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S1. Experimental Arrangement

The sample used in this work is a planar semicon-
ductor waveguide grown by molecular beam epitaxy
(MBE), similar to that used is Ref. 3. The GaAs
core of total thickness 135nm contains three 10nm wide
In0.04Ga0.96As quantum wells separated by 10nm GaAs
barriers. On one side the core is separated from the
GaAs substrate by a 500nm Al0.9Ga0.1As cladding layer
while on the other it is separated from air by a 200nm
PECVD-grown silicon nitride cladding layer. The sample
was mounted in a continuous flow liquid helium cryostat
and held at 10 Kelvin.
A schematic of the experimental arrangement is shown

in Fig. S1 while a close-up schematic of the region near
the sample surface is shown in Fig. 1(a) in the main
text. A continuous wave (CW) multi-mode Ti:Sapphire
laser tuned to an energy δ = −3.8meV below the exci-
ton resonance was directed onto the sample surface using
a microscope objective. The incident light was coupled
into the structure using a diffractive grating coupler with
period 250 nm. The angle of incidence, wavelength and
polarisation of the laser beam were chosen to match those
of the waveguide transverse electric (TE) guided mode.
Along with the position of the laser spot relative the
input grating coupler they were tuned to maximise the
power observed at the output grating coupler. Coupled
light propagated a distance L = 600 µm in the waveguide
and was coupled out through another grating after which
it was collected by the same objective and imaged onto
a CCD camera. The phase of the output field was mea-
sured by interfering the output light on the CCD with a
flat-phase Gaussian reference beam derived from the in-
put laser. The incident laser power was varied over two
orders of magnitude between 200 µW and 33 mW.

We study initial conditions containing both phase and
intensity jumps. The phase jump initial condition was
generated by expanding the laser beam to approximately
3mm diameter and passing it through a phase mask man-
ufactured by reactive ion etching of a glass cover-slip to
remove material corresponding to half a wavelength of
light. Since the light passing through one half of the plate
travels further there is a phase jump across the beam
centered on the interface between etched and unetched
regions. The modified laser spot was imaged onto the in-
put grating on the sample surface with a demagnification
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FIG. S1. Schematic of excitation and detection paths (not
to scale). The inset shows the angles of the incoming and
outgoing beams before and after the objective (the objective
is shortened compared to actual scale, with a broken axis in
the vertical direction).

of 100 times. In the case of the amplitude discontinuity
the laser was expanded, passed across a metal wire to
remove some intensity from the beam, and imaged back
onto the sample.
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S2. Coupling Efficiency

The power coupled to the guided mode was measured
in the following way. The laser power before the ob-
jective, beamsplitter, mirrors and cryostat windows was
measured with a commercial power meter. Using the
same meter it was determined that the power at the sam-
ple surface was 0.19 ± 0.01 times smaller than at the
previous position. The power coming from the output
grating was also measured by placing the meter after a
spatial filter centered on the output grating. The ratio
of the power at the spatial filter is again 0.19±0.01 times
the power directly after the grating coupler due to losses
at the beamsplitter, objective, windows and lenses. The
power incident on the input grating versus that immedi-
ately after the output grating is plotted in Fig. S2(a-c)
for a few detunings of the polariton energy relative to the
exciton. Fitting the linear region at low powers gives the
ratio between the two, which is given by the expression
Pout = Pinc · (κup/κ)2 ·F ·exp (−L/Lloss). Here κup is the
coupling rate between the guided mode and free space
modes in the direction away from the substrate, e.g. the
direction from which the laser is coupled and the output
light is collected56. The value κ is the coupling rate of
the guided mode to all modes including substrate pho-
tonic modes and absorption in the coupler region. The
exponential contains the losses in the region between the
couplers while F is the z-direction overlap integral be-
tween the exponential mode profile of the grating and
the gaussian mode profile of the excitation spot56. This
overlap integral varies very slowly with spot size and since
the coupling was optimised experimentally on each run
the value will be very close to the theoretical maximum
of 0.8. The losses in between the gratings were measured
as in Ref. 3 and are shown in Fig. S2(d). Taking all these
measured quantities into account we are able to deduce
κup/κ and hence the input coupling efficiency given by56

η = (κup/κ)F . We plot the coupling efficiency as a func-
tion of detuning in Fig. S2(e). We note that the output
coupling efficiency, in the sense of the fraction of power
leaving the sample in the direction towards the micro-
scope objective, is given by κup/κ. At a detuning of
-15.4meV where the system is effectively purely photonic
we obtain η =27±3%. The ratio of upward to total cou-
pling rates in the purely photonic case was independently
determined by modelling the structure using the FDTD
method. From this we obtained κup/κ = 1/3. The ex-
pected incoupling efficiency is then η =0.8/3=26.6%, in
very good agreement with the experimental measurement
for the strongly photonic case. Combining the two results
at the detuning of -3.8meV used in this paper we deduce
η=20±2%, which is slightly less than the purely photonic
case. The values at 3.3meV are even less. We therefore
attribute the slight reduction in coupling efficiency to the
absorption of a fraction of the light at the injection site in
the tail of the inhomogeneously broadened exciton line.
This is supported by the photoluminescence spectrum in
Fig. S2(f) taken in the grating region near zero angle
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FIG. S2. Power output from waveguide vs. coupled in-
put power for detunings (a)h̄δ=-15.4meV, (b)h̄δ=-3.8meV,
(c)h̄δ=-3.3meV. Different lines on the same panel correspond
to different transverse profiles. (d) Experimental (points) and
model (solid line) polariton loss length vs. detuning. (e) Cou-
pling efficiency vs. detuning. (f) Photoluminescence spec-
trum of exciton line in the grating coupler region.

where there are no polaritons. It can be seen that the
tail extends over the detunings of -3.8meV and -3.3meV.

S3. Evolution Equations

Polaritons propagating in the waveguide are in general
described by coupled equations (1) for the photon and
exciton fields and, in our case, an additional incoherent
exciton reservoir. The parameters are defined in the main
text and also, in more detail, below.

[
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A (1b)

∂nR
∂t

= 2γr |ψ|2 − 2γRnR (1c)

In this description the optical electric field is fixed in
the transverse electric (TE) linear polarisation (along the
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x-axis) since the TM polarised guided mode is spectrally
separated, very lossy due to being close to cutoff, and in-
correctly polarised to couple strongly to the in-plane ex-
citon dipoles. The photon field and exciton polarisation
field are described by E = A (x, t, z) exp (iβez − iωet)
and Ψ = ψ (x, t, z) exp (iβez − iωet) where A and ψ
are the photon and exciton amplitudes which vary
slowly compared to the exciton frequency ωe and the
waveguide propagation constant (wavenumber) at the
exciton frequency βe. In obtaining Eqn. (1a) we
have used the paraxial or slowly-varying-envelope ap-
proximation which proceeds as follows. The spa-
tial part of the standard electromagnetic wave equa-
tion contains the term ∂2E/∂z2. We expand this as
(

∂2A/∂z2 + 2iβe∂A/∂z + β2
e

)

exp (iβez − iωet) and note
that since A(z) varies on a length scale very long com-
pared to the wavelength 2π/βe we can discard the high-
est order dervative ∂2A/∂z2. This approximation is a
good one in a waveguide system such as ours because
the wavenumber is large. The effect of the waveguide
confinement in the y-direction is, in general, to intro-
duce dispersive terms βm∂

mA/∂tm, where m is an inte-
ger, into the photon field equation (1a)4. We neglect the
photonic dispersion for m > 1 because its contribution
to the polariton dispersion is negligible in comparison to
that arising from the light-matter coupling2. The photon
dispersion relation is then approximated as a linear func-
tion ωph = ωe+vg (β − βe) where vg is the photonic group
velocity. We obtained the dispersive parameters of the
system experimentally by fitting the angle-resolved pho-
toluminescence spectrum (see Fig.1(b) in the main text
and Ref. 3 for more details). We find ωe = 2253 ps−1,
βe = 23.65µm−1 and vg = 58µm ps−1. The other quanti-
ties in Eqns. (1) are defined as follows. The photon losses
are γp and the loss term γr in the exciton field represents
scattering of excitons to an incoherent reservoir contain-
ing number density nR described by Eqn. (1c). All other
contributions to the linewidth of the strongly-coupled ex-
citons are described by γe. The loss from the incoherent
reservoir is given by γR. The nonlinear interaction is pro-
vided by renormalization of the strongly-coupled exciton
field proportional to the total density of strongly-coupled
and reservoir excitons, with strength given by the con-
stant gX .

We search for steady state solutions ∂nR/∂t = 0, so

that Eqn. (1c) gives nR = (γr/γR) |ψ|2. The physical
meaning of this model is that scattering from the co-
herent excitonic part of the polaritons populates an in-
coherent reservoir. At long times the population of this
reservoir stabilises at a value where the loss rate balances
the excitons entering from the coherent state. Substitut-
ing this reservoir population expression into Eqn. (1b)

the nonlinearity gX(|ψ|2 + nR) becomes geff |ψ|2 where
geff = gX (1 + γr/γR) is an effective exciton-exciton scat-
tering which accounts for the fact that for every coherent
exciton the reservoir contains another γr/γR incoherent
excitons. Here we have assumed that the reservoir con-
tributes to the nonlinear renormalisation of the exciton

frequency in the same way as the strongly-coupled exci-
tons. This is reasonable for an excitonic reservoir at a
frequency close to that of the strongly-coupled excitons.
If this is not the case then the expression for geff will
differ from that given by a constant multiplier.
Since we deal with CW pumping the fields have a

harmonic time dependence at frequency ω = ωe + δ
so that we can write their time dependences as A =
A (x, z) exp (−iδt) and likewise for ψ. Substituting these
into Eqns. (1) gives a generalised GPE for the photon
field in the form Eqn. (2a). Here the linear plus nonlin-
ear (envelope) propagation phase Q and loss α are given

in Eqns. (2b) and (2c) respectively and |ψ|2 may be ob-

tained from |A|2 using the real positive valued transcen-
dental equation Eqn. (2d).

(
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)

A = 0 (2a)
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(
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(
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)
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]
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(

Ω

2

)2
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geff = gX

(

1 +
γr
γR

)

(2e)

In fact Eqn. (2d) is cubic in |ψ|2 and, provided δgeff < 0,
has only one real positive (and therefore physical) so-
lution which can be written in closed form, given in
Eqns. (3).
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√
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√
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(
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(3c)

The optical field is then described by a function of the
transverse coordinate x which evolves with propagation
distance z along the waveguide. The intial conditons are
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fixed at z = 0 (where the light enters the waveguide) and
the field evolves under the combined action of diffraction
and nonlinearity until the result is read out at z = L,
where L is the spacing between the gratings. The sit-
uation is analagous to the temporal evolution of a one
dimensional weakly interacting Bose gas governed by a
1D Gross-Pitaevskii equation except in our case the prop-
agation coordinate z plays the role of time. Such systems
are expected to have dark soliton solutions.

S4. Dark Soliton Width and Nonlinearity

The analytical solution for a dark spatial soliton in a
nonlinear waveguide is given by Eqn. (4)11.

A = A0

[

cos(φ) tanh

(

x− vsz

ξ
√
2

)

+ i sin(φ)

]

exp(−iksz)
(4)

The soliton phase angle φ and width ξ uniquely determine
all the properties of the soliton including the transverse
velocity vs and soliton wavenumber ks via Eqns. (5).

vs = sin (φ) /
√

βLNL (5a)

ks = 1/LNL (5b)

Just as in the case of quantised vortices in condensates
the width is fixed by a balance of the kinetic energy
associated with the narrow core and the nonlinear po-
tential energy of the surrounding fluid as quantified in
Eqn. (6). Here LNL is the nonlinear length of the back-
ground fluid and the waveguide propagation constant
β = 23.7µm−1. The nonlinear length is related to the
density induced energy blueshift of the polariton disper-
sion ENL by LNL = h̄vg,LP/ENL where vg,LP = 24 µm
ps−1 is the polariton group velocity. It is also worth not-
ing that in the waveguide system the role of the photon
effective mass for transverse perturbations (such as spa-
tial solitons) is played by the longitudinal propagation
constant β so that the mass is h̄β/vg,LP.

ξ =

√
LNL

cos (φ)
√
2β

(6)

The width ξ is related to the full width at half
minimum of the dark intensity notch X0 by X0 =

2
√
2 tanh−1

(

1√
2

)

· ξ ≈ 1.7627
√
2 ≈ 2.4928ξ. The fac-

tor of cos(φ) in Eqn. (6) is close to 1 for the data we
present so, for clarity, we have used a simplified form of
Eqn. (6) in the manuscript where cos(φ) has been omit-
ted. The size of the phase jump across the soliton is
π − 2φ. The intensity ratio of the dark notch minimum
to the background is given by sin2 (φ). Ideal dark solitons
may be seeded by any arbitrarily small intensity or phase
discontinuity11. The phase difference between the fields
at ±∞ must be conserved so that a phase defect in the
initial condition generates a single dark soliton with the
same phase jump at the core while pure intensity defects

generate pairs of solitons with opposite phase11. While
dark solitons are strictly defined on a background of in-
finite extent they may also exist on finite backgrounds16

and in the presence of loss12. In this case ξ and φ evolve
adiabatically with z as the background varies. Thus the
soliton width at a given z depends on the background
density at that same position z.

Using Eqn. (6) the nonlinear length may be deduced
from the soliton core width. This approach is only valid
when the transverse field distribution is dominated by
the balance of nonlinearity and diffraction rather than
purely by diffraction, e.g. the system is in the quasi-
solitonic rather than the linear regime. This leads to two
conditions which must be fulfilled: (a) The soliton width
should be narrower than the notch width in the linear
regime and (b) the soliton period πLNL/2 should be less

than the device length L, which gives ξ <
√

L/ (πβ) for
the width. With the device length of 600µm the FWHM
of the notch should therefore be less than 7µm, as well as
being less than in the linear regime. One may then obtain
the effective polariton-polariton interaction constant us-
ing g = ENL/n where n is the peak density of polaritons.
The peak density is related to the power P (z) flowing
through a plane at some z using Eqn. (7). Here w is the
effective width of the distribution obtained by dividing
the integral of the density with x by the peak density.

n =
P/ (h̄ω)

w · vg,LP
(7)

Combining all the above relations we obtain Eqn. (8) for
g in terms of measured parameters.

g =
h̄ · w · v2g,LP

2βξ2 cos2 (φ) (P/h̄ω)
(8)

This value is plotted in Fig. 4(b) in the main text for inci-
dent powers where the notch width is sufficiently narrow,
as discussed above. In the main text we show that the
nonlinear parameter deduced from the healing length is
consistent with that used in numerical simulations which
reproduce the measured intensity distributions as a func-
tion of power. This self consistency verifies the validity of
the (different) assumptions underlying the two methods.
For reference, the strongly-coupled exciton density per

quantum well may be obtained, in the lowest order ap-
proximation, using nX = n |X|2 /Nw where |X|2 = 58%
is the exciton fraction at the detuning used in this work
and Nw is the number of wells. The effective interaction
constant (including both reservoir and coherent part) for
pure excitons confined in one quantum well is related to
the effective lower polariton interaction g according to29

Eqn. (9).

g =
|X|4
Nw

geff (9)

The ’eff’ subscript draws attention to the fact that the
nonlinearity arises from the reservoir population as well
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FIG. S3. Comparison of modeled (full lines) and experimental
(points) input and low-power output intensity distributions
for amplitude (a) and phase (c) defects. Phase of model initial
conditions for amplitude (b) and phase (d) defects.

as the coherent exciton field (see section S3). We note
that in our system the polarisation is linear so that there
are always an equal number of spin up and down polari-
tons. If one deals with co-circularly polarised excitons,
for example in a Bragg microcavity geometry, the con-
stants should be multiplied by a factor of ∼2 to account
for the fact that the exciton-exciton interaction is known
to be anisotropic and much stronger for excitons of the
same spin than of opposite spin29.

S5. Initial Condition

The initial conditions used in the numerical mod-
elling for the amplitude and phase defects are given by
Eqns. (10a) and (10b) respectively. The error functions
(or hyperbolic tangent, which has a very similar profile)
are included to model the fact that diffractive effects in
the free space and optics between the mask and the sam-
ple surface smooth out the sharp discontinuities in am-
plitude and phase introduced at the mask.

A0 = exp
(

−x2/w2
b

)

·
[

1− a0

(

erf

(

x+ wn/2

wd

)

− erf

(

x− wn/2

wd

))]

(10a)

A0 = exp
(

−x2/w2
b

)

·
(

cos (φ) tanh

(

x

wn

)

+ i sin (φ)

)

(10b)

In figure S3 we show the modelled input condition inten-
sity and phase and compare the modelled input and low-
power output intensity distributions with those measured
experimentally. The modelled output intensity profile
was determined using the exact solution of the parax-
ial waveguide propagation equation in the Fourier do-
main and using measured experimental parameters for
the waveguide propagation constant and device length.
The agreement is very good apart from a discrepancy
around x = −10µm in the output field for the phase dis-
continuity. We attribute this discrepancy to a localised
defect in the output grating coupler. The good agreement
for both input and output profiles shows that the mod-
elled initial condition amplitude and phase are a close
match to the experimental initial condition. We note the
non-zero phase and intensity at the position of the dark
notch in the case of the amplitude defect. This occurs due
to diffraction in the free-space propagation of the laser
beam from the mask to the sample surface. These effects
are also responsible for the sharp but finite width notch
at x = 0 in the phase-jump initial condition. For an in-
finitely sharp phase jump one would not expect to see
any notch in the intensity profile. The aforementioned
diffraction effects blur the phase jump resulting in the
observed finite-width notch in intensity.

S6. Time Dependence of Nonlinearity

To further investigate the observed excess nonlinear-
ity in the CW compared to the picosecond regime we
have carried out additional measurements at intermedi-
ate timescales. We injected pulses of length 120ps and
440ps with a gaussian spatial profile into the waveguide
and observed the spatial defocussing as a function of time
using a streak camera. The pulses were detuned h̄δ =-
7.2meV from the exciton and the spatial FWHM was
15µm. Fig. S4 shows the output intensity as a function
of x and time t. In the low power case (a,c) the output
pulse is unchanged and is gaussian in both x and t. At
high power (b,d) the spatial distributions broaden as pre-
viously observed in the CW case. It can be seen that the
outer portions of the spatial distribution arrive delayed
with respect to the center. Taking sections at ±25µm the
delay is 30ps in the case of 120ps long pulses and 240ps
in the case of 440ps pulses. These delays are too large to
be explained in terms of a change in velocity as the travel
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FIG. S4. Spatial defocussing of long pulses. Space-time plots
of output intensity for incident pulses with temporal FWHM
and peak powers (a) 440ps, 0.14W (b) 440ps, 3.7W (c) 120ps,
0.16W (d) 120ps, 14W. (e) Width of time-integrated spatial
distribution vs. incident peak power. (f) Integrated output
intensity vs. input power.

times for polaritons at this detuning and for pure photons
are 14ps and 10ps respectively. In Fig. S4(e) it can be
seen that the spatial width of the distribution increases

twice as fast with peak pulse power in the case in of 440ps
pulses compared to 120ps pulses. The coupling efficiency,
absorption, etc. are the same for both pulse lengths as
seen from the almost identical input vs. output power
curves in Fig. S4(f). This implies that the longer pulses
experience twice the nonlinearity. Taken together, these
two effects can be explained if polaritons in the first part
of the pulse generate a reservoir which increases the non-
linear interaction for the latter part of the pulse resulting
in increased spatial defocussing at later times.

S7. Comparison of Nonlinearity with Literature

Values

Comparing our geff to those in the literature, Ro-
driguez et. al.30 deduced geff=30µeVµm2, which lies
between our picosecond and CW reults, in a similar sys-
tem to ours. Ferrier et. al.34 quote g=2-9µeVµm2 for
polaritons spatially separated from the pump from which
we infer geff ∼50-225µeVµm2. In a similar experiment
Brichkin et. al.29 find geff=2.4µeVµm2, of the same or-
der as theoretical estimates. Sun et. al.35 report the
largest value in the literature, geff ∼1740µeVµm2. The
differences between similar systems suggests a strong de-
pendence of the CW nonlinearity on sample properties.
Our picture of a reservoir generated by the polaritons
themselves may explain this behaviour since variations
in QW disorder between different semiconductor wafers
can strongly influence scattering into the reservoir.
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vokin, A. Miard, A. Lemâıtre, J. Bloch, D. Solnyshkov, G.
Malpuech, and A. V. Kavokin, Phys. Rev. B 82, 075301
(2010).

33 A. V. Sekretenko, S. S. Gavrilov, and V. D. Kulakovskii,
Phys. Rev. B 88, 195302 (2013).

34 L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senel-
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Ciuti, and A. Imamoǧlu. Phys. Rev. Lett. 103, 033601
(2009).

39 R. O. Umucalılar and I. Carusotto, Phys. Rev. Lett. 108,
206809 (2012).

40 M. Hafezi, M. D. Lukin, and J. M. Taylor, New J. Phys.
15, 063001 (2013).

41 X. Chen, Z. -C. Gu, Z. -X. Liu, and X. -G. Wen, Science
338, 1604 (2012).

42 See Supplemental Material Sec. S2 for details of how we
determined the coupling efficiency.

43 D. N. Krizhanovskii, G. Dasbach, A. A. Dremin, V. D.
Kulakovskii, N. A. Gippius, M. Bayer, and A. Forschel
Solid State Comms. 119, 435 (2001).

44 D. Sarkar, S. S. Gavrilov, M. Sich, J. H. Quilter, R. A.
Bradley, N. A. Gippius, K. Guda, V. D. Kulakovskii, M.
S. Skolnick, and D. N. Krizhanovskii. Phys. Rev. Lett. 105,
216402 (2010).

45 See Supplemental Material Sec. S1 for further experimental
details.

46 See Supplemental Material Sec. S5 for mathematical ex-
pressions for initial conditions and comparison with exper-
iment.

47 A. Vinattieri, J. Shah, T. C. Damen, D. S. Kim, L. N.
Pfeiffer, M. Z. Maialle, and L. J. Sham, Phys. Rev. B. 50,
10868 (1994).

48 D. M. Whittaker, Phys. Rev. Lett. 80, 4791 (1998).
49 J. -M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E.
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