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SUMMARY

The three main oral diseases of humans, that is caries, periodontal diseases and oral candidiasis, 

are associated with microbiome shifts initiated by changes in the oral environment and/or 

decreased effectiveness of mucosal immune surveillance. In this review we discuss the role that 

microbial-based therapies may have in the control of these conditions. Most investigations on the 

use of microorganisms for management of oral disease have been conducted with probiotic strains 

with some positive but very discrete clinical outcomes. Other strategies such as whole oral 

microbiome transplantation or modification of community function by enrichment with health-

promoting indigenous oral strains may offer more promise but research in this field is still in its 

infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one 

component within a holistic preventive strategy that should also aim at modification of the 

environmental influences responsible for the initiation and perpetuation of microbiome shifts 

associated with oral dysbiosis.

INTRODUCTION

The oral microbiome is formed by hundreds of microbial species, including bacteria, fungi, 

archaea and viruses, which coexist in specific and organized arrangements in the different 

habitats of the oral cavity (1, 2, 3, 4, 5, 6, 7, 8). Oral sub-habitats include the mucosa, 

covered by keratinized and non-keratinized stratified squamous epithelium, the papillary 

surface of the tongue dorsum and the hard structures of teeth, which are comprised by those 

above (supragingival) and below (subgingival) the gingival margin. The distinct 

environmental characteristics found in each of these habitats promote the development of 

unique microbial communities that, although living in close proximity, can be clearly 

discriminated from each other (9, 10, 11, 12). Moreover, the microbial composition of these 

communities is critical to oral health with the main oral diseases characterized by deleterious 

alterations in microbiome community structure at specific sub-habitats (13, 14).

As in other human mucosal compartments, an understanding of the composition of health 

and disease-associated communities, together with the development of treatments to attempt 

the restoration of healthy communities in diseased individuals, has been the subject of 

increasing research. In this review, we present an overview of the main oral diseases and a 

critical evaluation of potential microbial-based therapies. We conclude with a perspective on 

what we believe are key points regarding the etiology of oral diseases that need to be taken 

into account when developing microbial-based therapeutics for oral conditions.
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1. Ecological factors mediating the assembly of oral communities

The oral cavity sub-habitats are colonized by uniquely adapted microbial communities. As 

other accessible surfaces of the human body, like skin, upper respiratory tract, 

gastrointestinal tract and vagina, the oral cavity is colonized soon after birth (15). The oral 

microbiome is one of the most complex and diverse microbial communities, harboring 

hundreds of species (2, 16). The distribution of such species within oral sub-habitats is 

determined by a number of factors such as: (i) the characteristics of the surfaces available for 

attachment, (ii) oxygen availability, (iii) exposure to nutrients from the diet of the host, and 

(iv) exposure to host products delivered by saliva and gingival crevicular fluid. Microbial 

successions and inter-species interactions also shape the development of oral communities.

Two different types of surfaces, hard and soft, are available for colonization in the oral 

cavity. The presence of hard, non-shedding surfaces is a unique feature of the mouth as tooth 

surfaces (and dentures) allow the development of permanent communities and substantial 

biomass unless disrupted by regular oral hygiene; in contrast, soft mucosal surfaces promote 

constant community turnover due to epithelial cell shedding. Both types of surfaces are 

constantly bathed by saliva, with salivary glycoproteins and proteins adsorbing in a selective 

way to create a conditioning film. The glycoproteins and proteins in the conditioning film 

serve as ligands attracting specific species from the genera Streptococcus, Actinomyces, 
Capnocytophaga, Eikenella, Haemophilus, Prevotella, Propionibacterium and Veillonella, 

among others, which are considered early colonizers (17, 18). These microorganisms 

possess specific arrangements of surface ligands (usually proteins) that allow their adherence 

(19). Species such as Streptococcus mitis and Streptococcus sanguinis recognize sialic-acid 

residues present in adsorbed salivary mucins (20, 21, 22, 23). Other species, such as 

Actinomyces spp. produce enzymes that actively modify adsorbed glycoproteins exposing 

specific saccharide residues (cryptic receptors), which mediate their own attachment (24, 

25). Aditionally, most of the indigenous streptococci express polypeptides of the AgI/II 

family that mediate the recognition of salivary glycoproteins such as gp-340 and their 

adhesion to epithelial cells (26, 27, 28). This group of peptides is also involved in 

streptococcal attachment to extracellular matrix components such as fibronectin, collagen 

and laminin (29, 30), which are exposed when epithelial integrity is disrupted. Thus, 

selective recognition by early colonizers of molecules exposed at the different surfaces 

determines and confers specificity to early microbial colonization events.

The attachment of early colonizers to tooth surfaces provides new ligands for the 

colonization of other species that successively adhere giving place to the formation of a 

biofilm (31). Interspecies communication and microbial succession also constitute important 

aspects of community assembly at different oral surfaces. Classic studies on the physical 

interactions (coaggregation and coadhesion) among oral species have demonstrated that 

bacterial/bacterial and fungal/bacterial cell recognition and attachment are highly specific 

(32, 33, 34, 35, 36). Indeed, analysis of dental plaque shows that oral microbial assemblages 

are specifically organized structures in which individual taxa are arranged in a way 

suggestive of their functional niche in the consortium (6, 8, 37, 38). For example, in a 9-taxa 

consortium recently identified in supragingival plaque, filamentous corynebacteria occupied 

the central position with other taxa radially arranged around them. Anaerobic taxa tended to 
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be in the interior, whereas facultative or obligate aerobes were located at the periphery of the 

consortium. Consumers and producers of certain metabolites, such as lactate, tended to be 

near each other (6). Such highly organized spatial arrangements are likely to result from and 

facilitate a great variety of inter-species interactions, including the formation of metabolic 

networks (17).

Interactions among neighboring microbial species in oral communities could be synergistic 

or antagonistic in nature. One example of synergism in the oral cavity is the collective 

degradation of salivary glycoproteins by microbial consortia, in which complementary 

enzymatic activities allow the utilization of mucins in saliva as energy source, as no 

microorganism possesses the diverse array of enzymes needed for their complete breakdown 

(39). Also, several examples of food chains in which a metabolic product of one species is 

utilized as primary energy source by a partner species have been documented (40, 41, 42). 

Antagonistic interactions mediated by the production of bacteriocins and hydrogen peroxide 

may also affect community assembly (43, 44, 45, 46, 47, 48).

The interaction of communities with the host also plays a key role in community 

development. Multiple factors found in the mucosa, saliva and gingival crevicular fluid 

(GCF), a serum-like exudate constantly flowing between the gingiva and teeth, modulate the 

growth of the resident microbiota at the different surfaces (49, 50, 51, 52). Antimicrobial 

peptides of the ͤ-defensin family (hBDs) are found in various locations of the oral cavity 

such as oral mucosa, gingiva, tongue epithelium, and salivary glands (53). These peptides 

are believed to selectively control the growth of resident microorganisms (49). In saliva, 

multiple antimicrobial activities have been described such as the inhibitory effect of histatins 

against Candida and Streptococcus; the antimicrobial activity of cystatins on Porphyromonas 
gingivalis, and cathelicidin LL-37 activity against Candida spp. (54, 55, 56, 57). Other 

molecules such as lactoferrin, lysozyme, and a variety of antimicrobial peptides present in 

saliva may also influence the composition of the microbial community (for a review see 

Marsh et al. (52)). Finally, elements of the complement system found in GCF may modulate 

colonization of the subgingival sulcus (50, 58).

Depending of the location in the oral cavity, the sources of nutrients for microorganisms also 

differ. In exposed surfaces such as tongue, mucosa and supragingival surfaces of teeth, 

dietary products as well as saliva components are the main available nutritional sources, 

while in the subgingival crevice the resident microorganisms obtain nutrients mainly from 

GCF. Saliva contains glycoproteins such as mucins, amylase, and immunoglobulin (Ig) A 

(52, 59), while GCF contains many serum-derived proteins, such as hemoglobin-derived 

peptides, IgM, IgG and albumin, which serve as nutrients for sub-gingival species (50, 60, 

61, 62). Bacteria from supragingival plaque use host glycoproteins as a major energy source 

and function as a microbial community to sequentially degrade these structurally complex 

molecules (39, 63). Enrichment cultivation studies in serum and evaluation of the growth of 

bacteria in the presence of serum proteins suggest that the protein and iron-rich GCF 

promotes the growth of Gram-negative anaerobic proteolytic taxa, which characterize 

subgingival plaque (61, 64, 65, 66). In contrast, dietary carbohydrates mostly affect the 

community structure of supragingival plaque with their frequent intake promoting an 
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enrichment of species with an efficient carbohydrate metabolism and an ability to grow well 

at acidic pH values (67, 68).

Oxygen availability is another important factor driving the selective colonization of 

microbes in the oral cavity, since it varies widely among the different surfaces found in the 

mouth. The gingival crevice constitutes a highly reduced area with Eh levels as low as −300 

mV as a consequence of low tension of oxygen (69, 70, 71). Therefore, this environment 

selects mostly obligately anaerobic species, while supragingival plaque is enriched with 

aerobic and facultative microorganisms. Anaerobic bacteria also are found in greater 

proportions in the tongue crypts, which serve as an anaerobic “pocket-like” reservoir for 

microbes (72).

2. Ecological aspects of oral disease etiology

The three main oral diseases, that is caries, periodontal diseases and oral candidiasis, are 

associated with dysbiosis of the resident oral microbiome. In the three conditions there is an 

overgrowth of certain indigenous microorganisms, which become the dominant species at 

the affected site at the expense of health-associated taxa. Figure 1 summarizes the factors 

mediating microbiome shifts in these three conditions.

Caries— Caries is the localized demineralization of dental hard tissues by acidic by-

products derived from bacterial fermentation of dietary carbohydrates (73). If not controlled, 

the disease progresses resulting in the cavitation of the affected tooth, potentially allowing 

microbial colonization of the tooth pulpal tissue (74). Dental caries is a multifactorial 

disease in which the frequent intake of dietary carbohydrates and the subsequent generation 

of a low environmental pH drive alterations in the composition and metabolic properties of 

the bacterial communities in dental plaque, leading to the enrichment of acid producers 

(acidogenic) and acid-tolerant (aciduric) microorganisms (39, 75). The ecological plaque 

hypothesis, proposed to explain caries etiology, summarizes these dynamics (39). Prior to 

the onset of the disease, acidogenic bacteria present in the dental biofilm metabolize dietary 

fermentable sugars. The acid produced changes the local environment driving an ecological 

shift in the resident microbiota that favors the selection of aciduric species, which are able to 

tolerate, grow and continue to produce acid in low-pH environments. With the frequent 

intake of dietary sugars, and a more acidogenic and aciduric microbiome, the plaque pH is 

therefore maintained at low levels, promoting enamel demineralization (76).

Despite inter-subject variability, cariogenic plaques are enriched by a common but limited 

number of acidogenic/aciduric species compared to healthy subjects. Among these species, 

Streptococcus mutans shows the greater correlation with both onset and progression of 

caries (14, 77, 78, 79). However, besides S. mutans, increased abundance of other 

streptococci as well as species of Actinomyces, Atopobium, Lactobacillus, Bifidobacterium, 

Propinibacterium and Scardovia has also been associated with caries lesions (14, 77, 80, 81, 

82, 83, 84, 85, 86, 87). A recent microbiome evaluation by Gross et al. (14) reported that S. 
mutans was the dominant species in many, but not all, subjects with caries. A different 

species from the Mutans group of streptococci (MS) (Streptococcus sobrinus), a phylotype 

from the Salivarius group of streptococci (Streptococcus vestibularis/salivarius) and a 
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species from the Mitis group of streptococci (Streptococcus parasanguinis) were also found 

in high levels in subjects with caries, especially in individuals with no or low levels of S. 
mutans (14). These findings indicate that the acidogenic activity of plaque is probably more 

important for lesion development than the presence of specific bacterial species. Thus, given 

the right ecological pressure, other species different from S. mutans, but with aciduric and 

acidogenic characteristics, could become significant contributors to the disease.

Periodontal diseases— Periodontal diseases are inflammatory conditions that affect the 

supporting structures of teeth. The interplay between biofilms that accumulate at the gingival 

margin and the resulting local immune responses results in gingival inflammation, that is, 

gingivitis. Further inflammation, as observed in periodontitis, results in destruction of the 

connective tissue attachment, alveolar bone resorption and eventual tooth loss (88). 

Periodontitis can be broadly classified as aggressive or chronic, based on clinical 

presentation and progression rate. Chronic periodontitis is generally detected in older 

subjects compared to more aggressive forms, has slower rates of progression and 

destruction, and is associated with ticker and more complex biofilms (89). Aggressive 

periodontitis is further divided into localized and generalized forms, the former typically 

affecting specific teeth (90).

The transition from health to periodontitis is characterized by shifts in the community 

structure of the subgingival microbiome, probably as a result of the interaction between 

resident communities and the inflammatory response of the host (13, 88, 91). Health-

associated subgingival communities are enriched in Gram-positive taxa such as Rothia spp. 

and Actinomyces spp., while gingivitis communities are enriched with mostly Gram-

negative species from the genera Prevotella, Selenomonas and Fusobacterium, among others 

(92, 93, 94). Further microbiome shifts occur as periodontitis develops with the 

establishment of a highly diverse community enriched in species such as P. gingivalis, 
Tannerella forsythia, Treponema spp., Filifactor alocis, and Fretibacterium spp., among 

many others (13, 95, 96, 97). Moreover, the aggressive form of periodontitis is characterized 

by elevated proportions of Aggregatibacter actinomycetemcomitans in addition to some of 

the mentioned bacterial species typically enriched in chronic periodontitis (98, 99, 100, 101, 

102).

The exact mechanisms behind microbiome shifts associated with periodontal diseases have 

not been completely elucidated, but is likely that both microbial and host forces drive the 

community structure changes. Currently, the most accepted hypothesis of periodontal 

disease etiology is the polymicrobial synergy and dysbiosis model (88, 103). According to 

this model, low levels of keystone species such as P. gingivalis enhance microbial 

community virulence by disabling immune surveillance mechanisms in the gingival sulcus, 

allowing overall community overgrowth, which promotes inflammation. Inflammation 

further modifies the community selecting for “inflammophilic” organisms, which are those 

capable of metabolism of proteinaceous substrates derived from tissue breakdown and from 

GCF, the flow of which is increased in disease. Inflammation and dysbiosis reinforce each 

other, eventually causing destruction of periodontal tissues (88). Several mechanisms have 

been described to mediate the keystone pathogen-driven dysregulation of the host response. 

P. gingivalis has been shown to dysregulate pro-inflammatory signals in epithelial cells such 
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as the neutrophil chemokine IL-8 and the T-cell chemokine CXCL10/IP-10 (104, 105). Also 

P. gingivalis, together with Prevotella intermedia and T. forsythia, dysregulate via several 

mechanisms the complement pathway (88, 106, 107, 108, 109), with animal models showing 

that complement plays an essential role in the pathogenesis of periodontitis (110). Therefore, 

synergic interactions between species in the community, the decreased effectiveness of host 

surveillance mechanisms and the resulting enhancement of overall community growth with 

subsequent inflammatory responses conducive to connective tissue attachment and bone loss 

are likely to contribute to the onset of periodontitis.

Oral candidiasis— Oral candidiasis is the superficial inflammation of the oral mucosa due 

to the overgrowth of Candida spp. (111). Clinical presentations of the primary forms of oral 

candidiasis include: (i) acute pseudomembranous candidiasis; (ii) chronic erythematous 

candidiasis; (iii) acute erythematous candidiasis; and (iv) chronic hyperplastic candidiasis 

(112). Candida albicans is the most predominant species associated with oral candidiasis, 

followed by Candida glabrata, Candida tropicalis, Candida parapsilosis, Candida kefyr, 

Candida dubliniensis, Candida lusitaniae (currently Clavispora lusitaniae), Candida krusei 
(currently Pichia kudriazevii and Issatchenkia orientalis), and Candida guilliermondii 
(currently Meyerozyma guilliermondii) (113). However, the sole presence of these species in 

the oral cavity is not enough for disease onset. Oral candidiasis development is mostly 

driven by conditions that compromise the systemic immune response such as organ 

transplantation, HIV infection, chemotherapy, radiotherapy and advanced age. Other local 

contributory factors that may promote Candida overgrowth include wearing a removable 

prosthesis, poor oral hygiene, tobacco use and hyposalivation (111). Saliva seems to be a key 

element in the control of Candida overgrowth, since it has components such as soluble IgA 

and mucins that bind and clear the fungi from the oral cavity, as well as histatin 5 and 

calprotectin that have potent antifungal activities (114).

Contrary to other mucosal compartments, no clear relationship between the disruption of the 

bacterial component of the oral microbiome by the use of antibiotics and the overgrowth of 

Candida spp. in the oral cavity has been established. Our current understanding of fungal-

bacterial ecology in relation to oral health and disease is limited. Current in vitro studies and 

animal models suggest that the interactions between C. albicans and bacterial partners such 

as oral streptococci may be synergistic rather than antagonistic (115, 116, 117). However, no 

longitudinal studies exist in humans evaluating fungal and bacterial microbiome interactions 

during oral candidiasis progression.

3. Overview of mechanisms behind common microbial therapeutic approaches

Microbial therapeutics include several approaches aimed at restoring the ecological balance 

through the use of viable cells. Such strategies have been applied with successful results 

mainly in gastrointestinal diseases and range from targeting specific species to the 

replacement of the entire microbiota. Among the strategies that use live cells as therapeutic 

agents and have been considered in the context of oral diseases are: (i) probiotics, (ii) 

bacterial replacement, and (iii) predatory bacteria and bacteriophages.
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Probiotics— The World Health Organization, and the Food and Agriculture Organization 

of the United States define probiotics as “Live microorganisms which, when administered in 

adequate amounts, confer a health benefit on the host”. Some of the desirable characteristics 

of a probiotic strain include: non-pathogenic and safe for the patient, genetically stable, and 

able to survive processing and administration conditions. Other characteristics such as being 

able to adhere to mucus and/or human epithelial cells, having antimicrobial activity against 

potentially pathogenic bacteria and/or the ability to reduce pathogen adhesion to surfaces 

may also be desirable (118).

Although the exact molecular mechanisms of action of probiotics are largely unknown, 

proposed mechanisms can be summarized in three general areas: (i) enhancement of 

mucosal barrier function, (ii) modulation of the immune response, and (iii) antagonism of 

pathogens either by the production of antimicrobial compounds or through competition for 

mucosal binding sites (119, 120). The enhancement of the mucosal barrier is thought to be 

mediated by the interaction of microorganism-associated molecular patterns (MAMPs) with 

specific epithelial cell receptors (119). Also, several specific bacterial molecules have been 

shown to direct the expression of tight-junction proteins protecting epithelial cells from 

apoptosis and promoting cellular proliferation (121), suppress intestinal inflammation 

through the activation of the histamine H2 receptor (122), and reduce the recruitment of T 

helper 17 (Th17) cells down-regulating interleukin 17 (IL-17) cytokine production (123). 

Fungal probiotics such as Sacharomyces boulardii have been shown to improve gut barrier 

function and decrease the inflammation tone reducing body weight, fat mass, and hepatic 

steatosis in obese and Type 2 diabetic mice (124, 125, 126, 127). Another example of an 

immunomodulatory probiotic effect is the production of a cell surface-associated 

exopolysaccharide (EPS) by Bifidobacterium breve that protects against infection with 

enteric pathogens in mice by inducing alterations in antibody production (128).

The direct antagonist effects of probiotics on potentially pathogenic species are possibly 

mediated by competition for nutrients or adherence, and via direct antimicrobial activity 

(129, 130, 131, 132). Although some direct probiotic-pathogen interactions have been 

documented, whether probiotics need to change the composition of the microbiota to exert 

their effect remains controversial. Probiotic-induced changes in microbial composition 

towards beneficial bacteria have been shown in both obesity and hepatocellular carcinoma 

models (123, 124), while McNulty et al. (133) showed that the metabolic function of the 

community changed without alterations in community membership after treatment of mice 

with a mixture of probiotics.

A list of diseases in which probiotic use is most accepted as some beneficial effect has been 

found includes: treatment of infectious childhood diarrhea, prevention of antibiotic-

associated diarrhea, prevention and maintaining remission in pouchitis, treatment and 

maintenance of remission in ulcerative colitis, treatment and prevention of atopic eczema 

associated with cow’ s milk allergy, and hepatic liver disease. The recommendations for use 

of probiotics are strain specific and mostly include Lactobacillus and Bifidobacterium spp. 

(134, 135, 136).
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Bacterial replacement therapies— Bacterial replacement therapies are based on the 

utilization of indigenous bacteria, usually genetically modified, to colonize human tissues 

and thereby prevent the outgrowth of disease-associated microorganisms (137, 138). The 

“effector” bacterial strain is normally an isolate from a human reservoir modified using 

genetic tools with the purpose of incorporating some benefitial properties. Desirable 

characteristics for an effector microbial strain have been summarized as: (i) to be 

specifically active against target pathogens without significantly disturbing the balance of 

the existing microbial ecosystem, (ii) indigenous and able to survive in the selected habitat 

and/or ecosystem and not elsewhere, (iii) non-pathogenic (or weakly opportunistic) for the 

host species, (iv) susceptible to low-risk antibiotics such as penicillin so that the strain can 

be later eliminated if desired, (v) easily propagated and readily prepared in a stable form for 

commercial distribution, (vi) easily identifiable among the resident microbiota, (vii) not 

causing systemic toxicity or immunological sensitization in the host or leading to selection 

of resistant microorganisms, (viii) capable of persisting in the host tissues to effect long-term 

protection (138).

In comparison to probiotics, less research has been conducted to create and evaluate 

genetically modified effector strains to prevent or treat human disease. Examples of studies 

using this approach include the evaluation of the role of genetically modified strains of S. 
mutans in the prevention and/or treatment of caries (139, 140). Additionally, studies have 

been published evaluating the effect of non-genetically modified strains that may out-

compete pathogens when administered; for example, a nasal spray containing a mixture of S. 
sanguinis, S. mitis and S. oralis showed promise as a therapeutic alternative for acute otitis 

media in children (141).

A relatively new strategy that utilizes the bacterial replacement principles for the treatment 

of dysbiotic disorders is whole microbiome transplantation, also called ecotherapeutics. This 

strategy has been mainly directed towards the restoration of the intestinal microbiota after 

antibiotic treatment, which alters the indigenous community structure and allows 

colonization by pathogens such as Clostridium difficile (142). Ecotherapeutics include 

mostly fecal transplantation, which consists of administration of stool from a healthy donor 

to the symptomatic patient (143). Fecal transplantation has been tested as a therapy for C. 
difficile -associated diarrhea with excellent clinical results, showing restoration of bacterial 

diversity in stool samples and a decrease in symptomatology with a much more superior 

performance than vancomycin treatment, which has been the standard of care (144, 145). 

Also, some promising results have been obtained for other conditions such as metabolic 

syndrome, obesity, ulcerative colitis and irritable bowel syndrome (146, 147, 148, 149, 150).

Transplantation of selected members of the community also appears as a future viable 

alternative for the treatment of some dysbiotic diseases. The identification of specific strains 

with a probiotic-like capacity within the indigenous microbiome and subsequent 

administration seems a promising strategy. Experiments in mice have shown that oral 

administration of a cocktail of human intestinal clostridia is able to induce regulatory T 

(Treg) cells and anti-inflammatory molecules, and attenuated disease in models of colitis and 

allergic diarrhea (151). Another approach involves the identification of indigenous 

microorganisms that confer resistance to infection by exogenous pathogens after antibiotic 
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treatment, and that could thus be administered prophylactically with the aim of enriching 

them in the microbiome. For instance, the bile acid 7ͣ-dehydroxylating intestinal bacterium, 

Clostridium scindens, has been shown to be associated with resistance to C. difficile 
infection when it forms part of the native gut microbiome, and enhances resistance to post-

antibiotic infection when administered exogenously (152). These studies highlight the 

possibility of using indigenous effector bacteria that specifically modulate the inflammatory 

response and/or antagonize pathogenic strains and are habitat-specific.

Predatory bacteria and bacteriophages— Predatory bacteria consist of a diverse 

group of obligatory predators widely distributed in aquatic and terrestrial environments 

(153). The most studied strain is Bdellovibrio bacteriovorus HD100, which is a predator for 

Gram-negative species. After attaching to its prey, the predator invades its periplasmic space 

and multiplies while destroying its cytoplasm. Once the multiplication cycle is completed, 

the predator destroys the rest of the prey’ s cell and releases its progeny (154).

Beside B. bacteriovorus, a number of strains of predatory bacteria called Bdellovibrio-and-

like-organisms (BALOs) have received attention as antibacterial agents for the control of 

pathogenic bacteria. Among the characteristics that make these species good candidates for 

the control of diseases are: (i) non-pathogenic and non-toxic in several mammalians models; 

(ii) potentially well tolerated by humans; (iii) able to attack a wide range of Gram-negative 

bacteria; (iv) able to attack both planktonic and biofilm cells; (v) able to attack their prey 

even in presence of Gram-positive bacteria (155).

The characteristics listed above make BALOs candidate antibacterial agents for the 

treatment of a number of Gram-negative associated diseases. Several studies have reported 

killing activity of BALOs against a wide range of bacteria such as Helicobacter pylori and 

Campylobacter jejuni (156), as well as against bacteria associated with ocular infections 

(157), and periodontitis (158, 159). However, no human studies have been performed with 

BALOs, and only one study has demonstrated efficacy in vivo, showing that both cecal 

inflammation and colonization by Salmonella enterica serovar Enteritidis was reduced in 

chicken treated with Bdellovibrio (160).

Bacteriophages are viral particles that infect bacteria leading either to lytic or lysogenic 

cycles. Lytic (virulent) phages once replicated and assembled, rapidly destroy the bacterial 

cell, releasing their progeny (161). Because of their ability to kill bacteria, lytic phages have 

been historically used for treating infectious diseases such as dysentery, skin and urinary 

tract infections, among others (reviewed by Abedon et al. (162)). Several studies have been 

conducted with phages to prevent the formation of in vitro biofilms of Pseudomonas 
aeruginosa. Although initially promising results were obtained in one of these studies, 

regrowth of the biofilm after 24 hours of phage administration was observed (151). As an 

alternative, cocktails of phages or combinations of the viral particles with other 

antimicrobial agents were investigated with better efficiency at destroying biofilms (163, 

164, 165). The efficacy of phage cocktails has also been tested in human trials for otitis and 

wound infections, which showed some clinical improvements and no adverse effects (166, 

167).
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4. Application of microbial-based therapies to oral diseases

Current strategies for treatment of caries and periodontal diseases are focused on the 

mechanical removal of dental plaque and associated deposits, complemented with the use of 

antimicrobial compounds and, in the case of caries, with diet modification, topical fluoride 

application and, if needed, restoration of damaged tooth structures (73, 168, 169, 170). The 

main limitation of such strategies is that only a temporary modification of the pathogenic 

communities is achieved after therapy with the disease-associated microbiota, in some 

individuals, recovering shortly after the initial therapeutic intervention (86, 171, 172). It is 

also not clear whether the oral microbiome is completely restored, even short-term, by these 

treatment strategies to a composition similar to that of a healthy subject that never 

experienced the disease. Oral candidiasis is mostly treated with antifungal agents, some of 

which select for strains of Candida spp. resistant to such antimicrobial agents (173, 174). 

Therefore, there is a current need for preventive and therapeutic strategies for oral diseases 

that aim at restoring a healthy microbiome and increase its resistance to dysbiotic 

perturbations.

Microbial therapeutics for caries— Attempts have been made to apply replacement 

therapies for the management of dental caries using potential effector strains with decreased 

acidogenicity, such as an S. mutans strain defective in intracellular polysaccharide (IPS) 

metabolism (140), a non-cariogenic S. salivarius strain called TOVE-R (175), and an S. 
mutans strain deficient in lactate dehydrogenase activity (176). These strains were used in 

studies that evaluated their antagonistic activity against native acidogenic S. mutans and 

other caries-associated species, their ability to persistently colonize the oral cavity, their 

safety and non cariogenicity, and the possibility to be eradicated if needed (139, 175, 177, 

178).

The group of Jason M. Tanzer conducted studies with both an S. mutans defective in IPS 

metabolism and the non-cariogenic S. salivarius TOVE-R. The IPS-deficient S. mutans 
mutant was shown to prevent the colonization by two caries-associated strains of S. mutans 
and S. sobrinus, in S. mutans-free conventional rats (140), but no further studies were 

conducted. S. salivarius TOVE-R was demonstrated to partially displace both S. mutans and 

S. sobrinus pathogenic strains in a rat model, accompanied by a decrease in caries 

experience (175, 179). Some in vitro studies were conducted to characterize its mechanism 

of action (180) but, probably because of lack of genetic information on the strain, further 

studies in humans were not performed.

The group of Jeffrey D. Hillman isolated the S. mutans strain JH1001 which produced a 

bacteriocin, mutacin 1140, able to inhibit the in vitro growth of a wide range of bacteria 

including caries-associated species of Streptococcus, Actinomyces and Lactobacillus (176, 

181). The effector strain failed to consistently colonize the human oral cavity, thus a mutant 

that produced higher levels of mutacin 1140 was constructed, thereby improving its 

colonization and competition with indigenous S. mutans (177, 182). Subsequent genetic 

modifications of the bacteriocin-producing strain were conducted, obtaining a less 

cariogenic strain due to deletion of lactate dehydrogenase activity (139). Further mutations 

were later introduced consisting of the deletion of the dal gene, involved in D-alanine 

Hoare et al. Page 10

Microbiol Spectr. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biosynthesis, and the comE gene involved in the uptake of environmental DNA (178). This 

last strain (A2JM) was expected to be non-cariogenic, able to displace oral cariogenic 

microorganisms, less prone to transformation and dependent on the exogenous addition of 

D-alanine, a property to allow control of its growth in the host via the exogenous 

administration of the amino acid. Although subsequent studies showed it was possible to 

eradicate the effector strain A2JM in a rat model, the genetically-modified strain did not 

have greater genetic stability than the parental strain and no studies in humans have been 

reported (178).

The evaluation of the effectiveness of probiotics as anticariogenic agents has been subject of 

high attention for the last 20 years. Despite an increasing number of publications in the field, 

only a small proportion of these studies have evaluated the effects of probiotics in human 

clinical trials. Stensson et al. (183) showed that the administration of Lactobacillus reuteri 
during the first year of life was associated with a decrease in caries prevalence at 9 years of 

age. Moreover, studies have shown that the administration of Lactobacillus and/or 

Bifidobacterium strains has a positive short-term effect decreasing MS counts in saliva (184, 

185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199). Other studies, 

however, have found that MS counts in plaque and/or saliva samples do not change or 

increase after probiotic intake (200, 201, 202, 203, 204). Also, changes in acidogenicity 

were not observed in plaque or saliva after probiotic use (201, 202). Long-term evaluation of 

probiotic administration has also shown contradictory results. While a reduction in caries 

incidence and/or MS counts was shown to occur after 10 or 12 months of ingestion of 

lactobacilli (205, 206), intervention early in life with Lactobacillus or Bifidobacterium spp. 

had no effect on occurrence of caries and/or on MS counts up to 4 years after the 

administration (207, 208). Even though the study of potentially probiotic bacteria focuses 

mostly on lactobacilli, other human indigenous species from the genera Pediococcus, 
Leuconostoc, and Streptococcus have also been proposed to have probiotic effects against 

caries (209, 210). S. salivarius M18 and a mouthwash containing a mixture of S. oralis 
KJ3sm, Streptococcus uberis KJ2sm and Streptococcus rattus JH145 (a spontaneous lactic 

acid deficient mutant) have been shown to decrease levels of MS (211, 212). Gruner et al. 

(213) recently performed a meta-analysis with the data available from randomized controlled 

trials published between 1967 and June of 2015, regarding the use of probiotics in caries, 

considering human studies that included a control group of either placebo or alternative 

treatments. Although, the analysis showed that probiotics were associated with reductions in 

the counts of S. mutans, the authors found no significant reduction in caries experience, 

concluding that currently there is no sufficient evidence for recommending probiotics in 

either prevention or treatment of caries.

More recently, investigations on caries have focused on finding a rationally-designed 

strategy to alter tooth plaque metabolism towards that of a microbial community compatible 

with health. Clinical studies in children with different caries experience have shown that 

plaque alkali production may be related to caries susceptibility with plaque from healthy 

children showing a greater ability to produce alkali via the arginine deaminase system 

(ADS) than plaque from children with caries lesions (214, 215). A limited number of oral 

species are capable of metabolizing arginine via the ADS with alkali generation. Most 

species identified belong to the genus Streptococcus with S. sanguinis strains being very 
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prevalent among ADS-positive isolates (216). Moreover, a highly arginolytic strain of 

Streptococcus belonging to a potentially novel species was isolated from supra-gingival 

plaque of a caries-free individual. The strain not only expressed the ADS pathway at high 

levels under a variety of conditions but also effectively inhibited the growth and two 

intercellular signaling pathways important in S. mutans (217). These studies show that 

strains capable of alkali production via arginine may be important contributors to the 

stability of healthy communities and have prompted investigators to consider if the 

exogenous administration of arginine may have a beneficial effect in enriching for a health-

compatible dental plaque community. Indeed, a clinical study showed that the use of an 

arginine-containing toothpaste significantly increased ADS activity in plaque of caries-active 

individuals and shifted the bacterial composition to a healthier community, more similar to 

that of caries-free individuals (218). These investigations show that arginine could 

potentially serve as an anti-cariogenic agent and that perhaps the combination of exogenous 

arginine administration and enrichment of the microbiome with ADS-positive strains could 

potentially have a health benefit.

In summary, the management of caries with bacterial replacement therapies based on 

genetically modified strains has not advanced into clinical trials. Meanwhile, several clinical 

studies have been conducted with various probiotic combinations but results are mixed and 

so far are insufficient for recommending their use in caries management. The use of 

probiotics for caries prevention does not seem to be derived from a clear rationale as 

probiotics may not antagonize the local acidogenic microbiota, and the strains themselves 

have a potential for acidogenicity. Recent efforts focused on defining the metabolic 

properties of microbial communities associated with health seem to offer more promise, 

with therapies aimed at the enrichment of alkali production via arginine metabolism 

representing a more rational alternative.

Microbial therapeutics for periodontal diseases— In the case of periodontal 

diseases, oral or exogenous probiotic strains have been evaluated under the assumption that 

they could help in the suppression of periodontitis-associated species by the production of 

antimicrobial substances or via competitive exclusion mechanisms, and also contribute to 

modulation of immune responses (219, 220). Different bacterial strains have shown 

beneficial immunomodulatory effects with respect to the periodontium. These include 

species like S. salivarius and Streptococcus cristatus in in vitro studies (221, 222, 223), and 

Lactobacillus brevis CD2 in animal models and in humans with periodontitis (224, 225). S. 
cristatus has been shown to attenuate the expression of cytokines such as IL-8, IL-1ͣ, IL-6 

and tumor necrosis factor-ͣ (TNF-ͣ ) in epithelial cells in response to Fusobacterium 
nucleatum (222, 223), while S. salivarius K12 has been shown to inhibit the secretion of 

IL-8 in response to several MAMPs (221). In both mice and humans, L. brevis has been 

shown to decrease levels of inflammatory markers like prostaglandin E-2 (PGE-2), ͥ-

interferon (IFN- ͥ ), TNF-ͣ , IL-1ͤ, IL-6 and IL-17A (224, 225).

The antimicrobial effects of probiotic-like strains against bacterial species associated with 

periodontal diseases have also been studied. Among these, a hydrogen peroxide-producing 

S. sanguinis strain has been shown to suppress A. actinomycementcomitans in vitro and 

antagonize its colonization in gnobiotic rats (226). In vitro studies have also shown that 
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species such as S. sanguinis, S. cristatus, S. salivarius and S. mitis inhibit colonization of 

epithelial cells by A. actinomycetemcomitans (227, 228), while in another study S. 
sanguinis, S. salivarius, S. mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae 
reduced the adhesion of P. gingivalis to the bottom plate of a parallel plate flow chamber, but 

failed to significantly inhibit A. actinomycetemcomitans (229). Bifidobacteria species 

isolated from saliva samples of periodontally healthy individuals have also been shown to 

inhibit P. gingivalis growth possibly by competing for vitamin K (230).

Human clinical studies on the effect of Lactobacillus spp. probiotics in the treatment of 

chronic periodontitis have reported statistically significant improvements in periodontal 

clinical parameters such as plaque index, bleeding on probing and pocket depth and/or 

reduction of periodontitis-associated species when utilized alone (231, 232), or as an adjunct 

to periodontal treatment, in comparison to a control group (232, 233, 234). However, another 

study reported that the adjunctive use of a probiotic tablet, containing Streptococcus oralis 
KJ3, Streptococcus uberis KJ2 and Streptococcus rattus JH145, did not significantly 

improve the therapeutic outcomes of scaling and root planing when compared to the placebo 

group (235). In subjects with gingivitis, the use of probiotics has shown a positive clinical 

effect in some studies (236, 237, 238), while Iniesta et al. (239) reported decreased levels of 

P. intermedia in saliva, and P. gingivalis in subgingival plaque, but no improvements in 

plaque and gingival indexes after probiotic administration. Moreover, in healthy children 

subjected to complete oral prophylaxes followed by probiotic administration in the form of 

curd, no differences in gingival health were observed in comparison to the control (240). 

Other studies report that probiotic administration has a positive effect reducing inflammatory 

markers in GCF or decreasing levels of periodontitis-associated microorganisms (241, 242, 

243).

The previously mentioned meta-analysis by Gruner et al. (213) of data available on 

probiotics trials between 1967 and June of 2015 also included periodontal diseases as an 

outcome. This evaluation revealed that while the use of probiotics for periodontal disease 

management did not significantly affect the counts of A. actinomycementcomitans, P. 
gingivalis and P. intermedia, it improved two clinical markers indicative of inflammation, 

that is bleeding-on-probing and gingival index and helped in reduction of pocket probing 

depth (213). In summary, most studies report a small but potentially beneficial effect of the 

use of probiotics in reducing risk factors associated with periodontal diseases, or when used 

as adjuncts to periodontal therapy, with most positive outcomes associated with the use of 

lactobacilli.

Attempts to recolonize the subgingival environment with health-associated bacteria as part 

of periodontal therapy were conducted by Teughels et al. (244), who evaluated the effect of 

administering a mixture of S. sanguinis, S. salivarius and S. mitis strains as adjuvants in 

subgingival artificially-created pockets in beagle dogs. Four months after the pockets were 

induced, different treatments consisting of either subgingival scaling and root planning (Rp), 

root planning and a single topical application of the streptococci mixture (Rpsingle), or root 

planning followed by three successive topical applications of the bacterial mixture (Rpmulti) 

were evaluated. The effect of each treatment was evaluated after 12 weeks and the results 

were compared with an untreated control group. Although significant reductions in pocket 
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depth, bleeding on probing, and clinical attachment level were observed in the three 

treatment groups, the improvements were greater in the Rpmulti group. The Rpmulti dogs 

also showed the most dramatic reduction in anaerobic and black-pigmented species 

including Porphyromonas gulae (a canine form of P. gingivalis), P. intermedia and 

Campylobacter rectus, and a lesser tendency for reemergence of these pathogens after 12 

weeks (244), together with a significant increase in bone density (245). Although the authors 

did not evaluate whether the streptococci actually colonized the subgingival environment, it 

is worth noting that streptococci represent a minor genus in dogs (246, 247), and therefore 

the administration of human streptococci to dogs could be considered an exogenous 

microbial implantation rather than a restoration of indigenous microbiota. These 

experiments constitute perhaps one of the few attempts to evaluate if enrichment of the 

microbiome with species associated with periodontal health could have a beneficial effect.

Despite the knowledge that periodontitis is associated with a profound dysbiosis of the 

subgingival microbiome, no attempts at whole subgingival microbiome transplantation as a 

treatment of periodontal disease are found in the literature. Only one report shows research 

towards a possible application of microbiota transplantation in the oral cavity (248). In this 

study the authors tested an antimicrobial approach to decrease oral bacterial load in 

preparation for future whole microbiome transplantation. The report shows that the use of 

sodium hypochlorite was effective at reducing the numbers of oral bacteria and its 

antimicrobial effect could be inactivated by a non-toxic sodium ascorbate – ascorbic acid 

buffer.

A potentially interesting approach that has been evaluated in the context of periodontal 

diseases is the use of BALOs since periodontitis-associated dysbiosis is mostly due to an 

overgrowth of Gram-negative species. B. bacteriovorus HD100 has been shown to 

significantly reduce the number of viable A. actinomycetemcomitans both in planktonic and 

biofilm in vitro cultures (249). The eradication of A. actinomycetemcomitans from biofilms 

by predators, however, is not complete, but the combination of BALOs with an 

exopolysacharide-hydrolysing enzyme has been shown to be more effective at decreasing the 

levels of A. actinomycetemcomitans (158). Other studies have shown that different strains of 

B. bacteriovorus may be required to effectively antagonize other Gram-negative species such 

as P. intermedia, P. gingivalis and Capnocytophaga sputigena (158, 159). Moreover, the 

presence of saliva and other non-target bacteria such as the Gram-positive health-associated 

A. naeslundii have been shown as non-inhibitory to the predatory activity (159). The effect 

of Bdellovibrio has also been tested in a more complex context such as a 6-species 

community formed by P. intermedia, A. actinomyctemcomitans, P. gingivalis, F. nucleatum, 
S. mitis and A. naeslundii, as well as against saliva or subgingival plaque samples. In both 

cases, although it was observed that the efficiency of predation decreased as the complexity 

of the models increased, the predator was effective at decreasing the levels of F. nucleatum 
and A. actinomycetemcomitans but other species such as P. gingivalis were not affected 

(250). Importantly, the predatory activity of BALOs was shown to be completely abolished 

under oxygen-limiting conditions since BALOs are strict aerobes (159, 251). This is a 

relevant aspect and questions their true potential to eliminate periodontitis-associated species 

in the reduced conditions that exist in periodontal pockets. In summary, although BALOs 
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show promising in vitro results, especially in the control of A. actinomycetemcomitans, their 

effectiveness has not been tested in vivo.

Evaluations of the oral virome have revealed that the oral cavity harbors a great amount of 

bacteriophages (252, 253, 254). Although some efforts have been conducted to elucidate the 

contribution of viruses in the shifts associated with oral diseases, their role in dysbiosis 

remains unknown (255, 256). Differences in virome community structure were found 

between health and periodontal disease, in both subgingival and supragingival plaque but not 

in saliva, with higher proportions of lysogenic Syphoviridae in health while lytic viruses 

from the Myoviridae family were enriched in disease (256). These observations suggest that 

an altered virome is part of the dysbiosis associated with periodontitis. Despite the potential 

use of phages as antimicrobial agents against oral pathogens, only a few studies have 

focused on discovering phages for the control of periodontal dysbiosis (257, 258). Phages 

isolated from saliva and waste water from dental chair drainages showed antimicrobial 

activity against planktonic F. nucleatum or A. actinomycetemcomitans in in vitro biofilms, 

suggesting a potential application in gingivitis or aggressive periodontitis, which are 

diseases associated with these respective species (257, 258).

Microbial therapeutics for oral candidiasis— Several in vitro studies show probiotics 

may affect the virulence potential of C. albicans. Lactobacillus spp. and S. salivarius have 

been shown to negatively impact C. albicans yeast-to-hyphae differentiation and/or biofilm 

formation (259, 260). The mechanism of action would not depend on probiotic-yeast 

contact, because the use of sterile-filtered supernatant obtained from S. salivarius and 

Lactobacillus spp. significantly down regulates, in C. albicans, genes critical for the yeast–

hyphae transition, biofilm formation, host cell invasion and virulence (261, 262). Also, the 

treatment of an engineered human oral mucosa tissue model with Bacillus subtilis has been 

shown to decrease C. albicans attachment (263).

Animal models have been used to demonstrate potential antagonistic effects of probiotic-like 

strains on C. albicans. L. acidophilus protected Galleria mellonella larvae against 

experimental candidiasis (262), while in immunosuppressed mice, L. rhamnosus reduced 

oral C. albicans colonization to a higher extent than the antifungal nystatin (264). Moreover, 

oral administration of L. acidophilus to mice has been shown to significantly shorten the 

duration of C. albicans colonization in the mouth, possibly due to an immunomodulatory 

effect (265). It has also been shown that the application of heat-killed Enterococcus faecalis 
to the tongue of immunosuppressed mice reduces both symptoms and Candida counts (266).

Human studies support the mentioned in vitro and animal studies, with positive reported 

effects for probiotic intake with regards to the risk of developing oral candidiasis. Salivary 

levels of yeast in elderly subjects have been shown to decrease compared to basal levels after 

probiotic intake (267, 268, 269), together with a significant increase in anti-Candida IgA 

levels (269). In patients diagnosed with oral candidiasis, the local administration of a 

mixture of Bifidobacterium longum, Lactobacillus bulgaricus and Streptococcus 
thermophilus was shown to improve oral pain and reduced the prevalence of Candida spp. 

compared with conventional antifungal therapies (270). Moreover, in asymptomatic denture 
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wearers harboring oral Candida spp., yeast detection was reduced in the probiotic group 

compared to placebo (271).

5. Limitations of current microbial therapeutic approaches for oral diseases and 
perspectives for development of new strategies

Positive but discrete results have been reported for the management of oral diseases using 

microbial-based therapies. Most microbial-based therapies evaluated in clinical studies are in 

the probiotic category with studies showing some small clinical benefits but lack of defined 

mechanisms of action. The use of probiotic-like strains seems more beneficial for 

periodontal diseases and oral candidiasis than for caries (213, 270, 271). Both periodontal 

diseases and candidiasis are associated with an increased inflammatory response (88, 111), 

and it is likely that probiotic-mediated immune modulation mediates such favorable effects. 

It is not clear, however, if the probiotic strains are indeed incorporated into the local 

microbiota, whether their effect is related to their direct interaction with oral tissues or if 

their effects are related to interactions with distant mucosal cells in the gastrointestinal tract 

and systemic immune modulation. It is also worth noting that although most clinical studies 

reviewed showed trends towards a positive effect of probiotics as adjuncts to periodontal 

therapy and in reducing oral yeast carriage, adequately powered and high quality clinical 

studies are scarce. Furthermore, the effect size in all studies testing probiotics seems rather 

small questioning the clinical relevance of their administration.

The development of more rationally-designed microbial-based therapies for oral diseases is 

still in its infancy but offers more promise than the indiscriminate use of non-specific 

probiotic strains. Oral diseases are associated with dysbiosis and therefore, preservation or 

restoration of the homeostatic state promoted by a health-associated community is the 

ultimate preventive and therapeutic goal. As reviewed in Figure 1, unique mechanisms 

mediate the microbiome shifts associated with caries, periodontal diseases and oral 

candidiasis. It is conceivable to think that microbial therapeutics could contribute to the 

prevention and treatment of these conditions via promotion of the growth of a health-

associated community. The implantation of selected oral strains representing health-

associated taxa, or the re-implantation of a sample from the same patient but enriched with 

health-promoting strains are alternatives together with whole microbiome transplantation. 

One of the challenges, however, of using microbial-based therapies in the mouth compared 

to the gut, is the potential for their rapid loss from the oral cavity by swallowing before they 

have had a chance to become established and/or exert an effect. The potential advantage of 

using indigenous oral species as microbial therapeutics is their greater potential to colonize 

the specific habitat from which were they were extracted, compared to exogenous strains. It 

is however clear that even if a health-associated community is obtained via such 

transplantation approaches or through selected killing of disease-associated species, a long-

term effect would not be attained unless the environmental and host-related risk factors 

shown in Figure 1 are modified. Microbial therapeutics are therefore conceivable only 

within the context of a more holistic preventive approach involving several strategies.

In the case of caries, research involving microbial-based therapies has focused on 

competition and/or suppression of S. mutans. However, it is important to recognize that in 

Hoare et al. Page 16

Microbiol Spectr. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the absence of S. mutans, other acidogenic/aciduric species could become enriched given the 

right environmental pressure (frequent carbohydrate intake). Thus, more attention should be 

put on the control of the acidification of dental biofilms rather that in the elimination of 

specific species. A conceivable microbial-based therapy for caries could be the enrichment 

of the microbiome with indigenous strains that counter-act acid-production and therefore 

promote health-associated species, such as the recently isolated arginolytic strain of 

Streptococcus (217). Exogenous administration of such strains together with arginine oral 

supplementation may prove beneficial for caries prevention. The question, however, is 

whether such a strain, although native to the oral cavity of humans, can effectively colonize 

another host with an already assembled, organized and interacting microbiome community 

in which the specific niche is already occupied. Also, since the highly arginolytic strain is 

also a streptococcus it is possible that under carbohydrate pressure it may become 

acidogenic. It is thus clear that even if such a microbial-based therapy becomes a reality for 

caries management, it should be part of a holistic preventive approach with a focus on 

carbohydrate intake modification (see Figure 2).

In the case of periodontal diseases, current traditional therapies are directed towards 

controlling the subgingival microbial load. The use of mechanical and chemical means to 

control biofilm accretion is effective at preventing gingivitis and maintaining periodontal 

stability after therapy in most patients suffering from the disease but constitutes by no means 

a highly effective strategy as it depends on patient compliance. Desirable microbial-based 

therapeutics for periodontal diseases would be those that prevent the microbiome shifts 

associated with dysbiosis. In this respect strategies to antagonize the establishment of 

keystone pathogens such as P. gingivalis are desirable; however, more knowledge is required 

regarding inter-bacterial interactions in subgingival plaque and the identification of 

antagonistic species. For instance, P. gingivalis has the ability to sense extracellular arginine 

deiminase produced by S. cristatus and S. intermedius, responding by down-regulating the 

expression of key surface structures required for colonization (272, 273). Indeed, a negative 

correlation between the distribution of S. cristatus and P. gingivalis has been observed in 

subgingival plaque, suggesting that this antagonistic interaction may be important during in 
vivo community maturation (274). Moreover, understanding subgingival microbiome 

metabolic dynamics could uncover species that are important for overall community stability 

and increase the resilience of a health-associated community. This implies the application of 

a systems biology approach to study the microbiome focusing on the construction and 

analysis of in silico system-level metabolic models (275). Our field currently has 

information derived from omic’ s studies that can be used to reconstitute the metabolic 

frameworks of oral bacteria in relation to oral diseases. Such metabolic models may allow 

prediction of the role that each species may have in the health- and/or disease-associated 

consortia (5, 276, 277, 278). As with caries, however, microbial therapeutics for periodontal 

diseases may be just a part of a broader approach that should also include immune 

modulation, as it seems microbiome shifts associated with periodontitis are initially the 

result of immune dysregulation and are perpetuated by uncontrolled inflammation (Figure 

2). Examples of targeted anti-inflammatory strategies against periodontitis include resolvins, 

anti-complement and anti-IL17, which directly address the disease immune-mediated 

pathophysiology (110, 279).

Hoare et al. Page 17

Microbiol Spectr. Author manuscript; available in PMC 2017 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although highly experimental, whole oral microbiome transplantation is a strategy that 

should be tested in the context of oral diseases. Such treatment may have an application in 

the restoration of homeostasis in patients suffering from periodontitis in which a profound 

microbiome shift has led to the establishment of a resilient pathogenic community. It should 

be considered, however, that the transplantation of an entire community may generate 

unexpected outcomes such as nonspecific immune responses either locally as result of the 

community implantation in the oral cavity, or systemic if certain species migrate to extra-

oral sites. Another non-desired effect may be unexpected interactions between the implanted 

microbiota components and the indigenous species that could favor the growth of potentially 

pathogenic species. The question about what constitutes a healthy community is also an 

aspect that needs to be considered. Both community composition and function in the donor 

needs to be evaluated before transplantation, but there are no defined thresholds to define a 

health-promoting microbiome. On the other hand, an advantage of whole microbiome 

transplantation is that an entire community may have more chances to establish and compete 

with a pathogenic community than the administration of selected species. Disruption of the 

native pathogenic community would probably be necessary for the establishment of the 

transplanted one and therefore whole microbiome transplantation should be part of a 

treatment approach aimed at decreasing the microbial load by mechanical means or 

antimicrobial strategies. Also important for the long-term stability of the transplanted health-

associated community would be that environmental factors such as the inflammatory 

exudate are controlled as eventually the newly established community could also become 

dysbiotic.

In the case of oral candidiasis, little knowledge is available regarding the role of other 

microbiome members on Candida overgrowth. While it is clear that immune dysregulation at 

the oral mucosal barrier promotes the outgrowth of C. albicans, the main species associated 

with candidiasis, it is less clear whether bacteria or other oral fungi contribute to or 

antagonize Candida. Such information can be obtained from longitudinal studies evaluating 

microbiome dynamics during oral candidiasis and would be essential for the possible 

development of microbial-based therapeutic adjuvants to prevent or treat candidiasis. Once 

again, such microbial adjuvants would require enhancement of mucosal immunocompetence 

in a combined strategy to prevent candidiasis (Figure 2).

6. Concluding remarks

In this review we discussed current approaches based on the use of live microbial strains for 

the manipulation of oral microbial populations to maintain host-microbe homeostasis. Novel 

strategies that consider not only the composition of communities associated with disease, but 

also the pathogenic functions may be more promising for the management of oral dysbiosis. 

However, the design of such strategies necessitates a deeper understanding of the inter-

microbial interactions involved in the transitions from health to disease and those 

interactions important to maintain the stability and that confer resilience to health-associated 

communities. Any microbial-based therapeutic strategy aimed at oral conditions, however, 

should be part of a holistic approach to control the environmental factors that are primarily 

responsible for microbiome shifts.
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Figure 1. 
Dsybiotic changes associated with oral diseases. Oral diseases are associated with changes 

in microbiome community structure. Examples of microbiome community shifts and the 

main factors promoting the establishment of the dysbiotic microbiota are depicted for caries, 

periodontal diseases and oral candidiasis.
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Figure 2. 
Potential beneficial effects of microbial therapies in the management of oral diseases. The 

desirable effects of the introduction of effector species/communities together with 

complementary therapies are shown for caries, periodontal diseases and oral candidiasis.
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