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Abstract

In 1979, Bousfield defined an equivalence relation on the stable homotopy
category. The set of Bousfield classes has some important subsets such as the
distributive lattice, DL, of all classes 〈E〉 which are smash idempotent and
the complete Boolean algebra, cBA, of closed classes. We provide examples of
spectra that are in DL, but not in cBA; in particular, for every prime p, the
Bousfield class of the Eilenberg-MacLane spectrum 〈HFp〉 is in DL\cBA.

1. Introduction

An important tool for understanding structural and computational phenom-
ena in the stable homotopy category (i.e., the homotopy category of spectra) is
the Bousfield localization at a spectrum E, LE [2]. In [1], Bousfield defines an
equivalence relation on spectra such that the localization functor LE depends
only on the equivalence class of the spectrum E. These equivalence classes,
called Bousfield classes, form a lattice.
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In the original paper [1] introducing the Bousfield lattice B, Bousfield also
introduces its subsets BA and DL and identifies the location of many explicit
Bousfield classes. In [5, Definition 6.3], Hovey and Palmieri add a third inter-
esting subset, denoted by cBA. (We shall give definitions below.) It is easy to
see that

BA ⊆ cBA ⊆ DL ⊆ B.

In this paper, we deal with the question of which and how many classes of
spectra live in the various parts of B defined by this chain of inclusions. We
give lower bounds for the cardinality of DL\cBA and cBA\BA by identifying
concrete examples of Bousfield classes in these complements. The cardinality
results of this paper are graphically represented as in Figure 1 and concern the
dark grey parts.

BA

Card(BA) ≥ 2ℵ0 [1]

cBA

Card(cBA\BA) ≥ 2ℵ0

DL

Card(DL\cBA) ≥ 2ℵ0

B

Card(B\DL) ≥ ℵ0 [1]

Figure 1: Lower bounds for the sizes of the four differences of subsets of B.

2. Definitions

In order to fix notation, we give the relevant definitions, following closely
the exposition in [5]. We consider the Bousfield equivalence of spectra [1]: two
spectra X and Y are equivalent if for all spectra E, X∗(E) = 0 if and only
Y∗(E) = 0 (alternatively put: X ∧ E ≃ ∗ if and only if Y ∧ E ≃ ∗). For a
spectrum X, we write 〈X〉 for the class of all spectra E with X∗(E) = 0. The
class of all Bousfield classes is denoted by B. By a theorem of Ohkawa [6, 3], it
is known that B is a set and

2ℵ0 ≤ Card(B) ≤ 22
ℵ0

.

This set is a poset with respect to reverse inclusion: 〈X〉 ≤ 〈Y 〉 if and only if
for all spectra Z, Y∗Z = 0 implies X∗Z = 0. The poset (B,≤) has a largest
element 1 := 〈S〉 where S is the sphere spectrum and we denote by 0 the
minimal element which is the Bousfield class of the trivial spectrum. We work
at a fixed but arbitrary prime p, i.e., we consider p-local spectra.
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For every prime p, K(n) denotes the nth Morava K-theory spectrum with
coefficients π∗(K(n)) = Fp[v

±1
n ] where the degree of vn is 2pn − 2. We use the

convention that K(∞) is the mod p Eilenberg-MacLane spectrum, HFp. For
any subset S ⊆ N ∪ {∞}, we denote by K(S) the spectrum

∨
n∈S K(n).

The topological operations ∧ and ∨ of taking smash products and wedges,
respectively, are well-defined on B; the class 〈

∨
i∈I Xi〉 is the least upper bound

(“join”) in the structure (B,≤) of the classes 〈Xi〉 [1, (2.2)], but in general, ∧
does not produce the greatest lower bound. We can define the greatest lower
bound (“meet”) by

k
X :=

∨
{〈Z〉 ; ∀〈X〉 ∈ X (〈Z〉 ≤ 〈X〉)},

and observe that ∧ and f can differ quite a bit: the Brown-Comenetz dual I of
the p-local sphere spectrum satisfies 〈I〉 ∧ 〈I〉 = 0 6= 〈I〉 = 〈I〉f 〈I〉 [1, Lemma
2.5].

The complete lattice (B,f,∨) is endowed with a pseudo-complementation
function

aX :=
∨

{Z ; Z ∧X = 0}

which is well-defined on Bousfield classes, i.e., a〈X〉 := 〈aX〉 is independent
of the choice of representative X of 〈X〉. The function a is not in general a
complement. While a2 = id and a〈X〉∧〈X〉 = 0, we may not have a〈X〉∨〈X〉 =
1 [1, Lemma 2.7]. Bousfield defined two subclasses of B as follows:

BA := {〈X〉 ; 〈X〉 ∨ a〈X〉 = 1}, and

DL := {〈X〉 ; 〈X〉 ∧ 〈X〉 = 〈X〉}.

Many examples for classes in BA or DL are known. Bousfield showed in
[1] that every Moore spectrum of an abelian group is in BA and so are the
periodic topological K-theory spectra 〈KO〉 = 〈KU〉; furthermore, he shows
that (arbitrary joins of) finite CW spectra also give classes in BA. Every class
of a ring spectrum is in DL but not necessarily in BA [1, § 2.6]; in particular,
all Eilenberg-MacLane spectra of rings are in DL, but, e.g., the class of the
Eilenberg-MacLane spectrum of the integers, 〈HZ〉, is in DL\BA [1, Lemma
2.7]. However, the Brown-Comenetz duals of (p-local) spheres are not in DL [1,
Lemma 2.5].

We have that BA ⊆ DL; on DL, ∧ and f coincide, and (DL,∧,∨) is a dis-
tributive lattice. Furthermore, on BA, a is a true complement, so
(BA,∧,∨,0,1, a) is a Boolean algebra, but not complete.

There is a retraction from B to DL defined by

r〈X〉 :=
∨

{〈Z〉 ; 〈Z〉 ∈ DL and 〈Z〉 ≤ 〈X〉}.

The pseudo-complementation function a may not respect DL, i.e., it could be
that 〈X〉 ∈ DL, but a〈X〉 /∈ DL. On DL, we therefore define a new pseudo-
complement by

A〈X〉 := ra〈X〉.
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While A3 = A and 〈X〉 ≤ A2〈X〉, it is not in general the case that A2 = id. It
is known [5, Lemma 6.2(d)] that A converts joins to meets, i.e.,

A(
∨

X ) =
k

{A〈X〉 ; 〈X〉 ∈ X}.

Following [5, Definition 6.3], we define

cBA := {〈X〉 ∈ DL ; A2〈X〉 = 〈X〉}.

If 〈X〉 ∈ BA, then A2〈X〉 = a2〈X〉 = 〈X〉, thus BA ⊆ cBA. The set cBA
carries a complete Boolean algebra structure [5, Theorem 6.4]; however, it is not
(cBA,∧,∨,0,1, A), but instead (cBA,∧,g,0,1, A) with g defined by

j
X := A2

∨
X .

Note that
b
X is perfectly well-defined for subsets X of DL or even B, it just

will not in general produce the least upper bound in these contexts.

3. Results

We start with an observation on joins of elements in BA and use this to
derive lower bounds for the size of DL\cBA and cBA\BA.

Lemma 1. If X ⊆ BA, then
b
X =

∨
X . In particular,

∨
X ∈ cBA.

Proof. We have that

j
X = A2

∨
X = rara

∨
X ,

and as a converts joins to meets, the latter is equal to

rar
k

{a〈X〉 ; 〈X〉 ∈ X}.

Since every a〈X〉 is in BA, it is also in DL, and as DL is complete,

Ξ :=
k

{a〈X〉 ; 〈X〉 ∈ X} ∈ DL

and hence rΞ = Ξ. Therefore, as a sends meets to joins,

rarΞ = raΞ

= r
∨

{a2〈X〉 ; 〈X〉 ∈ X}

= r
∨

{〈X〉 ; 〈X〉 ∈ X}

=
∨

X .

q.e.d.
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Proposition 2. If S ⊆ N is infinite, then 〈K(S)〉 =
∨

i∈S〈K(i)〉 ∈ cBA\BA
and 〈K(S)〉 ≥ 〈I〉.

Proof. Hovey and Palmieri [5, §5] proved that for each n, 〈K(n)〉 is in BA,
so by Lemma 1, 〈K(S)〉 is in cBA. Hovey showed [4, Proof of Theorem 3.6]
that the mod-p Moore spectrum, M(p) is K(S)-local, so in particular K(S)
has a finite local and [5, Proposition 7.2] gives that 〈K(S)〉 ≥ 〈I〉. If K(S)
were in BA, having a finite local implies [5, Lemma 7.9] that 〈K(S) ∧ I〉 6= 0.
But we know that 〈K(n) ∧ I〉 = 0 and hence using distributivity we get that
〈K(S) ∧ I〉 = 0. q.e.d.

Corollary 3. We have a proper inclusion BA $ cBA; in fact, the set cBA\BA
has at least 2ℵ0 elements.

Proof. As noted above, BA ⊆ cBA. For the non-equality, if S 6= S′ are
infinite subsets of N, then Dwyer and Palmieri showed that 〈K(S)〉 6= 〈K(S′)〉
[3, Lemma 3.4], so there are continuum many elements in the complement.

q.e.d.

To sum up, we have

BA $ cBA ⊆ DL $ B.

Hovey and Palmieri argue that the middle inclusion is also proper:

This argument also implies that A2 is not the identity—indeed, if
A2 were the identity, one can check that A would have to convert
meets to joins. However, we do not know a specific spectrum X in
DL for which A2〈X〉 6= 〈X〉. [5, p. 185]

We analyse the argument sketched in the above quote:

Lemma 4. Let X ⊆ DL be any set such that A2 is the identity for each 〈X〉 ∈
X and for

∨
{A〈X〉 ; 〈X〉 ∈ X}. Then

A(
k

X ) =
∨

{A〈X〉 ; 〈X〉 ∈ X}.

Proof. Since A converts joins to meets, under the assumption of the lemma,
we have

A(
k

X ) = A
k

{A2〈X〉 ; 〈X〉 ∈ X}

= A2
∨

{A〈X〉 ; 〈X〉 ∈ X}

=
∨

{A〈X〉 ; 〈X〉 ∈ X}.

q.e.d.
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Corollary 5 (Hovey-Palmieri). The operation A2 is not the identity on DL;
i.e., cBA $ DL.

Proof. Let X := K(N), Y := HFp = K(∞), and X := {〈X〉, 〈Y 〉} ⊆ DL. We
assume towards a contradiction that A2 is the identity on DL, so in particular,
the assumptions of Lemma 4 are satisfied for X . But 〈X〉f〈Y 〉 = 〈X〉∧〈Y 〉 = 0,
hence A(〈X〉 f 〈Y 〉) = 1. On the other hand, A〈X〉 ∨ A〈Y 〉 ≤ a〈I〉 < 1, in
contradiction to Lemma 4. q.e.d.

The proof of Corollary 5 due to Hovey and Palmieri yields a trichotomy
result: at least one of 〈K(N)〉, 〈HFp〉, and A〈K(N)〉 ∨ A〈HFp〉 is not in cBA.
We improve this in our Dichotomy Lemma 7 to a dichotomy which will allow
us to identify concrete elements in DL\cBA, including in particular 〈HFp〉
(Corollary 10).

Lemma 6. For any spectrum, the condition A〈E〉 < 1 is equivalent to 〈E〉 6= 0.

Proof. If 〈E〉 = 0, then clearly A〈E〉 = 1. Conversely, if A〈E〉 = 1, then
a〈E〉 ≥ A〈E〉 = 1, and so

〈E〉 = 1 ∧ 〈E〉 = a〈E〉 ∧ 〈E〉 = 0.

q.e.d.

Lemma 7 (Dichotomy Lemma). Let X and Y be spectra, and let E be a

spectrum such that 〈E〉 6= 0. Suppose that the following conditions hold:

1. 〈X〉 ∈ DL,

2. 〈Y 〉 ∈ DL,

3. 〈X〉 ∧ 〈Y 〉 = 0,

4. 〈E〉 ≤ 〈X〉, and

5. 〈E〉 ≤ 〈Y 〉.

Then 〈X〉 or 〈Y 〉 is not in cBA.

Note that conditions 4 and 5 are equivalent to saying that 〈X〉f〈Y 〉 6= 0, and
thus the Dichotomy Lemma extracts the failure of A2 = id from the discrepancy
between f and ∧ in B.
Proof. Assume that A2〈X〉 = 〈X〉 and A2〈Y 〉 = 〈Y 〉. Since A converts joins
to meets, we get by our assumption on X and Y

1 = A0 = A(〈X〉 ∧ 〈Y 〉) = A(A2〈X〉 ∧A2〈Y 〉) = A2(A〈X〉 ∨A〈Y 〉)

and the latter is A〈X〉 g A〈Y 〉 by definition of g. As A is order-reversing we
get A〈X〉 ≤ A〈E〉 and A〈Y 〉 ≤ A〈E〉 and hence (using Lemma 6)

1 = A2(A〈X〉 ∨A〈Y 〉) = A〈X〉gA〈Y 〉 ≤ A〈E〉gA〈E〉 = A〈E〉 < 1,
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a contradiction, showing that our assumption that both 〈X〉 and 〈Y 〉 are in
cBA cannot hold. q.e.d.

As usual, we call a set S ⊂ N∪{∞} coinfinite if its complement (N∪{∞})\S
is infinite.

Theorem 8. For any coinfinite set S ⊆ N ∪ {∞} with ∞ ∈ S, we have that

〈K(S)〉 is not in cBA.

Proof. In Lemma 7, choose E to be the Brown-Comenetz dual of the p-local
sphere spectrum, I. We know by [5, Lemma 7.1(c)] that 〈HFp〉 ≥ 〈I〉, and
hence 〈K(S)〉 ≥ 〈I〉. As the complement S := (N ∪ {∞})\S is infinite, we
get by Proposition 2 that 〈K(S)〉 ≥ 〈I〉. Both 〈K(S)〉 and 〈K(S)〉 are in DL
and 〈K(S)〉 ∧ 〈K(S)〉 = 0. Thus all conditions of the Dichotomy Lemma are
satisfied, and we get that one of 〈K(S)〉 and 〈K(S)〉 is not in cBA. However,
by Proposition 2, 〈K(S)〉 ∈ cBA, so 〈K(S)〉 ∈ DL\cBA. q.e.d.

Corollary 9. There are at least 2ℵ0 Bousfield classes in DL\cBA.

Proof. This follows directly from Theorem 8 and [3, Lemma 3.4], as there are
2ℵ0 many coinfinite subsets of N ∪ {∞}. q.e.d.

By Corollaries 3 and 9, we get 2ℵ0 as a lower bound for the cardinality for
three of the four areas depicted in Figure 1; for B\DL we only get ℵ0 as a lower
bound. A natural project for future research would be to improve this to 2ℵ0

by finding concrete inhabitants of that set. Getting even larger lower bounds
than 2ℵ0 is connected to the famous open question about the cardinality of B;
as a consequence, we believe that this needs entirely novel ideas.

4. Applications

Several conjectures made by Hovey and Palmieri in [5] suggest that 〈HFp〉
is not in cBA [5, Proposition 6.14]. This follows directly from our Theorem 8:

Corollary 10. For every prime p, we have that 〈HFp〉 ∈ DL\cBA.

Proof. This is clear from Theorem 8, as 〈HFp〉 = 〈K(∞)〉 = 〈K({∞})〉 where
{∞} is coinfinite in N ∪ {∞}. q.e.d.

Our method also identifies several other explicit Bousfield classes inDL\cBA.
The following examples exploit the fact that for any self-map of a spectrum X,
f : Σ|f |X → X one gets by [7, Lemma 1.34] that

〈X〉 = 〈Cf 〉 ∨ 〈X[f−1]〉.

Here, Cf denotes the cofiber of f and X[f−1] is the telescope. Then the Bous-
field class of the Eilenberg-MacLane spectrum of the p-local integers, HZ(p), is
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〈K({0,∞})〉. This is a special case of a truncated Brown-Peterson spectrum
BP 〈n〉 with π∗(BP 〈n〉) = Z(p)[v1, . . . , vn] (|vi| = 2pi − 2). Multiplication by
vn is a self-map on BP 〈n〉 with cofiber BP 〈n − 1〉 and BP 〈n〉[v−1

n ] = E(n).
An iteration then gives (cf. [7, Theorem 2.1]) 〈BP 〈n〉〉 = 〈E(n)〉 ∨ 〈HFp〉.
As the Bousfield class of E(n) is 〈K(0)〉 ∨ . . . ∨ 〈K(n)〉 we obtain 〈BP 〈n〉〉 =
〈K({0, . . . , n,∞})〉.

Corollary 11. For every prime p and every natural number n, we have that

〈HZ(p)〉 and 〈BP 〈n〉〉 are in DL\cBA.

Proof. The subsets {0,∞} and {0, . . . , n,∞} are coinfinite in N ∪ {∞}. q.e.d.

For the connective Morava K-theory k(n) (with π∗k(n) = Fp[vn]) we get
〈k(n)〉 = 〈K(n)〉 ∨ 〈HFp〉 = 〈K({n,∞})〉.

Corollary 12. For every natural number n, 〈k(n)〉 ∈ DL\cBA.

Proof. This follows from Theorem 8, as {n,∞} is coinfinite in N ∪ {∞}. q.e.d.

Similar to the Morava K-theory spectra K(n) we can consider the telescopes
T (n) of vn-maps. (Cf. [5, §5] for details.) It is known that

〈T (n)〉 = 〈K(n)〉 ∨ 〈A(n)〉

where A(n) is the spectrum describing the failure of the telescope conjecture. We
set 〈T (∞)〉 = 〈HFp〉. The classes 〈T (n)〉 and 〈A(n)〉 are in BA but

∨
N
〈T (n)〉 /∈

BA by [5, Corollary 7.10]. By Lemma 1, we know that for any S ⊆ N, we have
that

∨
n∈S〈T (n)〉 ∈ cBA. An argument similar to the proof of Proposition 2

yields Proposition 13.

Proposition 13. If S ⊆ N is infinite, then 〈T (S)〉 =
∨

i∈S〈T (i)〉 ∈ cBA\BA
and 〈T (S)〉 ≥ 〈I〉.

Theorem 14. Let S ⊆ N ∪ {∞} be a coinfinite subset with ∞ ∈ S. Then

〈T (S)〉 is not in cBA.

Proof. Again, we use the Brown-Comenetz dual of the p-local sphere as E in
the Dichotomy Lemma. Let S be the complement of S. As 〈T (n)〉 ≥ 〈K(n)〉
and as ∞ ∈ S we have that

∨

n∈S

〈T (n)〉 ≥
∨

n∈S

〈K(n)〉 ≥ 〈I〉

and
∨

n∈S〈T (n)〉 ≥ 〈I〉. The telescopes satisfy 〈T (n)〉 ∧ 〈T (m)〉 = 0 for m 6= n:
cf. [5, §5] for the cases n 6= ∞ 6= m and the proof of [5, Proposition 6.14]
for 〈HFp〉 ∧

∨
N
〈T (n)〉 = 0. Therefore we obtain that one of

∨
n∈S〈T (n)〉 or∨

n∈S〈T (n)〉 cannot be an element of cBA, but
∨

n∈S〈T (n)〉 is in cBA by
Proposition 13. q.e.d.
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