines."*> We consider an initial T-mesh with n anchors. Each anchor
is associated with a local knot vector &; (i = 1, --- , n)and a blending function N; (51, 52) . When we conduct a sequence
of single meshline insertions {¢;}!, in 77, we obtain a nested LR T-mesh, 7;, such that 7, > 7,1 > --- > T, D T,
(Figure 3). Intermediate states are denoted by 7i11 = {7; U &;}. In an LR T-mesh, elements are nonzero parametric areas
defined by the edges of T-mesh, continuity reduction lines and inserted meshlines, as illustrated in Figure 3.

Meshline insertions in an LR T-mesh should (1) pass through an element (knot span), (2) insert one meshline at a time,
and (3) span across p + 2 knots or more. A meshline insertion € on an LR T-mesh 7}, is then either (1) a new meshline,
(2) an elongation of an existing meshline or a continuity reduction line, (3) a joining of 2 existing meshlines or 2 existing

° Anchors —_— Continuity reduction lines Elements
—_— Edges — Inserted meshlines
1 1
1 1
° ° ° ° ° ° ° ° ° °
1 1
.
° ° [ ° ° ° ° °
o oo
2 2
3 3
o e oo e
. ° ° . o ° o o
oo oo e
1 1
3 3
. ) ) . . ° ° ) b °
0 ‘()
£ ° ° ° ° ° &2 ° ° ° ° °
0 0
0 0
0 0 0 ;3 2 111 0 0 0 3 3 2 11 1
.51 4,.51
(A) initial T-mesh 73 (B) LR T-mesh 7

FIGURE 3 Example of a locally refined (LR) T-mesh in the parameter domain. The green lines indicate meshline insertions

9SUDIT SUOWIWO)) dANLAI) d[qesridde oY) Aq pauIdA0S are s2[oNIR V() 25N JO SA[NI 10§ AIRIQIT AUIUQ AJ[IA\ UO (SUONIPUOD-PUB-SULIA}/WO0D KA[1M KTeIqI[aut[uo//:sdny) suonipuo)) pue swd [, a1 23S *[£707/11/60] uo Kreiqiy autjuQ LI ‘PIRLIAYS JO Ansioatun £q 9696 auwu/z00 1 (0 1/10p/wod Ao[im  Kreqrjautjuoy/:sdny woij papeoumod ‘9 ‘810 ‘LOTOL60T



1004 DE BORST AND CHEN
WILEY

continuity reduction lines, (4) a joining of an existing meshline and a continuity reduction line, or (5) an increase of the
multiplicity of an existing meshline or continuity reduction line. When a meshline insertion is an elongation, or a joining
of existing meshlines or continuity reduction lines, we use the union of the meshline, the existing meshlines and the
continuity reduction lines to conduct the LR T-spline splitting.

For the LR T-mesh 7, we can obtain the LR T-spline blending functions N: R? — R if

o Nz (&%, &%) = yNa (&') N=: (£2) is a weighted blending function.
e N has minimal support on 7, which implies that there is no other meshline traversing the interior space of N.

The union of LR T-spline functions is called an LR T-spline space N' = {N; : suppN; € T }. Locally refined T-splines
form a partition of unity and are nested but are not necessarily globally or locally linearly independent.*

3.2 | Local refinement strategies

The idea of LR T-splines is to maintain their minimal support property after meshline insertion in an LR T-mesh 7. The
refinement is realised by separate knot insertions in each parametric direction. As an example, we take the case of a knot
insertion in the parametric direction &' and assume that an LR T-spline blending function N; is defined by the local knot
vectors

gl |gl gl 1 ... 1 1
=i [51’ 52’ > 5i-1° i’ > Sp+1° p+2]
and

o 2 2
- = |:§17 52» > 5p+1° p+2] :

A new meshline, ¢ = f X [éf, 5; +2], is now inserted in 7. A new knot f must therefore be inserted in Eil, while El2

remains constant. Hence, 2 additional local knot vectors, Eill and El.lz, result
=1 1 1 1 2 1 1
dil = [517 527 T S 57 Ei s T p+1 ] B

1 1 1 £ gl 1 1
El‘zz [ 527 ) gi—l’ és éi’ ) p+1° p+2:|9

an

as well as 2 new anchors with respect to local knot vectors &/, and E2, ! and E2.
Applying this refinement procedure to all anchors on 7', we obtain the updated anchors and the updated elements on
the refined LR T-mesh 7. The scaling weights of the updated T-spline blending functions and the updated control points

are next obtained using Equations 12 and 16.
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FIGURE 4 Initial LR T-spline surface. The object is given in the index domain (i, j), in the physical domain (x;, x,), and in the parameter
domain (51, 52). The element el and the blending function of anchor A will be refined
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FIGURE 5 LR T-spline surface generated by the full span refinement strategy. It splits all blending functions with support over element el

Different refinement strategies have been proposed for LR T-splines,? see also Figures 5 to 7. The figures show the
full span and the minimal span refinement strategies which are based on element refinement (Figures 5 and 6). A third
option, the structured mesh refinement strategy refines the LR T-spline blending function itself, as illustrated in Figure 7.

The starting point for all refinement strategies is that a certain element or blending function is marked for refinement,
and we consider the quadratic LR T-spline surface of Figure 4 as the initial LR T-spline surface. The element el and the
blending function of anchor A are meant to be refined (Figure 4).

Figure 5 illustrates full span refinement. In this approach, every LR T-spline blending function with support on the
grey marked element el is refined. The element marked in grey is subdivided into 4 child elements, and the neighbouring
elements are split by a single line. Evidently, this procedure can result in elements which have a poor aspect ratio, in this
case, e3.

The minimum span refinement strategy inserts a cross through the centre of element el (Figure 6). The inserted mesh-
line should be as short as possible but must split at least 1 LR T-spline blending function. It is noted that the choice of the
blending function, which will be refined, is not unique.* Compared with the previous approach, this refinement strategy
generally leads to a mesh which is better centred around the marked elements. Clearly, this is an important advantage
for adaptive refinement in IGA. However, it can cause relatively poor aspect ratios in neighbouring elements, such as
elements e2 and e3 in the present example.
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FIGURE 6 LR T-spline surface generated by the minimum span refinement strategy. It splits the blending function with support over
element el
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FIGURE 7 Locally reduced T-spline surface generated by the structured mesh refinement strategy. It splits all knot spans of local knot
vectors of anchor A
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FIGURE 8 Locally refined T-spline surface generated by the element-based structured mesh refinement strategy, which combines the
properties of the minimum span and the structured mesh refinement strategies. First, it determines the blending function with the smallest
support over element el. Then, the resulting blending function is refined using the structured mesh refinement strategy

Finally, Figure 7 illustrates the concept of structured mesh refinement. In this approach, a net of meshlines is inserted,
which halves the largest knot intervals that support the T-spline blending function of anchor A, marked in Figure 4.
Different from the previous methods which focus on element refinement, this strategy identifies the blending functions
which must be refined and usually does not create elements with a poor aspect ratio.

In view of the advantages of the minimum span and the structured mesh refinement strategies, an element-based struc-
tured mesh refinement strategy is proposed, see Figure 8. First, the blending function is determined with a small support
over element el using the minimum span refinement strategy. The blending function is chosen which is around ele-
ment el as much as possible. Then, the blending function is refined using the structured mesh refinement strategy, as
shown in Figure 8. It is noted that no poor aspect ratios are generated. In general, this refinement strategy not only refines
the marked element, in this case, el, but also the neighbouring elements, as shown in Figure 8. It is possible that some
“over-refinement” will take place, i.e., refinement where the discrete solution is already accurate and to an almost uni-
formly refined mesh. This matter will be discussed further in Section 5, where some rules will be suggested to avoid this
from happening or at least alleviate the phenomenon.
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3.3 | Implementation of local refinement in IGA

For an object defined by an LR T-mesh 7, we always obtain a global system of equations from the weak form of the
equilibrium equation and the Neumann boundary conditions. The steps for doing so are listed in Algorithm 1.

Algorithm 1 Adaptive local refinement
S1 Read the geometry data of the initial T-spline surface to obtain the initial local knot vectors and the initial
control points.

S2 Obtain the element Bézier extraction operator C,, compute the stiffness matrix K and the force vector F using
Bézier extraction.

S3 Consider the Dirichlet boundary conditions and solve KU = F to obtain the displacement vector U.

S4 Check whether elements should be refined and mark them accordingly. If there is no element marked for
refinement, stop the calculation for the current load step and go to next load step. Otherwise, obtain the list of mesh-
lines, which must be inserted in the current LR T-mesh 7, on the basis of the marked elements and the chosen
refinement strategy.

S5 Obtain the local knot vectors of the updated anchors and the updated elements after meshline insertions. This yields
a new LR T-mesh 7.

S6 Compute the subdivision operator S using Equation 11, obtain the control points of the updated anchors using
Equation 16, and return to S2.

4 | HIERARCHICAL REFINEMENT USING BEZIER EXTRACTION

Refinement using hierarchical basis functions was originally used for the adaptive refinement of a surface* but subse-
quently also used in analysis.!”***'#!"# To further improve the capability of hierarchical refinement truncated hierarchical
bases were proposed in Giannelli et al** and Buffa and Giannelli.*® Later, hierarchical and truncated hierarchical T-splines
have been developed, which combine the ability of hierarchical B-splines for adaptive refinement with the capability of
T-splines to provide an exact geometrical representation.?*2

4.1 | Hierarchical T-spline fundamentals

A hierarchical T-spline space is constructed from a finite sequence of L nested T-spline spaces A"' bounded by L parameter

domains Q!, 1 =1, - - -, L. The nested nature of T-spline space defines the nested domains for the hierarchy:
NlcN?c.---c N QlcQ’c...cQl. (18)
To define the L nested T-spline spaces such that N* ¢ N*' « = 1, ---, L — 1, a multilevel T-spline mesh is

constructed with a hierarchy of L levels. On the multilevel mesh, the sequence of L T-spline meshes 7! is built by
subdividing each effective rectangular cell in 7* into 2 or 4 congruent cells by meshline insertions, where an effective
rectangular cell is a cell with nonzero parametric length in at least 1 parametric direction. Examples are the cells A and
Bin Figure 9A,B. Note that, when defining the cells, the continuity reduction lines are not considered (Figure 9B).

Figure 9 illustrates the algorithm to generate the T-spline mesh 7**! from 7. Cell A has a nonzero parametric length in
both directions, which leads to 4 congruent cells in 71, Cell B has a nonzero parametric length only in the £* direction. It
is divided into 2 congruent cells in 7%1. The cell subdivision is performed by meshline insertions (Figure 9B). The inserted
meshline is composed of the middle lines of each effective rectangular cell, and their extensions into the neighbouring
cells. Examples are the meshlines &, and ¢, for cell A, and &3 for cell B (Figure 9B). After meshline insertions, the anchors
and corresponding local knot vectors are updated using Equation 17. Figure 9C displays the final T-spline mesh 7%+
which is generated from 7*.

We adopt the algorithm of Evans et al*® and Chen and de Borst* to construct the hierarchical T-spline bases. We define
N as a T-spline blending function, while A" denotes the T-spline blending function space.’® The hierarchical T-spline
bases H is built recursively as follows:

(1) Initialisation: H' = {N € N'! : supp N # §}.
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FIGURE 9 Construction of the T-mesh 7%+! from 7. The anchors are indicated by circular dots. Black denotes the anchors on the
T-spline mesh 7¢, while red stands for those generated for the T-spline mesh 7 **1
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FIGURE 10 Multilevel T-spline mesh with a hierarchy of 3 levels. For a clear representation, only the T-splines meshes at levels 1 and 2

are shown

(2) Construct H**! from H* in a recursive manner: H**!
supp N ¢ Q+1};

{NeN©“:
(3) H=H-".

Ha+1

fine

={NeN":

— Ha+1

coarse

U Ha+1

fine ’

supp N € Q+1}.

oa = 1’ ,L—l-WhereHggé—i}‘Se =

Considering linear combinations between blending functions on hierarchy levels « and « + 1, we obtain the truncated
hierarchical bases.'®*

(1) Initialization: H} = {N € N'! :

su

pp N # @}

(2) Construct H3*' from M in a recursive manner: Hat' = HELL,
supp N € Q+}.

{Nemns:
(3) HT = H%

supp N ¢ Q*+1};

H(x+l

fine

={NeN":

U Ha+1

fine ’

a=1, -, L—1 where H& L, =

To construct these bases, a hierarchy of 3 levels is constructed (Figure 10). An graphical representation of the
hierarchical and truncated hierarchical bases for the bivariate case is given in Figures 11 and 12.
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Active T-spline bases at level 1 Active T-spline bases at level 2

Ve R,

Active T-spline bases at level 3 Hierarchical T-spline bases

FIGURE 11 Hierarchical T-spline bases

4.2 | Data structure of multilevel mesh

Element-based implementation of hierarchical and truncated hierarchical T-spline bases is a natural choice in adaptive
IGA. It consists of T-splines over multiple hierarchical levels with the same polynomial degree. In this subsection, the
data structure will be outlined of the multilevel mesh for constructing H and H7.

First, we construct a multilevel T-spline mesh with L hierarchy levels. At each hierarchy level, we have n; anchors,
each with a corresponding local knot vector set Z; = E’l (i=1,2,..L;j = 1,2,...n;). The local knot vector set E; results

from successive uniform cell subdivision within the parameter domain Qg, starting from Z;. Hence, we obtain nested
parameter domains, in C Q;” and nested local knot vectors, &; C E;,1. Each knot vector set E; defines a set of T-spline

. ARG .
blending functions N* = {N; } , which in turn forms a nested T-spline approximation space N, see Figures 11 and 12.
j=1

Due to the nested nature of N, the T-spline blending functions at hierarchy level i can be described by the T-spline
blending functions at hierarchy level j:
j-1
Ni = SN = HSLZHNHI’ (19)

=i

where S4*1 is the subdivision or refinement operator.? Using Equations 8 and 11, $"*! is obtained using the local knot
vector sets E; and Ej41.

Using the subdivision operator, the coordinates and weights of the anchors on the T-spline mesh 7 at hierarchy level
i are computed?®:

: T
1
P, =S""P} = <Hs”+1> P, (20)
=1
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Active T-spline bases at level 1 Active T-spline bases at level 2
(already truncated) (already truncated)

Active T-spline bases at level 3 Truncated hierarchical T-spline bases
(already truncated)

FIGURE 12 Truncated hierarchical T-spline bases

where P!, are weighted control points at level i. Each weighted control point is defined as wa. = (W;xij, w}x;j, wj’) If we

consider a rational T-spline bases, the subdivision operator S***! in Equation 19 must be modified as?

W

o+l _ VT

Sy __1+1SIJ , (21)
J

where w is the weight in Equation 20 and S};*" is the term in S"*1.

4.3 | Implementation of hierarchical refinement

The hierarchical and truncated hierarchical bases are constructed on the basis of the multilevel mesh, the active elements
and the active child elements in the multilevel hierarchy. The active elements are chosen by a marking criterion, such as
an a posteriori error estimator.?? We consider 2 types of hierarchical bases: a standard basis, H, and a truncated basis, Hr,
see? for details on their construction.

We consider the implementation of adaptive hierarchical refinement in a multilevel adaptive manner. First, using Bézier
extraction, the stiffness matrix of active elements at each hierarchy level is obtained, without consideration of multi-
level blending function interaction. Having assembled the stiffness matrix at each hierarchy level, the global system of
equations is obtained:

KU=F, (22)
where U includes the nodal degrees of freedom at each hierarchy level, F represents the force vector, K is a sparse matrix
with stiffness matrices K’ along the diagonal. The submatrix K' constitutes the stiffness matrix of the active elements at
hierarchy level i, a square sparse matrix of size 2n’ x2n., where n’ denotes the number of control points at hierarchy level i.
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To enforce the interaction between multilevel hierarchical bases H and Hr in Equation 22, a hierarchical subdivision
operator My, is introduced, which yields the following hierarchical system of equations:

KyUy=F, with K,=M,KM; and F,=M,F (23)

with My, the hierarchical subdivision operator.”® Solving Equation 23 yields the displacement U, for the control points
associated with the hierarchical bases. It is noted that in a non-linear solution scheme, the computation of the stiffness
matrix K requires the displacement vector U rather than U, from previous the iteration, see Equation 22.

U=M,U, (24)

The full procedure of adaptive hierarchical refinement is provided in Algorithm 2.

Algorithm 2 Adaptive hierarchical refinement

S1 Read the geometry data of the initial T-spline surface to obtain the initial local knot vectors (E], ;) and the initial
control points P;.

S2 Conduct successive cell subdivision to generate (Z}, E7) and P; for each hierarchy level I from (Z], £7) and P;.
Meshline insertions are used to obtain (], &} ) and P;.

S3 Compute the subdivision operator S4+! between 2 consecutive hierarchy levels [ and [+1, according to Equation 19.

S4 Obtain the list of active elements and active child elements. Note that for the first load step, the active elements are
directly provided by the initial T-spline mesh.

S5 Compute the subdivision operator My, Equation 23.
S6 Solve Equation 23 and use Equation 24 to obtain the displacement vector U.

S7 Check whether elements should be refined and mark them accordingly. If there is no element marked for
refinement, stop the calculation for the current load step and go to next load step. Otherwise go to S8.

S8 Obtain the new list of active elements and active child elements on the basis of the marked elements and return to S5.

4.4 | Element based adaptive IGA

Below, we provide a general procedure for adaptive IGA on the basis of these refinement techniques:

S1 Solve the system of equations to obtain the displacement U. For adaptive local refinement, Equation 22 is to be
considered. For adaptive hierarchical refinement, Equations 23 and 24 are used.

S2 Estimate the approximation error. The H; norm of the element-wise residual is used in the examples that follow.

S3 Mark elements for refinement on the basis of S2.

S4 Refine the marked elements. The respect refinement procedures are given in Algorithms 1 and 2 for adaptive
local refinement and adaptive hierarchical refinement, respectively. If no element needs to be refined, stop the
calculation. Otherwise, return to S1.

5 | ELEMENT MARKING

For an admissible mesh T and E elements, the error per element { go|Qe T} C Ris obtained from step S2. We introduce

a marking parameter n € [0, 1] to determine whether refinement should be applied, and we define Q = {Qy, --- , Qg}
and order g, > --- > £¢,. We use quantile marking':
M={Qq, -+, Qk} with k = ceil (nE), (25)

where ceil stands for ceiling function, which rounds up to the nearest integer of #E. Summing the errors over all the
elements gives the domain error, € = Zefe-

For adaptive hierarchical refinement, element marking continues until the highest hierarchy level is attained. For adap-
tive local refinement, the element refinement is conducted until a prescribed smallest element size ey, is reached in the
parameter domain. To alleviate the effect of over-refinement in the element-based structured mesh refinement strategy,
we include the following considerations:
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e The total area A, of elements with the smallest element size e, should satisfy A,, < yA. Here, A denotes the total
area of the domain. This relation controls the element marking for refinement in the physical domain.
e The domain error €’ at refinement step i should satisfy
1 ni _ ni—l i -1
P S . i—El ’ (26)
¢ £

where £-! and ¢! are the domain errors at step i — 1 and i, respectively, n. and n'~! are the corresponding number of
control points, and ¢ is a constant to control the convergence speed. Equation 26 is an empirical formula to control
the convergence speed of refinement. The convergence speed of the domain error should be higher than that of
the increase in the number of control points. Furthermore, from our numerical tests it appears that { = 10, which
reflects that the optimal convergence rate in the error is attained in a logarithmic sense.

Remark 1. To obtain a well-conditioned stiffness matrix Kj in Equation 23 for the marked elements in adaptive hier-
archical refinement, the adjacent elements are forced to be from the same or at most from 2 consecutive hierarchy
levels.?

Remark 2. To obtain a well-structured mesh in adaptive local refinement, the element-based structured mesh
refinement strategy is used for the element refinement, which yields a well-conditioned stiffness matrix K in
Equation 22.

6 | NUMERICAL EXAMPLES

To assess the accuracy of the methodology, we present 2 examples which are considered as benchmark problems in adap-
tive IGA: a Poisson problem and a linear elasticity with analytical solutions.'®* The adaptive refinement techniques (local
and hierarchical) are compared numerically, including the condition number of the stiffness matrix. For adaptive local
refinement, the element-based structured mesh refinement strategy is used. For adaptive hierarchical refinement, the
truncated hierarchical bases Hr are used to describe the geometry of domain and also to approximate the displacement
field.

The error of each element is computed using the H' error norm*’:

||u_ﬁ||H1(gg)=\/</Q - (- dS+/Q(u—ﬁ)’T-(u—ﬁ)’ dS>, @7

where u stands for the analytical solution, @ denotes the approximate solution, and (u — @)’ is the derivative of (u — @)
with respect to x; and x;,, respectively. The domain error is obtained by summing up the element error:

la =@l = \/Ze<”u_ﬁ”H1(Qa)>2 (28)

The relative error of each element, needed for marking elements for refinement, is computed as: &,:

la —allp,
€0 = (@) ) (29)

\/<fQEuT -udS + fQEu’T -w dS)

In general, T-spline meshes are generated by adaptive local refinement of NURBS meshes.!® Herein, the initial T-spline
mesh is directly defined by NURBS meshes. The corresponding initial local knot vectors (E}, Ef) and the initial control
points P; are thus directly obtained from the NURBS meshes. In the examples the, geometry is modelled with the same
polynomial degree p in each parametric direction.

We also consider the condition number « of the stiffness matrix K, which is defined as

_ Vimax ()]
[ Amin ()]

where Amax (K) and Apmin (K) are the largest and the smallest (by moduli) eigenvalues of K, respectively.

x (K) (30)
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6.1 | Poisson problem on an L-shaped domain

WILEY— 2

The Poisson problem is now solved for the temperature u on an L-shaped domain (Figure 13A). The L-shaped domain
is defined as Q@ = {(-1, 1) x (-1, 1)} \ {(0, 1) X (0, 1)}. The Poisson problem is given by the following equation and

boundary conditions:

FN
I'p
) o
Iy T I'p
1
Ly
Iy

(A) problem definition of the plate
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° 09
° oo °
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° ° o e o
o
° o ° 0
(B) Bézier physical mesh and anchors

FIGURE 13 Poisson problem on an L-shaped domain: problem definition and initial quadratic T-spline mesh in the physical domain

(A) exact u contour plot
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FIGURE 14 Poisson problem on an L-shaped domain: exact solution of u, H* error norm, and condition number k¥
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N
Il
[}

NAu=0, — =g on I'p, on 'y, (31)

and the exact solution is given by
20 — &
3 k

i =rssin ¢ = (0, 27]. (32)

The L-shaped domain is modelled by a single C' continuous B-spline patch (Figure 13B). The domain Q is discre-
3 1 5

tised by NURBS of polynomial degree p = 2 and with knot vectors E! = [0, 0, 0, % i, > o %, % 1, 1, 1] and
Z2 =10, 0, 0, ‘l‘, %, %, 1, 1, 1]. The corresponding Bézier physical mesh and anchors are shown in Figure 13B. For the
construction of the initial T-spline mesh, 77, the local knot vectors (E% :.f), and the coordinates of anchors are derived
from E' and E2. We use adaptive local as well as hierarchical refinement. To provide a good comparison, the smallest
element size e, is prescribed as e, = ég for adaptive local refinement, which corresponds to a hierarchy of 5 levels to con-
struct the truncated hierarchical bases in adaptive hierarchical refinement. Elements are refined by adaptive refinement
using quantile marking (y = 0.2).

Due to the singularity at the re-entrant corner (x;, x;) = (0, 0), the rate of convergence k of the H' norm with respect

to the total number of degrees of freedom is given as

1 . b4 1 . 2 1
k=—= min|(p, —— | =—-= mm( X —):——. 33
2 <p 27 — ﬂ) 2 P 3 3 (33)
For uniform refinement, the corresponding rate of convergence is k = —1/3 (Figure 14B). The optimal rate of conver-

gence k = —1 could be recovered by adaptive refinement (Figure 14B). It shows that the error level for adaptive refinement
is smaller than that for uniform refinement. This is because adaptive refinement smoothens the gradient around the

0
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EX]
2
25
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35

10° 10"
(A) error in u at refinement step s = 5 (B) error in u at refinement step s = 6
4
0
2
05 0
4 2
115 4
2 8
8
25
-10
3
-12
-35 i
x10°? 10!
(C) error in u at refinement step s = 15 (D) error in u at refinement step s = 20

FIGURE 15 Bézier meshes and error in u at each refinement step for quadratic T-spline bases. The Bézier meshes of elements are
indicated by solid lines. The error is given as the difference between numerical and exact solutions. A and B are the results for adaptive local
refinement, while C and D are those for adaptive hierarchical refinement
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re-entrant corner (Figure 15). From these figures it is observed that the mesh around the re-entrant corner is refined
gradually until the smallest element size e, or the lowest hierarchy level. For adaptive local refinement, the error level
is higher than that for adaptive hierarchical refinement, which is due to over-refinement in adaptive local refinement
(Figure 14B). If we would have used the full span or the minimum span refinement strategies, the error level would have
reduced further.”®
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ST SZS2 T W /
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(A) problem definition of the plate (B) Bézier physical mesh and anchors

FIGURE 16 Linear elasticity: infinite plate with a circular hole—problem definition and initial T-spline mesh 7; in the physical domain
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Asregards the condition number «, its value is higher for adaptive hierarchical refinement than for uniform refinement,
while the value for adaptive local refinement is the smallest (Figure 14C). Figure 14D shows that the level of accuracy for
both forms of adaptive refinement increases faster than that for uniform refinement.

6.2 | Linear elasticity: infinite plate with a circular hole

We next consider an infinite plate with a circular hole (radius R = 1 m); see Figure 16A. The material parameters are
Young modulus E = 100N/m?, Poisson ratio v = 0.0, and the thickness © = 1 m. The exact solutions of radial and
tangential displacement are

_ Tyrcos(20) R2 R* T,r R?
u,—T (1+V)+47—(1+V); +E (1—V)+(1+V)ﬁ N (34)
_ Tyrsin(20) R? RrR*
UQ——T (1+V)+2(1—V)ﬁ+(1+V)F N
where 0 is the azimuthal coordinate. From this, the stress components can be derived as
Ty R2 T,cos20 [ 3R* 4R?
=2 (1-= )+ 2= (== 41,
= < r? > T r# Ea
T, R? T, cos26 (3R*
=2(1+— ) - 2" =—+1]), 35
=5 < T > 2 =a (35)
o = T, sin 26 3_R4_2_R2_1
= 2 r4 r2 ’
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FIGURE 18 Bézier meshes and error in ¢, at each refinement step for quadratic NURBS bases. The Bézier meshes of elements are
indicated by solid lines. The error is given as the difference between the numerical solution and the exact solution. A and B are the results for
adaptive local refinement, while C and D are those for adaptive hierarchical refinement
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By virtue of symmetry, only a quarter of the plate has to be modelled (Figure 16A). The exact traction from the
analytical solution is imposed at the free boundary, e.g., Klinkel et al and Chen et al.®* The domain Q is discre-

tised by NURBS of a polynomial degree p = 2, with knot vectors &' = [0, 0, 0, % 4—1‘, § % § %, g 1, 1, 1] and
Z2 =10, 0, 0, i, % 3, 1, 1, 1]. These knot vectors have been obtained by & refinement of open knot vectors.! Accord-

ingly, the number of control points P has been adapted. The corresponding Bézier physical mesh and anchors are given
in Figure 16B. We consider quadratic and cubic NURBS bases to discretise the domain. For cubic NURBS bases, the knot
vector and control points are obtained by order elevation from quadratic NURBS bases. For the construction of the initial
T-spline mesh, 77, the local knot vectors (E} Ef) and the coordinates of anchors are derived from &', 2% and P.

We use both adaptive local refinement and adaptive hierarchical refinement. To provide a fair comparison, the smallest
element size e, is prescribed as e,, = 61—4 in adaptive local refinement, which corresponds to a hierarchy of 4 levels to
construct truncated hierarchical bases in adaptive hierarchical refinement. Elements are refined by adaptive refinement
using quantile marking (y = 0.2).

The solution for this problem has a stress concentration at (x;, x;) = (0, 1), see Figure 17A, but no singularity. Hence,
an optimal rate of convergence k = —p/2 in the H' norm can be attained by uniform refinement; see Figure 17B.

For adaptive refinement, the optimal convergence rate is obtained in the asymptotic limit.?* In general, the error level for
adaptive refinement is lower than that for uniform refinement because adaptive refinement smoothens the stress gradient.
This is illustrated in Figure 18, which shows that the mesh around the hole is refined until the smallest element size or
the lowest hierarchy level. With adaptive refinement, the error level is reduced for the whole domain, which indicates
that adaptive refinement not only efficiently models the local stress concentration but also improve the global accuracy.
The figure also shows that the refinement area is almost same for both cases of adaptive refinement. The error level for
adaptive local refinement is generally higher than that for adaptive hierarchical refinement, again due to over-refinement
in the element-based structured mesh refinement strategy.

The condition number « increases with a rise in the number of degrees of freedom (Figure 17C). We observe that « is
almost the same for both cases of adaptive refinement. In Figure 17D, the H* error norm is plotted versus the condition
number x. For adaptive refinement, the accuracy increases faster than that for uniform refinement without a significant
increase in the condition number.

7 | CONCLUDING REMARKS

Two adaptive refinement techniques, local refinement and hierarchical refinement, have been developed for adaptive
IGA. The refinement techniques have been cast in the framework of Bézier extraction, which conforms ideally to the
element point of view in the traditional finite element method. A detailed description is given how the approach can
be implemented in a conventional finite element data structure. Algorithms have been provided for both refinement
techniques.

Two examples have been studied numerically and lead to the conclusion that for adaptive refinement, the optimal
rate of convergence is obtained in the asymptotic limit, irrespective of potential singularities. Moreover, the error level
for adaptive refinement is lower than that for uniform refinement. For adaptive hierarchical refinement, the condition
number of the stiffness matrix is slightly higher than that for adaptive local refinement but remains below that for uniform
refinement, at least for the linear elasticity problem.
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