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Estimating Efficiency in the Presence of Extreme Outliers: A Logistic-Half Normal Stochastic 

Frontier Model with Application to Highway Maintenance Costs in England 

 

A.D. Stead, P. Wheat and W.H. Greene 

 

Abstract  

In Stochastic Frontier Analysis the presence of outliers in the data, which can often be safely ignored 

in other forms of linear modelling, has potentially serious consequences in that it may lead to 

implausibly large variation in efficiency predictions when based on the conditional mean. This 

motivates the development of alternative stochastic frontier specifications which are appropriate when 

the two-sided error has heavy tails. Several existing proposals to this effect have proceeded by 

specifying thick tailed distributions for both error components in order to arrive at a closed form log-

likelihood. In contrast, we use simulation-based methods to pair the canonical inefficiency distributions 

(in this example half-normal) with a logistically distributed noise term. We apply this model to estimate 

cost frontiers for highways authorities in England, and compare results obtained from the conventional 

normal-half normal stochastic frontier model. We show that the conditional mean yields less extreme 

inefficiency predictions for large residuals relative to the use of the normal distribution for noise. 
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1. Introduction 

The aim of frontier analysis is to estimate a frontier function based on efficient, or at least best-practice 

in sample, production and cost relationships against which the efficiency of firms and other decision 

making units (DMU) can be measured. A challenge for such analyses is dealing with the existence of 

noise, resulting from random shocks and measurement error in the dependent variable — in the data. In 

particular, in the presence of outliers, there can be a disproportionate impact on the estimated frontier 

and on all predictions of efficiency relative to it. The Data Envelopment Analysis (DEA) model 

(Charnes et al., 1978) and related mathematical programming approaches are deterministic, in that any 

noise present is attributed wholly to variation in efficiency, and are therefore particularly sensitive. This 

is also the case with some of the cruder econometric methods, such as Corrected Ordinary Least Squares 

(COLS). Here we focus instead on Stochastic Frontier Analysis (SFA) which should be more robust to 

noise given this is considered explicitly alongside inefficiency in the model formulation. 

The specific motivation for this paper comes from an issue arising from the authors’ work studying cost 

efficiency in a number of datasets. The example used in this paper is cost analysis of highways 

maintenance operations of local government authorities in England, which utilises bespoke data on 

operating and capital expenditure provided by each authority. When we compute the standard Jondrow 

et al. (1982) predictor, an implausibly wide range of efficiency scores is found. This issue is caused by 

large estimated error variances; in particular, a large VARሺݑሻ will lead to a large spread of efficiency 

scores, while a large VARሺݒሻ will lead to a greater degree of shrinkage of efficiency predictions toward 

the unconditional mean (Wang and Schmidt, 2009). Large error variances are in our dataset caused by 

the presence of a relatively large number of outliers in the data, due to a combination of under- or over-

reporting, unobserved investment cycle effects, and extreme weather events. 

In this paper we consider methods to better deal with noise data in the stochastic frontier setting. We 

consider alternative methods which are better suited to handling outliers in the data, i.e. heavier tails in 

the error. After consideration of possible existing approaches, this leads us to propose a new stochastic 
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frontier model with a logistic distribution for the noise error. This model is easy to estimate and has 

been programmed into a bespoke version of LIMDEP.  

The structure of this paper is as follows: Section 2 reviews the received methods available to handle a 

large number of outliers in frontier analysis, and reviews the relevant literature and section 3 introduces 

a logistic-half normal stochastic frontier (SF) models for dealing with heavy-tailed noise. Section 4 

applies these models to our data on highways maintenance costs in England and compares the results 

to those obtained from the standard normal-half normal SF model, and section 5 gives our summary 

and conclusions. 

2. Literature Review: Potential Approaches to Dealing with Outliers 

2.1. Adopting alternative predictors for inefficiency 

Before considering amendments to the standard stochastic frontier model, it is natural to ask whether 

there are alternative predictors for inefficiency which yield more intuitive distributions for efficiency. 

Given that in cross sectional models, point predictors are known to be inconsistent for the quantity of 

interest; namely the firm specific realisation of a random variable (Wheat et al., 2014), then several 

point and interval predictors could be candidates.  

One candidate is the conditional mode predictor (Jondrow et al., 1982) which, for the normal-half 

normal model, treats all observations with positive (negative) residuals in the production (cost) frontier 

case as fully efficient; likewise in the normal-exponential model, all residuals past a certain threshold—

i.e. the inverse of the product of the squared rate parameter from the exponential component and the 

standard deviation of the normal component—are predicted to be fully efficient. The conditional mode 

predictor therefore yields more intuitive efficiency predictions at the top relative to the conditional 

mean. This is because the conditional mean for all firms will always be less than one (for VAR(u)>0) 

and, in the case of large VAR(v) i.e. data with many outliers, this difference is likely to be non-trivial 

even for the best performing DMU (due to substantial shrinkage to the unconditional mean (Wang and 

Schmidt, 2009)). Furthermore, for all other observations the conditional mode predictor yields a 
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predicted efficiency score higher than that from the conditional mean predictor; the latter difference, 

however, tends to be small in magnitude at the bottom, and its usefulness in remedying implausibly low 

efficiency scores is therefore limited. 

Another approach is to calculate prediction intervals, which show the range of plausible efficiency 

predictions for a given observation. Since in the normal-half normal case the conditional distribution of ݑ is that of a truncated normal random variable (Jondrow et al., 1982), Horrace and Schmidt (1996) 

propose  simply using the quantile function for this distribution to compute the upper bound of a 

prediction interval, which is also derived by Bera and Sharma (1999). However, Wheat et al. (2014) 

note that this method does not necessarily yield a minimum width interval, and derive minimum width 

intervals for the normal-half normal case, and discuss various methods of accounting for parameter 

uncertainty in computing prediction intervals. The use of prediction intervals in cases where predicted 

efficiency values are at the extremes could be useful in that they allow us to qualify our point predictions 

of efficiency by explicitly recognising that there are in fact a range of probable values which efficiency 

can take; however, this is not a solution to the underlying problem and of course, the range of probable 

values will include values even more implausible than the point predictor. 

Overall, while alternative predictors are useful in SFA in general, the mass of the conditional 

distribution for the most efficient firm in our sample is still far from zero (even if the peak of the 

distribution—i.e. the mode—is zero. Thus the question remains as to whether an alternative formulation 

of the stochastic frontier model could yield a more intuitive distribution of efficiency predictions. In 

particular a formulation which puts more weight on outlying observations being the result of noise 

rather than inefficiency seems to be appropriate. We now consider possible means to achieve this. 

2.2. Heteroskedastic Stochastic Frontier Models  

The basic SF model assumes that both error components are homoskedastic, i.e. that they have a 

constant variance. Outliers in the data could result from heteroskedasticity in one or both error 

components, so that certain observations have a higher error variance than others. Discussion of 

heteroskedastic SF models have tended to focus on heteroskedasticity in the one-sided error; 
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Reifschneider and Stevenson (1991) propose a normal-half normal model in which ߪ௨ ൌ ݃ሺ ܷሻǡ݃ሺ ܷሻ א ሺͲǡ λሻ, Caudill and Ford (1993) propose a normal-half normal model in which ߪ௨ ൌߪ௨ሺ ܷߛሻఋ, and Caudill et al. (1995) propose a normal-half normal in which ߪ௨ ൌ expሺ ܷߛሻ, where in 

each case ܷ is a vector of explanatory variables including an intercept. Wang (2002) combined the 

Battese and Coelli (1995) specification of the pre-truncation mean of a truncated normal one-sided error 

in which ߤ ൌ ܼߚ, where ܼ  is again a vector of explanatory variables, with a slight variation in the 

Caudill et al. (1995) specification of the one-sided error variance so that ߪ௨ଶ ൌ expሺ ܷߛሻ into a single 

model, which has the additional advantage of allowing for non-monotonic relationships between 

inefficiency and explanatory variables. 

In terms of handling outliers where these are assumed to reflect an unusually high variance in noise, it 

is more useful to allow for heteroskedasticity in the two-sided error, however; Wang and Schmidt 

(2009) show for the normal-half normal model that ܧሺݑȁߝሻ is a shrinkage of ݑ towards ܧሺݑሻ, and 

that because of this, as ߪ௩ ՜ Ͳǡ ሻߝȁݑሺܧ ՜ ௩ߪ , while asݑ ՜ λǡ ሻߝȁݑሺܧ ՜  ሻ. Allowing forݑሺܧ

heteroskedasticity in ݒ therefore allows for varying levels of shrinkage. Hadri (1999) introduces a 

doubly heteroskedastic SF model in which the variances of both error components are a function of 

vectors of explanatory variables ܷ and ܸ —which need not be the same—such that ߪ௨ ൌexpሺ ܷߛሻ ǡ ௩ߪ ൌ expሺ ܸߠሻ. Finally, Kumbhakar and Sun (2013) introduce a normal-truncated normal 

model which combines the Battese and Coelli (1995) and Hadri (1999) specifications into a model in 

which the pre-truncation mean of the one-sided error, as well as the variances of both error components 

are functions of vectors of explanatory variables, so that ߤ ൌ ܼߚǡ ௨ߪ ൌ expሺ ܷߛሻ ǡ ௩ߪ ൌ expሺ ܸߠሻ. 
Allowing for greater levels of variance in outlying observations is effectively another method of 

allowing for a heavy tailed distribution. The problem with adopting this approach using existing 

heteroskedastic SF models is that an appropriate variable is needed for inclusion in the variance 

function. A dummy variable identifying outlying observations could be used, for example, however the 

identification of such outlying observations would either have to be done on an ex-post basis, or with 
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reference to some arbitrary partial metric, and of course there is an added degree of arbitrariness in 

defining the cut-off point beyond which an observation is deemed to be outlying. 

2.3. Thick Frontier Analysis 

Berger and Humphrey (1991; 1992) introduced Thick Frontier Analysis (TFA), which is motivated by 

the observation of heavy-tailed errors in cost studies—specifically, in the banking sector—but in 

contrast to the present study assumes that this reflects a wide spread of efficiencies, rather than outliers 

in the data. In TFA, DMUs are sorted into quantiles based on some partial measure, e.g. unit cost, and 

separate regressions are run for the top and bottom quantiles. DMUs in the lowest and highest unit cost 

quantiles are implicitly judged to be equally efficient, with their residuals reflecting only error and luck. 

The difference in predicted unit costs for different size classes is then decomposed into exogenous 

market factors, i.e. that explained by differences in output mix, input prices, etc., and the remainder, 

which is regarded as inefficiency. 

TFA has a number of disadvantages, such as the implicit assumption of equal efficiency among DMUs 

in the same quantile, and the implicit need for rather large sample sizes so that samples can be sensibly 

divided in this way. Also problematic is the arbitrariness of both the partial measure according to which 

DMUs are placed into quantiles, and the number of quantiles specified; Wagenvoort and Schure (1999) 

provide a solution to the latter problem, using a recursive algorithm by which, starting with OLS on the 

full sample of observations, the sample is divided into successively larger numbers of quantiles until 

the Lagrange multiplier test proposed by Breusch and Pagan (1980) fails to reject normality of the error 

term. However, the successive increases in the number of quantiles will require larger and larger sample 

sizes, and will tend to increase the distortionary effect of outlying observations on the estimated quantile 

regression lines, and hence on efficiency predictions. 

The impact of outliers on efficiency scores in TFA is somewhat ambiguous. On one hand, the impact 

of outliers on efficiency scores will tend to be muted by the attribution of the residuals from the quantile 

regressions to noise, and by construction the DMUs in the top quantile will be judged fully efficient, 

while on the other hand the quantile regressions themselves will be more sensitive to outliers, which 
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could lead to an exaggerated gap between the quartile regression lines, and hence an exaggerated range 

of inefficiency scores. This in fact reflects the different motivations and assumptions behind TFA, since 

as stated above, the underlying assumption behind TFA is that heavy tailed errors reflect a wide spread 

of inefficiency, i.e. a heavy tailed distribution of inefficiency, rather than a heavy tailed distribution of 

noise, making TFA inappropriate for the purpose of the current study; we therefore do not pursue TFA 

any further. 

2.4. Non-Gaussian Stochastic Frontier Models 

Another possible method of dealing with the impact of outliers in the data on efficiency scores is to 

directly alter the distributional assumptions of the basic SF model such that the noise component of the 

composed error, rather than being normally distributed, follows an alternative symmetric distribution 

with heavier tails. 

One candidate for this is the Student’s t distribution, a heavy-tailed distribution which approximates 

normality for finite sample sizes. Tancredi (2002) proposes a model in which the two-sided error is t 

distributed and the one-sided error follows a half t distribution—thus generalising the original normal-

half normal of Aigner et al. (1977) to allow for heavier tails in both components of the composed error—

and shows that as the residual approaches infinity, the conditional distribution of the one-sided error 

(conditional on the composed error realisation) is concentrated around zero in the normal-half normal 

model, and is completely flat in the t-half t model; thus in the former case, an observation with a large 

positive residual is judged to be close to the frontier with high probability, while in the latter case it is 

judged to be basically uninformative, making the model better at handling such outliers. Applying both 

models to the Christensen and Greene (1976) dataset on US electric utilities, the author shows that the 

t-half t performs better than the normal-half normal, and that allowing for heavy tails in this way 

increases the evidence for inefficiency in the model and overturns the Ritter and Simar (1994) finding 

that the basic SF model does not fit the data significantly better than OLS. 

Nguyen (2010) introduces three additional non-Gaussian SF models, having two-sided and one-sided 

errors that respectively follow Laplace and exponential, Cauchy and half Cauchy, and Cauchy and 
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truncated Cauchy distributions. These models are considered in a cross-section context, with application 

to the Christensen and Greene (1976) dataset, and Cauchy-half Cauchy balanced and unbalanced panel 

data models with time invariant inefficiency are also introduced, with application to the US banking 

dataset and to the WHO health sector dataset used in Greene (2004). The usefulness of some of the 

aforementioned models is limited by the unjustifiable assumptions made in order to simplify their 

derivation: the Laplace-exponential model assumes the variances of the two error components to be the 

same, as does the Cauchy-half Cauchy model for balanced panel data with respect to the variance of 

the two-sided error and the (pre-truncation) variance of the one-sided error; the latter model further 

assumes only two time periods. Nevertheless, both the cross-section and unbalanced panel Cauchy-half 

Cauchy models appear acceptable, and results from the latter are presented by Gupta and Nguyen 

(2010). 

Horrace and Parmeter (forthcoming) discuss SFA with a Laplace-distributed two-sided error generally, 

and introduce a Laplace-truncated Laplace model; this is shown to reduce to a Laplace-exponential 

model when the pre-truncation mean of the one-sided error is less than zero, and to a Least Absolute 

Deviations (LAD) regression when the variance of the inefficiency term is zero. It is also shown that 

the conditional distribution of inefficiency is constant when the residual is zero, so that all observations 

with positive residuals are given an identical efficiency score; as with the t-half t, the model therefore 

treats outlying observations as less informative. Results from Monte Carlo simulations suggest that the 

Laplace-exponential model performs better than the normal-exponential model when the error is miss-

specified, and that it is more likely to produce non-zero estimates of the variance in inefficiency when 

OLS residuals display the wrong skew. The Laplace-truncated Laplace model is applied to estimate a 

cost frontier using the US airline data used in Greene (2012). 

An analogous Bayesian approach to non-Gaussian SFA exists; Tchumtchoua and Dey (2007), estimate 

a t-half t Bayesian SFA model, and Griffin and Steel (2007) briefly discuss how to estimate t-half 

normal, t-exponential, and t-gamma Bayesian SF models using the WinBUGS software package. 
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To summarize, the non-Gaussian SF models are a potential way of dealing with the impact of outliers 

on the spread of efficiency predictions in SFA, given the different way the models treat outliers; they 

also have the advantage of being less arbitrary than simply excluding observations, or than the other 

methods discussed. A drawback of the existing models, however, is that in order to arrive at closed form 

expressions for their log-likelihoods, they also adopted alternative—i.e. thick tailed—distributions for ݑ, which limits both the effectiveness of the models in reducing the impact of outliers on the range of 

efficiency predictions, and comparability with conventional SF models; we therefore prefer a model in 

which only ݒ is drawn from a thick tailed distribution. 

3. The Logistic-Half Normal Stochastic Frontier Model 

3.1. Formulation and estimation 

In this paper, our motivation is to amend the conventional stochastic frontier model to accommodate 

data with large reporting errors. The work on non-Gaussian SF models discussed above motivates us to 

propose a further model which departs from the previous literature in that it amends the noise error term 

only and retains all of the conventional SF assumptions on the inefficiency error and the relationship 

between error components and regressors. This allows us to understand the extent to which alternative 

assumptions on the noise error term influence the efficiency predictions all other things equal. 

In SFA, we have a composed error ߝ consisting of a symmetric noise component ݒ and an inefficiency 

component ݑ which is drawn from some one-sided distribution, such that 

ߝ  ൌ ݒ െ  ( 1 ) ݑݏ

Where ݏ takes on a value of one for a production frontier and minus one for a cost frontier. In our case, 

we assume that ݒ is drawn from a logistic distribution, and that ݒ is from a half-normal distribution, 

such that 



A.D. Stead et al. 

 ݂ሺݒሻ ൌ exp ቀ ௩ߪ௩ቁߪݒ ቂͳ  exp ቀ  ௩ቁቃଶߪݒ

( 2 ) 

 ݂ሺݑሻ ൌ ቐʹߪ௨ ߶ ൬ ௨൰ߪݑ ǡ ݑݏ  ͲͲǡ                          ݑݏ  Ͳ 
( 3 ) 

 Where ߪ௩ and ߪ௨ are scale parameters. The joint density of ߝ and ݑ is given by 

 ݂ሺݑǡ ሻߝ ൌ ۔ۖەۖ
ۓ exp ቀߝ  ௩ߪݑݏ ቁߪ௩ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶ ௨ߪʹ ߶ ൬ ௨൰ߪݑ ǡ ݑݏ  Ͳ

Ͳǡ                                                                     ݑݏ  Ͳ  

( 4 ) 

And the marginal density of ߝ is given by the convolution 

 ݂ሺߝሻ ൌ න exp ቀߝ  ௩ߪݑݏ ቁߪ௩ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶ ௨ߪʹ ߶ ൬ ௨൰ஶߪݑ
  ݑ݀

( 5 ) 

Which is an integral with no closed form. It is therefore not possible to give an analytic expression for 

the log-likelihood function, and to proceed with maximum likelihood estimation. In such a case, 

maximum simulated likelihood techniques—see Train (2009) for an introduction to simulation-based 

methods—allow us to overcome this obstacle and estimate our model.  The method followed here was 

first outlined in the context of the normal-gamma SF model by Greene (2003). We begin by noting that 

the integral in ( 5 ) is simply the expectation of ݂ሺݒሻ given that ݑ is drawn from a half normal 

distribution 

 ݄ሺݑሻ ൌ ݑሻȁݒሾ݂ሺܧ  Ͳሿǡ ǡߤሾ̱ܰݑ  ௨ሿ ( 6 )ߪ

And thus we can form a simulated probability density function for ߝ by averaging over ܳ draws from a 

half normal distribution. The usual method of taking draws from a non-uniform distribution is to note 

that the cumulative density function of a random variable follows a uniform distribution, and thus by 

inverting the cumulative density function we can have the value of the random variable in terms of a 
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uniformly distributed random variable; this inverse cumulative density function can therefore be used 

to transform draws from a uniform distribution into draws from any given distribution. Thus to generate 

draw number ݍ from the half normal distribution of our inefficiency term ݑ we have 

ݑ  ൌ ௨Ȱିଵߪ ൬ͳʹ   ʹ൰ܨ
( 7 ) 

Where ܨ is draw number ݍ from a uniform distribution. This leads us to the simulated probability 

density function for ߝ 

 ሚ݂ሺߝሻ ൌ ͳܳ  exp ൬ߝ  ௩ߪݑݏ ൰ߪ௩ ͳ  exp ൬ߝ  ௩ߪݑݏ ൰൨ଶொ
ୀଵ  ( 8 ) 

 And, introducing subscripts for observation ݅, the simulated log-likelihood function is 

ln ܮܵ ൌ െܰ ln ܳ െ ܰ ln ௩ߪ   ln  exp ൬ߝ  ௩ߪݑݏ ൰ͳ  exp ൬ߝ  ௩ߪݑݏ ൰൨ଶொ
ୀଵ

ே
ୀଵ  ( 9 ) 

Which may be maximised like any conventional log-likelihood function, provided we have our draws 

from the uniform distribution forming the ݑs. 

3.2. Efficiency Predictions 

The conditional density of ݑ given ߝ,  is the ratio of the joint distribution of ݒ and ݑ and the density of ߝ 

 ݂ሺݑȁߝሻ ൌ ݂ሺݒሻ݂ሺuሻ݂ሺߝሻ  
( 10 ) 

Which, in the logistic-half normal case, gives 
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݂ሺݑȁߝሻ ൌ
۔ۖۖەۖۖ
ۓ exp ቀߝ  ௩ߪݑݏ ቁ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶൗ ௨ߪʹ ߶ ቀ ௨ቁߪݑ ሺߪ௩ሻൗ

 exp ቀߝ  ௩ߪݑݏ ቁߪ௩ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶ ௨ߪʹ ߶ ቀ ௨ቁஶߪݑ ݑ݀ ǡ ݑݏ  Ͳ
Ͳǡ                                                                                                        ݑݏ  Ͳ

 

( 11 ) 

The Jondrow et al. (1982) and Battese and Coelli (1988) point predictors for efficiency are expሾܧሺെݑȁߝሻሿ and ܧሾexpሺെݑȁߝሻሿ, respectively; these are derived by solving the integrals 

ሻߝȁݑሺܧ  ൌ න ሻஶߝȁݑሺ݂ݑ
  ( 12 )  ݑ݀

ሿߝሻȁݑሾexpሺെܧ  ൌ න expሺെݑሻ ݂ሺݑȁߝሻஶ
  ( 13 ) ݑ݀

Which, in the logistic-half normal case, gives 

ሻߝȁݑሺܧ  ൌ ͳ݂ሺߝሻ න ݑ exp ቀߝ  ௩ߪݑݏ ቁߪ௩ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶ ௨ߪʹ ߶ ൬ ௨൰ஶߪݑ
  ( 14 ) ݑ݀

ሿߝሻȁݑሾexpሺെܧ  ൌ ͳ݂ሺߝሻ න expሺെݑሻ exp ቀߝ  ௩ߪݑݏ ቁߪ௩ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶ ௨ߪʹ ߶ ൬ ௨൰ஶߪݑ
  ( 15 ) ݑ݀

Both of which, again, contain integrals with no closed form solutions. Simulation is therefore required 

to generate these point predictions: we substitute ሚ݂ሺߝሻ for ݂ሺߝሻ, and the remaining integrals are the 

expectation of ݑ and expሺെݑሻ respectively multiplied by the probability density function of ݒ, given 

that ݑ is drawn from a half-normal distribution; this leads us to the simulated expectations 

ሻߝȁݑ෨ሺܧ  ൌ ͳሚ݂ሺߝሻ ͳܴ  ݑ exp ቀߝ  ௩ߪݑݏ ቁߪ௩ ቂͳ  exp ቀߝ  ௩ߪݑݏ ቁቃଶோ
ୀଵ  ( 16 ) 
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ሿߝሻȁݑ෨ሾexpሺെܧ  ൌ ͳሚ݂ሺߝሻ ͳܴ  exp ߝ  ሺݏ  ௩ߪݑ௩ሻߪ ൨ߪ௩ ቂͳ  exp ቀߝ  sݑߪ௩ ቁቃଶோ
ୀଵ  ( 17 ) 

Which we use to generate our point predictions of cost efficiency. Note that draws from the uniform 

distribution are also therefore needed to generate efficiency predictions following estimation of the 

model. In the notation above we distinguish between draws to approximate ݂ሺߝሻ using ݍ and the 

additional draws required to compute the further integral in ( 16 ) and ( 17 ) using ݎ. This is to minimise 

any simulation bias. 

4. Application to Highways Maintenance Costs in England 

In this section, we apply the logistic-half normal SF model to a unique dataset on highway maintenance 

costs in England. Responsibility for maintaining roads in England is divided between Highways 

England—until 2015 the Highways Agency—a government-owned company responsible for 

maintenance of the trunk road network, and the county councils and unitary authorities which are 

responsible for maintenance of the non-trunk roads in their respective areas. In recent years, local 

authorities have been under increasing pressure to demonstrate efficient practice or efficiency 

improvements in areas such as highway maintenance, e.g. by undertaking benchmarking exercises with 

peers. This study uses data from the CQC Efficiency Network1, which is used to analyse the cost 

efficiency of local authorities’ highway maintenance activities.  

Previous econometric studies of road maintenance costs have tended to focus of the question of marginal 

costs of usage, and what these imply for road pricing, rather than on the relative cost efficiency of local 

authorities. Previous studies estimate cost functions using data on renewals and maintenance costs for 

motorways and canton roads in Switzerland (Schreyer et al., 2002), Austrian motorways (Sedlacek and 

Herry, 2002), national—i.e. trunk—roads in Poland (Bak et al., 2006 ; Bak and Borkowski, 2009), roads 

in Sweden (Haraldsson, 2006 ; Jonsson and Haraldsson, 2008), and German motorways (Link, 2006 ; 

                                                 

1 See http://www.nhtnetwork.org/cqc-efficiency-network/home/.  

http://www.nhtnetwork.org/cqc-efficiency-network/home/
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Link, 2009) and federal roads (Link, 2014). Much of this work is summarized by Link (2014), who 

estimates two cost models: one in which, as the author argues should be the case, the size of the road 

network maintained is used as the scale variable, and a second in which passenger car traffic and goods 

vehicle traffic are used as scale variables can be derived; the author apparently does not consider using 

both network size and traffic as outputs in a single model. The only study to look at efficiency in the 

context of highway maintenance is that of Fallah-Fini et al. (2009), which uses applies DEA to data for 

eight counties from the US state of Virginia, using road area and a set of quality measures as outputs, 

and maintenance expenditure, traffic and equivalent single axle loads as inputs, and a set of climate 

factors as non-discretionary variables. 

We use an unbalanced panel consisting of data on the 70 local authorities from England that were 

members of the CQC efficiency network during 2014-15 and supplied cost data for at least one of the 

five years from 2009-10 to that year; this gives us a total of 327 observations. Cost data were supplied 

to the network by each authority individually according to definitions decided by a working group of 

network members, relating to operating expenditure and capital expenditure—both divided into direct 

and indirect categories—on carriageway maintenance only, i.e. excluding related activities such as 

winter service and footway maintenance, on the basis that they should be understandable and yield 

consistent submissions; we use the sum of these, total expenditure, as our dependent variable. 

Nevertheless, preliminary analysis of the data reveals large differences in unit costs with a large number 

of extreme outliers in both direction, which are clearly subject to some kind of reporting error. As a 

result, standard SF models, as discussed in section 1, yields a wide range of efficiency predictions, 

motivating the development of the model presented here. 

In line with the previous literature, we use road length and traffic as output variables; road lengths are 

included as our measure of scale, while traffic—in terms of passenger kilometres—we divide by road 

length and include as a density variable. Detailed breakdowns of overall network length into urban and 

rural roads and also by classification, the different classifications being, in order of importance, A roads, 

B roads, classified unnumbered roads, and unclassified roads; we refer to the latter two as C and U 

roads, respectively. B, C and U roads are always maintained by local authorities, while A roads can be 
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either trunk, and therefore the responsibility of Highways England, or non trunk, maintained by local 

authorities. The road length data we use include B, C, U and non trunk A roads; motorways, denoted 

by the letter M, and trunk A roads, are not included. Likewise, we use traffic data supplied directly by 

the Department for Transport (DfT) which relate only to local-authority maintained roads. 

We separate overall network length into urban and rural road lengths, and further include the lengths 

relating to each classification as proportions of the overall network length. We also include road 

condition indicators for each road classification—also from DfT sources—and as input prices we 

include a measure of median hourly wages in civil engineering for each NUTS1 region from the Annual 

Survey of Hours and Earnings (ASHE) published by the Office for National Statistics (ONS) and a 

national index of materials prices in road construction from the Department for Business, Innovation 

and Skills (BIS). 

We employ a modified Cobb-Douglas functional form, in which we include second-order terms relating 

to urban and rural road length. The cost frontier we estimate is 

ln ܺܧܱܶܶ ൌ ߚ  ଵߚ ln ܮܴܷ  ଶߚ ln ܮܴܴ  ଷߚ ln ଶܮܴܷ  ସߚ ln ଶܮܴܴ  ହߚ ln ܮܴܷ ln ܮܴܴ ߚ ln ܥܫܨܨܣܴܶ  ܣܥܦܴߚ  ܥܤܥܦ଼ܴߚ  ܷܥܦଽܴߚ  ଵܴܱܲߚ ܲ ଵଵܴܱܲߚ ܲ  ଵଶܴܱܲߚ ܲ  ଵଷܴܱܲߚ ܲ  ଵସܴܱܲߚ ோܲ ଵହܴܱܲߚ ோܲ  ଵܴܱܲߚ ோܲ  ܴܣܧଵܻߚ  ଵ଼ߚ ln ܧܩܣܹ ଵଽߚ ln ܯܱܵܥܱܴ   ߝ

( 18 ) 

Where ܶ ܴ and ܮܴܷ ,is total expenditure on carriageway maintenance ܺܧܱܶ  are the lengths of an ܮܴ

authority’s urban and rural road networks, respectively, ܴܶܥܫܨܨܣ is a traffic density measure—i.e. 

traffic count divided by total road network length—and ܴ ܴ ,ܣܥܦ ܴ and ܥܤܥܦ  are the proportions ܷܥܦ

of A roads, B and C roads, and unclassified roads where maintenance should be considered, weighted 

by the shares of their respective road classifications in the total road network length. ܲ ܴܱ ܲ through 

to ܲ ܴܱ ோܲ are urban A roads, urban B roads, etc. as proportions of the total network length, with the 

proportion of rural unclassified roads omitted to avoid perfect multicollinearity. Finally, we include a 

time trend, ܻ ܹ :and two input prices ,ܴܣܧ  a measure of regional gross hourly wages in civil ,ܧܩܣ
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engineering, and ܴܱ  a national index of materials prices for road construction. All variables are ,ܯܱܵܥ

mean-centred, and linear homogeneity in input prices is imposed by dividing our cost and wage 

variables by our materials price index, which drops out of the model. 

Table 1 shows the parameter estimates and associated standard errors and significance levels from the 

logistic-half normal model, and for comparison, the normal-half normal model, both estimated in 

LIMDEP. Following Greene (2003), we use Halton draws rather than pseudorandom number generator 

to obtain our draws from the uniform distribution; we use 1,000 draws, and find that further increases 

or small reductions in the number of draws do not significantly affect our results. 

 

Table 1: Outputs from the logistic-half normal and normal-half normal models 

 Logistic-Half Normal Normal-Half Normal 
 Estimate s.e. Sig Estimate s.e. Sig ߚ 16.0631 0.0956 *** 16.0350 0.14502 *** ߚଵ (ln ଶ (lnߚ  0.17112 0.12738  0.11162 0.13443 (ܮܴܷ ଷ (lnߚ *** 0.17943 0.91675 *** 0.11836 0.90841 (ܮܴܴ ସ (lnߚ *** ଶ) 0.23534 0.04447 *** 0.24091 0.06291ܮܴܷ ହ (lnߚ *** ଶ) 0.08315 0.01057 *** 0.08503 0.01586ܮܴܴ ܮܴܷ ln  (lnߚ * 0.04421 0.08083- ** 0.02944 0.07189- (ܮܴܴ ܱܴܲ) ଵߚ  0.00529 0.00519-  0.00324 0.00397- (ܷܥܦܴ) ଽߚ * 0.03909 0.07057- *** 0.02682 0.07142- (ܥܤܥܦܴ) ଼ߚ *** 0.14373 0.46356 *** 0.09675 0.44014 (ܣܥܦܴ) ߚ *** 0.15442 0.41532 *** 0.10259 0.37956 (ܥܫܨܨܣܴܶ ܲ) 8.28742 1.9879 *** 7.80954 3.24067 ** ߚଵଵ (ܴܱܲ ܲ) 1.982 2.27009  0.66161 3.86852  ߚଵଶ (ܴܱܲ ܲ) 0.62504 1.21835  0.44784 2.05441  ߚଵଷ (ܴܱܲ ܲ) 1.10074 0.56802 * 1.09028 0.83493  ߚଵସ (ܴܱܲ ோܲ) 2.57286 1.08575 ** 2.1196 1.57145  ߚଵହ (ܴܱܲ ோܲ) 2.40330 1.10305 ** 2.67772 1.5444 * ߚଵ (ܴܱܲ ோܲ) 1.11517 0.67064 * 0.98277 0.98812  ߚଵ (ܻܴܣܧ) ߚ *** 0.01661 0.04457 *** 0.01105 0.04055ଵ଼ (ln  *** 0.34002 0.89086 *** 0.23264 0.82267 (ܧܩܣܹ

(ͳ െ ଵ଼ሻ (lnߚ  *** ௩ .16005 0.00745 *** 0.27642 0.03015ߪ *** ௨ .54321 0.02541 *** 0.56798 0.01482ߪ - - 0.10914 - - 0.17733 1(ܯܱܵܥܱܴ
Log Likelihood -188.52   -189.14   

Statistical significance at the: * 10% level, ** 5% level, *** 1% level 
Notes: 1) Parameter is equivalent to ͳ െ  .ଵ଼ due to the imposition of linear homogeneity in input pricesߚ
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We can see that both models yield similar estimates for each parameter, and that most of our variables 

are found to be statistically significant at the 10%, 5%, or 1% levels. To underline the similarities 

between the two models, we note that the correlation between the predicted residuals from each model 

is 0.9994 (rank correlation 0.9993). The log likelihood for the logistic-half normal model is higher than 

the corresponding value for the normal-half normal model indicating a superior fit. 

The parameter estimates indicate constant to decreasing returns to scale at the sample average (the p-

value for the null hypothesis of constant returns to scale is 0.2396, so we fail to reject it), with increasing 

returns to scale for smaller authorities, and increasing returns to traffic density. It is also noticeable that 

the significance associated with each of the frontier parameters increases using the logistic-half normal 

model relative to the normal-half normal model. This is unsurprising, since the use of a thick-tailed 

noise distribution increases the robustness of our parameter estimates to outliers. 

Also of interest here are the estimated error variances, and how these differ between the two models. 

The variance of ݑ is given in both cases by 

 VARሺݑሻ ൌ ߨ െ ߨʹ  ௨ଶ ( 19 )ߪ

While the variances of ݒ in the logistic-half normal and normal-half normal models, respectively, are 

given by 

 VARሺݒሻ ൌ ͵ଶߨ  ௩ଶ ( 20 )ߪ

 VARሺݒሻ ൌ  ௩ଶ ( 21 )ߪ

Table 2 shows VARሺݑሻ and VARሺݒሻ for both the logistic-half normal and normal-half normal models, 

along with total error variance, VARሺߝሻ. We can see that neither the overall error variance, nor its 

individual components, differ substantially between the two models. 
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Table 2: Estimated error variances 

 Logistic-Half Normal Normal-half normal VARሺݑሻ 0.107225 0.117227 VARሺݒሻ 0.084279 0.07641 VARሺߝሻ 0.191504 0.193637 
 

In spite of their similar error variances, however, we expect that the logistic-half normal model will 

result in a significantly narrower distribution of predicted efficiency scores, given the very different 

way that the two models handle outliers, as discussed in Section 3.2. Cost efficiency predictions from 

both models are generated using the Jondrow et al. (1982) conditional mean predictor, which is shown 

in ( 16 ) for the logistic-half normal case.  

Table 3: Summary of efficiency scores 

 Logistic-Half Normal Normal-half normal 
Minimum 0.408882 0.225086 

Mean 0.708911 0.659549 
Median 0.724585 0.682412 

Maximum 0.879474 0.918035 
Range 0.470592 0.692949 

 

Table 3 shows some summary statistics relating to the resulting efficiency predictions from both 

models. The correlation between the two sets of efficiency predictions is high, at 0.997. However, 

comparing the ranges of the two sets of predictions, we can see that, as expected, the logistic-half normal 

model results in a far narrower distribution of efficiency predictions. This is due mostly to a very marked 

difference in the minimum predicted efficiency score, which is far higher in the logistic-normal model, 

from which the mean and the median predictions are also higher, though the difference is progressively 

smaller in each case. The maximum prediction, however, is smaller in the logistic-half normal model 

than in the normal-half normal model due to the way the model handles outliers in either direction, 

though as discussed in section 2.1, the maximum prediction from both models would have been one if 

we had used the conditional mode predictor. 
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Figure 1 gives a more detailed comparison, showing kernel density estimates for both sets of efficiency 

scores. In this, we can see a greater number of observations with low predicted efficiency scores from 

the normal-half normal model generally, and higher efficiency predictions generally more common in 

the logistic-half normal model; the latter being in spite of the fact that, due to the model’s handling of 

outlying observations, the highest several efficiency scores are somewhat lower than those from the 

normal-half normal model. Our model therefore seems to result in an overall more intuitive distribution 

of efficiency predictions, with far fewer at the bottom of the range with only a relatively small impact 

on predictions at the top. 

 

Figure 1: Kernel densities of cost efficiency scores 
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Figure 2: Cost efficiency scores against residuals 

Figure 2 shows the relationship between efficiency predictions and corresponding residuals in both 

models. Given the similarity of the estimated frontier parameters, the ranges of the residuals across the 

two models are very similar, as are the estimated error variances, but the relationship between the 

residuals and the efficiency predictions are significantly different; in the normal-half normal model, the 

slope of the function diminishes for large positive or negative residuals, but in the logistic-half normal 

model, in addition to the slope being gentler overall, this is much more pronounced, with the function 

becoming almost flat — i.e. there being very little change in efficiency predictions — at either end of 

the range. This suggests that, in line with our discussion of the way that the model treats outlying 

observations, efficiency predictions do not approach zero or one for extreme values of the residuals. 

5. Summary and Conclusions 

This paper considers the issue of outliers and their impact on efficiency analyses. After reviewing how 

these issues have been handled in the existing literature, we have motivated and formulated a stochastic 

frontier (SF) model with a thick-tailed noise component. In contrast to previous models, in which both 
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the noise and inefficiency terms have been drawn from a thick-tailed distribution, we use maximum 

simulated likelihood to estimate a model which combines a thick-tailed noise distribution—i.e. a 

logistic distribution—with a half normal inefficiency distribution. This model is easy to estimate and 

has been programmed into a bespoke version of LIMDEP. We show that the model handles outliers in 

both directions in a way that can produce a much narrower—and in the presence of outliers, more 

intuitive—range of efficiency predictions than standard SF models. 

We apply our model to a unique dataset on highways maintenance costs in England, and compare the 

results to those from the normal-half normal SF model. The estimated frontier parameters and variances 

are found to be very similar to those from the normal-half normal model, but the former with greater 

significance due to the increased robustness of the model to outlying observations and we find, as 

expected, that the model results in a narrower range of efficiency predictions. The model is therefore 

effective in reducing the extent to which outlying observations are treated as having extreme efficiency 

values. 

Further development could consider alternative distributions for ݑ, such as truncated normal, 

exponential, or gamma, which would be easy to implement using our estimation approach. The issue of 

testing between our model and the standard SF model could also be explored. The authors are currently 

developing an alternative model in which ݒ follows a Student’s t distribution, which has the normal 

distribution as a limiting case, meaning that the model nests the standard SF model. A further advantage 

of the Student’s t is that the thickness of the tails can be varied with its degrees of freedom parameter, 

making the model more general; a Student’s t distribution with seven degrees of freedom is also a good 

approximation of the logistic distribution used in this study. 
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