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Abstract

The behaviour of colony-based marine predators is the focus of much research glob-

ally. Large telemetry and tracking data sets have been collected for this group of

animals, and are accompanied by many empirical studies that seek to segment tracks

in some useful way, as well as theoretical studies of optimal foraging strategies. How-

ever, relatively few studies have detailed statistical methods for inferring behaviours

in central place foraging trips. In this paper we describe an approach based on hid-

den Markov models, which splits foraging trips into segments labeled as “outbound”,

“search”, “forage”, and “inbound”. By structuring the hidden Markov model tran-

sition matrix appropriately, the model naturally handles the sequence of behaviours

within a foraging trip. Additionally, by structuring the model in this way, we are able

to develop realistic simulations from the fitted model. We demonstrate our approach

on data from southern elephant seals (Mirounga leonina) tagged on Kerguelen Island

in the Southern Ocean. We discuss the differences between our 4-state model and the

widely used 2-state model, and the advantages and disadvantages of employing a more

complex model.

1 Introduction

Central place foraging (CPF) is a widely applied concept in ecology (Olsson and Bolin, 2014;

Higginson and Houston, 2015). Many terrestrial species with home ranges, or shelters, can

∗tmichelot1@sheffield.ac.uk (All supplementary material is available on request.)
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be regarded as central place foragers (Bell, 1990). Colony-based marine animals, such as

seabirds and seals, that must moult, breed and raise young on land or ice can also use CPF

strategies. It has been hypothesized that, due to density dependence, waters near to the

colony may become depleted of prey (Ashmole, 1963), or simply that the most profitable

prey are spatially separated from land-based colonies, necessitating trips to more distant

foraging areas (Oppel et al., 2015). In many seabirds, during phases when the young are

being fed and reared, adult birds are constrained to forage within closer range of the colony

(Boyd et al., 2014; Patrick et al., 2014). Pinnipeds must also haul out to periodically moult,

as well as for mating and rearing young (Russell et al., 2013). These animals are the subject

of considerable ongoing research, often utilising tracking techniques to collect movement data

at sea (Hays et al., 2016). Moreover, many are the subject of intense conservation efforts

(Lonergan et al., 2007; Croxall et al., 2012; Hamer et al., 2013; Martin and Crawford, 2015;

Jabour et al., 2016).

Often, studies aim to assess how CPF animals apportion their time between searching

and active foraging, and to identify particular characteristics, for example relating to habitat

usage, trip length, activity budgets, and other variables (e.g. Staniland et al., 2007; Ray-

mond et al., 2015; Hindell et al., 2016; Patterson et al., 2016). How these quantities vary

with ontogenetic stage or age is often important; for example, naive young animals versus

experienced adults, or sex-specific foraging strategies (e.g. Breed et al., 2009; Hindell et al.,

2016). To evaluate hypotheses about movements in CPF, it is very helpful to have mod-

els which objectively classify movement into different modes (or “phases”), with different

statistical properties, indicating differences in underlying behaviour (Langrock et al., 2012).

Several recent CPF studies have looked at switching models which include latent be-

havioural states, but usually these are general models that are not specifically designed to

capture the behavioural cycle of CPF (e.g., Breed et al., 2009; Jonsen et al., 2013; Jonsen,

2016). Latent states are often given labels such as “transit” and “resident”. In the latter,

the notion of area-restricted search (Kareiva and Odell, 1987; Fauchald and Tveraa, 2003;

Morales et al., 2004) is often invoked. In an area with high foraging returns, the animal is

expected to undertake less directed movements, and therefore higher turning rates, and gen-

erally lower speeds of travel. These concepts have proven useful for modelling movements of

CPF, but explicitly incorporating the trip structure in the model would give a more nuanced

understanding of the likely behavioural sequences. At the most basic level, an animal must

leave a colony, transit out to (one or more) foraging grounds, search and obtain food, and

then eventually return.

Our aim here is to construct a model which captures the following sequence of movement

modes: outbound → search → forage → . . . → search → inbound. We outline the random

walk models which can be used to represent these movement modes, and then show how
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these can be integrated into the hidden Markov model (HMM) framework. HMMs have

been used widely in animal movement modelling (Langrock et al., 2014; McKellar et al.,

2015; DeRuiter et al., 2017; Leos-Barajas et al., 2017; Auger-Méthé et al., 2016). They

represent a computationally efficient approach for fitting models with discrete latent states

to time series data. A thorough description of HMMs for animal movement is given in

Langrock et al. (2012).

An important subsequent focus of the model we seek to construct is that it should be

suitable for simulation of foraging trips. Simulation is already used in habitat modelling of

central place foragers as null models for distribution that account for some areas being inac-

cessible due to distance constraints (Raymond et al., 2015; Wakefield et al., 2009). However,

estimation of such simulation models is often ad-hoc (Matthiopoulos, 2003). Beyond the

specific case of habitat modelling, even simulation models which capture only a few aspects

of foraging behaviour would be useful in making predictions, with associated uncertainty,

from finite samples of individuals drawn from populations. The desire to simulate from the

fitted model places a requirement of greater realism on the movement model structure. This

further motivates the development of the trip-based movement model for CPF.

We acknowledge from the outset that the model we present below is a simplification of

the true processes under investigation. Despite the broader applicability of the CPF concept,

we restrict our usage to the situation of marine predators that are constrained to return to

land after a certain period of time. It should be noted however that the methods we present

may well have broader application. CPF is likely to be influenced by patchiness operating at

scales which are not observable from the telemetry data, and dependent on local conditions

(only some of which may be observable via remote sensing). To fully generalize our methods,

inclusion of environmental data will be necessary (Labrousse et al., 2015). Considerations of

these ideas have tended to employ computationally demanding techniques (e.g. McClintock

et al., 2012), which can limit their applicability with large data sets. So far, models for large

data sets (i.e. many observed locations) have been underrepresented.

Below, we describe the modeling framework and demonstrate estimation using data from

southern elephant seals (Mirounga leonina). We then show simulation of foraging trips from

the fitted model, and assess which aspects of the real trips are replicated well and which are

not. Finally, we discuss how a model of this type can be tailored to a given species’ case

and extended to include other covariates (e.g. environmental) that may influence movement

behaviour. Additionally, we discuss the limitations of our model, and how these relate to the

general problem of simulation and subsequent prediction of behaviour from fitted multistate

movement models.
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2 Methods

2.1 Building blocks for the overall model

We first describe the types of random walks required to describe the different segments of a

foraging trip, and then how these are combined within the full model, an HMM. Figure 1

illustrates the typical pattern of an elephant seal’s foraging trip. The maps were produced

with the R package marmap (Pante and Simon-Bouhet, 2013).
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Figure 1: (A) An example track of a southern elephant seal tagged at Kerguelen Island (top

left), which makes an outward foraging trip to the Antarctic continental shelf before returning. (B)

The distance from Kerguelen Island through time, clearly showing rapid outward transit, foraging

movements over an extended period of time, and the rapid return transit.

The trip consists of (at least) three clearly distinct phases of movement: the fast and

directed trip from the colony to the sea ice region, a period of slower and less directed

movement near the ice, and the fast and directed trip from the ice to the colony. Marine
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prey resources are patchily (non-uniformly) distributed at multiple spatial scales (Fauchald

and Tveraa, 2006), so animals will typically still need to search between dynamic favourable

forage patches within and around the sea ice and Antarctic shelf regions (see for example

inset panels of Figure 2 in Bestley et al., 2013). This search may manifest as slower, less

directed movement than the migration transits, but faster and more directed movement than

area restricted search

We choose the following four movement modes for our analysis, for the distinct phases

within a trip: (1) outbound trip, away from the central place (here, the colony at Kerguelen

Island) and towards the foraging regions, characterized by very fast and highly directed

movement; (2) search-type movement in the foraging regions, characterized by moderately

fast movement and some directional persistence (though without a clear destination); (3)

foraging activities, characterized by non-directed, slow movement; and (4) return trip, back

to the central place, with very fast and again highly directed movement. We label the

movement modes for convenience, but note that each phase of the trip (in particular “search”

and “forage”) can potentially encompass several behaviours, perhaps even behaviours that

are functionally equivalent, like different types of foraging behaviour, as long as they lead to

similar movement patterns.

Both (2) and (3) can be adequately modelled using commonly applied correlated random

walks (CRWs). CRWs involve correlation in directionality, and can be represented by mod-

elling the turning angles of an animal’s track using a circular distribution with mass centred

either on zero (for positive correlation) or on π (for negative correlation). For example, we

could model phase (2), which involves positive correlation in directionality, by assuming

bearingt ∼ von Mises (mean = bearingt−1, concentration = κ),

with κ denoting a parameter to be estimated. (Larger κ values lead to lower variance of the

von Mises distribution, and hence higher persistence in direction.) Alternatively, the mean

can be specified to be bearingt−1 − π, corresponding to an expected reversal in direction,

which is often found in encamped, foraging, or resting modes (e.g. “encamped” behaviour

in Morales et al., 2004, and “area-restricted search” in Towner et al., 2016). Instead of

specifying the mean a priori, it can also be estimated from the data. That is, we can

consider

bearingt ∼ von Mises (mean = bearingt−1 + λ, concentration = κ),

where λ ∈ [−π, π) is a parameter to estimate. We note that CRWs can alternatively be

constructed by modelling turning angles rather than bearings, leading to equivalent model

formulations, with

anglet ∼ von Mises (mean = λ, concentration = κ).
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Choosing between these two formulations is only a matter of convenience.

For modelling phases (1) and (4), biased random walks (BRWs) are better suited. Bias in

random walks usually (though not necessarily) refers to a tendency towards (or away from)

a particular location, sometimes called a centre of attraction (or point of repulsion). For

example, a bias towards a location (c1, c2) is obtained by assuming that

bearingt ∼ von Mises (mean = φt, concentration = κ),

where φt = arctan [(yc − yt)/(xc − xt)] is the direction of the vector pointing from the ani-

mal’s current position, (xt, yt), to the central place, (xc, yc).

In principle, it is also possible to construct random walks that are both biased and

correlated (BCRWs), thereby trading off directional persistence and possible turning towards

the destination. However, in our experience, it is difficult to statistically distinguish CRWs

and BRWs. As a consequence, usage of BCRWs tends to lead to numerical instability within

the model fitting procedure, as it is challenging to estimate the respective weights of the

biased and correlated components of the process. For more details on CRWs, BRWs and

BCRWs, see Codling et al. (2008).

As can be seen in Figure 1, the animal tends to remain within each phase of movement

for some time before switching to a different phase. To accommodate both the persistence

and the stochastic switching between different phases of the movement, we use an underlying

(unobserved) state process. The state process, S1 . . . , ST , takes values in {1, . . . , N}, such

that, at each time t, the movement observed follows one of N types of random walks (possibly

correlated and/or biased), as determined by the current state. We take the state process to

be a Markov chain, which together with the observation process, i.e. the BRWs and CRWs

conditional on the current state, defines a hidden Markov model for the animal’s movement

(HMM; see Chapter 18 in Zucchini et al., 2016). The state process is characterized by the

transition probabilities

γij = Pr(St = j|St−1 = i), for i, j ∈ {1, . . . , N}.

In the trip-based movement detailed above, there are N = 4 states, corresponding to

the four phases of movement. Note that, in general, there is no guarantee of a one-to-one

equivalence between the (data-driven) states of the Markov chain and the actual behaviours

of the animal (Patterson et al., 2016). As such, the states should be interpreted with care,

but they are often useful proxies for the behavioural modes. In subsequent sections, we use

the terms “behaviours” and “states” interchangeably.

Framing the model as an HMMmakes it possible to use the very efficient HMMmachinery

to conduct statistical inference. In particular, the model parameters can relatively easily

be estimated by numerically maximizing the likelihood, which can be calculated using a
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recursive scheme called the forward algorithm (Zucchini et al., 2016). The main challenge

herein lies in identifying the global rather than a local maximum of the likelihood — the same

or similar problems arise when using the expectation-maximization algorithm or Markov

chain Monte Carlo sampling to estimate parameters. The efficiency of the forward algorithm

is one of the key reasons for the popularity and widespread use of HMMs, and similar

algorithms can be applied for forecasting, state decoding, and model checking. In particular,

we use the Viterbi algorithm to decode the most likely sequence of underlying states in

Section 3.2. More details on inference in HMMs are given in Zucchini et al. (2016) and,

for the particular case of animal movement modelling, in Patterson et al. (2016). For our

case study, we used the R optimization function nlm to numerically maximize the likelihood,

which was partly written in C++ for computational speed.

2.2 Case study data

The southern elephant seal (Mirounga leonina) is a pinniped top predator with a circumpolar

distribution throughout high latitudes in the southern hemisphere (Carrick et al., 1962). Haul

out phases on land occur at fairly predictable times during the annual cycle for moulting and

breeding (Hindell and Burton, 1988). The species is known for making large scale migrations

from isolated subantarctic land colonies, both southwards to the sea ice zone around the

Antarctic continental margin, and also into open ocean pelagic zones (Biuw et al., 2007;

Labrousse et al., 2015; Hindell et al., 2016). A recent study (Hindell et al., 2016) applied

two-state movement models (sensu Morales et al., 2004) to a large data set of several hundred

individual tracks. This study was focused on detecting basin-scale patterns in foraging effort,

rather than explicitly modelling the sequence of behaviours within individual foraging trips.

In this case study, we examine trips from 15 animals (8 adult females and 7 subadult

males) tagged at Kerguelen Island. These animals were fitted with telemetry units of the

Sea Mammal Research Unit (St Andrews, UK) which transmit data via the Argos satellite

network (Photopoulou et al., 2015). Frequently, the elephant seals remained at the colony for

extended periods at the start of the time series, and similarly after returning from foraging

trips. Because of the HMM structure, the highly stationary data from these periods holds

little information and rather serves to leave potential for numerical instability. Data from

these periods were removed prior to use in the HMM. Near stationary periods immediately

prior to colony departure and/or following return to the colony were identified for removal by

examining one-dimensional time series plots of the Argos longitude and latitude observations.

The truncated trips lasted between five and eight months, except for two incomplete trips,

during which the data collection was interrupted before the animals returned to the colony

(tags may fail before trip completion).

Due to the occasional large errors and the irregular timing of the Argos location observa-
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tions, these data were filtered using a state-space model (SSM, Jonsen et al., 2013) to obtain

a regular time sequence of location estimates with reduced uncertainty. The SSM used was

a variant of that described in Jonsen et al. (2005), implemented with the R package TMB

(Kristensen et al., 2016). Associated R and C++ code, for pre-processing the Argos data,

are available on Github, at github.com/ianjonsen/ssmTMB. The state-space model was fit

with a 2.4-hour time step, yielding ten location estimates per day. Other time steps were

evaluated but 2.4 h provided the best fit according to AIC and auto-correlation functions of

the residuals. This time step resulted in calculated step lengths (speeds) and turning angles

(or, equivalently, bearings) that had relatively low contrast between movement phases ap-

parent in the observed data. Accordingly, we sub-sampled the estimated locations to every

fourth time step (i.e. 9.6 hour frequency). The data provided to the HMM were step lengths

and turning angles, as described in Section 2.1.

2.3 Model details

For the elephant seal case study, we employ the structure of a four-state HMM as described

in Section 2.1. The first state corresponds to the outbound trip from the colony to a foraging

region, and is modelled by a BRW with repulsion from the colony. The animal then alternates

between states 2 (“search”) and 3 (“forage”), each using a CRW. Finally, the process switches

to the inbound trip, modelled by a BRW with attraction towards the colony. The movement

is measured in terms of step lengths and turning angles – modelling the latter is equivalent

to modelling bearings, but here easier to implement. We use a gamma distribution to model

the step lengths in each state, and a von Mises distribution for the turning angles. The mean

turning angles are estimated for both state-dependent CRWs (in states 2 and 3, respectively),

instead of being fixed a priori. This results in fourteen parameters to estimate at the level

of the observation process: four shape and four scale parameters (for the gamma-distributed

steps), plus four concentration parameters and two means (for the angles). For states 1

and 4, no mean parameter needs to be estimated for the associated BRW, as the expected

direction is determined through the bias.

Using the notation introduced in Section 2.1, we write the transition probability matrix

as

Γ =











γ11 γ12 0 0

0 γ22 γ23 γ24

0 γ32 γ33 0

0 0 0 1











.

This structure ensures that the sequence of states follows the behavioural cycle described

in the Introduction, by preventing some transitions. Note that we could choose γ13 and γ34 to

be non-zero, to allow the process to switch from outbound to forage, and forage to inbound,
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respectively. In this case study, we decided to prevent these transitions, i.e. we assumed

a transitional regime of moderately fast and directed movement (search) between a phase

of fast and directed movement (outbound or inbound), and a phase of slow non-directed

movement (forage).

This formulation also leads to improved numerical stability of the estimation, as it reduced

the number of parameters to estimate. Here, state 4 is an absorbing state, as we only consider

tracks comprising (at most) one trip away from the colony. It would be straightforward to

relax this constraint, e.g. by choosing γ41 > 0. For tracks comprising several years of data,

a fifth state could be added to model the movement of the seals at the colony.

In analyses like this one, it is often of interest to understand the drivers of behavioural

switches, by expressing the transition probabilities as functions of time-varying covariates

(see, e.g., McKellar et al., 2015; Breed et al., 2016). Here, we introduce two covariates:

the great-circle distance to the colony from the location at time t, dt, and the time since

departure from the colony, t − t0. These are included for two key aspects which are both

relevant for CPF foraging behaviour and are also necessary to construct a model which will

replicate trips in a simulation setting. Specifically, we need to model the fact that animals

often make fast directed trips away from the colony and tend to switch into other movement

modes once they have reached foraging grounds. In this case we use distance from the colony

as a covariate affecting the probability of transitioning from outbound to search,

γ
(t)
12 = logit−1

(

β
(12)
0 + β

(12)
1 dt

)

.

Somewhat similarly, animals cannot remain at sea indefinitely. Therefore, we use time

since departure from the colony as a covariate on the switch from search to inbound (γ24).

As there are two non-zero probabilities of switching out of state 2, we use a special case of

the multinomial logit link, the general expression of which is given e.g. in Patterson et al.

(2016). In our model,

γ
(t)
23 =

exp
(

β
(23)
0

)

1 + exp
(

β
(23)
0

)

+ exp(η24)
, and γ

(t)
24 =

exp(η24)

1 + exp
(

β
(23)
0

)

+ exp(η24)
,

where

η24 = β
(24)
0 + β

(24)
1 (t− t0).

The β
(ij)
k ∈ R are parameters to be estimated. Note that, because the rows of the

transition probability matrix must sum to 1, γ11 and γ22 are also time-varying in this example.

There are six parameters to estimate in the state-switching process: the five β
(ij)
k coefficients

and γ32. The remaining elements of the matrix, i.e. γ11, γ22 and γ33, are obtained from the

row constraints.
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This results in a total of twenty parameters to estimate: fourteen parameters for the

state-dependent distributions of steps and angles, and six parameters for the transition

probabilities.

2.4 Simulation from fitted model

Having estimated model parameters from the real data, it is possible to simulate movement

from the model described in Section 2.3. A simulated track starts near Kerguelen Island, in

state 1 (outbound trip). The bearing is initialized from a von Mises distribution with a mean

pointing towards the South, to mimic the elephant seals’ movement. The directionality of

the movement in state 1 ensures that the trajectory goes southward, overall. At each time

step, the state process is simulated from the estimated (possibly time-varying) switching

probabilities. Then, a step length and a bearing are simulated from the estimated gamma and

von Mises distributions, respectively. The corresponding longitude and latitude coordinates

are derived using the R package geosphere (Hijmans, 2016). The new location is rejected if it

is on land, using the borders defined in the data set wrld simpl of the maptools R package

(Bivand and Lewin-Koh, 2016). The track ends once the trajectory is back at the colony. In

practice, we chose to stop the simulation once a location is simulated within a 20-kilometre

radius around Kerguelen Island.

3 Results

The model described in Section 2.3 was fitted to 15 elephant seal tracks, each corresponding

to one individual trip away from the colony. The tracks comprise about 7300 locations, and

it took around one minute to fit the model on a dual-core i5 CPU.

We include the code used to fit the model in the supplementary material. Note that,

for speed, we implemented the likelihood function in C++, using Rcpp (Eddelbuettel et al.,

2011). In the supplementary material, we also provide the data set comprising the 15 tracks.

3.1 Estimated turn and step-length distributions

Figure 2 shows histograms of the step lengths and turning angles of the data, on which are

plotted the estimated state-dependent gamma and von Mises densities. The state-dependent

densities for each state here have been weighted according to the proportion of time the

corresponding state is active, as determined using the Viterbi algorithm (Zucchini et al.,

2016). Similarly, for both the step lengths and the turning angles, Figure 2 also displays the

cumulative distribution, i.e. the sum of these weighted densities. Based on visual inspection,

these cumulative distributions do not indicate any lack of fit of the model.
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Figure 2: Estimated state-dependent distributions for the step lengths (left) and the turning

angles (right).

Formal model checks can be conducted using forecast pseudo-residuals, which use the

probability integral transform to effectively compare the observation at each time t to the

associated forecast distribution based on the observations up to time t − 1. In case of

the turning angles, the definition of the pseudo-residuals is essentially arbitrary due to the

circular nature of this variable (cf. Langrock et al., 2012). Thus, we restrict the model

check to the step length variable. The quantile-quantile plot of the pseudo-residuals for the

step lengths, against the standard normal distribution, is shown in Appendix A4. A few of

the tracks include steps of slow movement near the colony. They are not captured by the

“outbound” and “inbound” states of fast movement, such that they appear as outliers in

the qq-plot; this could be resolved during the preprocessing, by excluding the corresponding

observations. The model also slightly underestimates the number of long steps (roughly

between 40 and 50 km). In this regard, the fit could be improved by using more flexible step

length distributions, albeit at a computational cost (Langrock et al., 2015). However, note

that the improvement in inference on the state-switching dynamics would be minimal.

The states corresponding to the outbound and inbound movements display very similar

features, with high step lengths and strong directional persistence; the distinction is that the

colony acts as a centre of repulsion in the former, and a centre of attraction in the latter. The

foraging phases are characterized by shorter steps, i.e. slower movement, and less directional

persistence, with a roughly flat distribution of turning angles. In the search-type movement

mode, the model captures moderately long steps and directed movement, making it clearly
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distinct from foraging behaviour.

The estimates of all the model parameters are provided in Appendix A2, in the supple-

mentary material.

3.2 Estimated state sequences

The most probable state sequence was computed with the Viterbi algorithm. Figure 3 shows

the 15 tracks, coloured by decoded states. The individual decoded tracks are provided in

Appendix A1. In all tracks, the first state corresponds to the animal moving quickly towards

the south. Then, the behaviour alternates between searching (state 2) and foraging (state

3) periods, typically near the ice or in Antarctic continental shelf waters. In general, more

northerly search behaviour is apparent in the westernmost tracks. Eventually, the animal

switches to state 4 as it starts moving back towards the island colony.

Figure 3: Fifteen elephant seal tracks, coloured by Viterbi-decoded states. The white area at the

bottom is the Antarctic continent.

Overall, the model appears to adequately identify the outbound and inbound trips. How-

ever, we suspect that the decoded state sequence might sometimes fail to capture the exact

timing of the transitions out of the outbound state, and the transitions into the inbound

state. In some tracks, the animal goes through a transitional phase, between the outbound

trip and search behaviour, in which the movement is slower but still very directed. Although

these periods are still arguably part of the outbound trip, they might be attributed to the

searching state, due to the decrease in speed. The same situation arises during the transition

from search to inbound trip.
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Figure 4: (A) An example track of a southern elephant seal. (B) The distance from Kerguelen

Island through time. (C) A ‘zoomed in’ part of the track shown in (A). The four colours correspond

to the most probable states, decoded with the Viterbi algorithm. (A) and (B) clearly illustrate the

phases of fast and directed movement, which are attributed to the outbound and inbound trips.

(C) shows in more detail the different patterns in the animal’s movement, when near the sea ice

region, which distinguish between search and foraging behaviours.

Figure 4 demonstrates state decoding more specifically, on the track presented in Figure

1. In particular, sub-Figure 4(C) shows how the localized movements of the elephant seal

near the Antarctic continent is split into two very distinct behaviours, which seem to be

apportioned adequately between states 2 and 3.

3.3 Estimated effects of covariates

The transition probabilities were estimated as functions of the distance to the colony, and

the time spent away from the colony, as described in Section 2.3. Figure 5 displays plots of

the transition probabilities from state 1 to state 2 (end of outbound trip), and from state 2

to state 4 (start of inbound trip).

The HMM predicted that elephant seals were unlikely to switch away from state 1 when

close to the colony, but the probability increased quickly at distances greater than 3000 km,

when the animals tend to start searching for foraging patches. Moreover, during the first
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Figure 5: Transition probabilities from outbound to search as a function of the distance from the

colony (left), and from search to inbound as a function of the time spent away from the colony

(right).

few months away from the colony, elephants seals do not switch to state 4 (return trip), but

instead tend to cycle through search and foraging phases. Later, after about six months, the

probability of switching to state 4 starts to increase.

This is consistent with the annual cycle in this species and the timing of return to

the island colony after the long post-moult migration (Slip and Burton, 1999; Hindell and

Burton, 1988; McCann, 1980). Therefore, the estimated relationships between covariates

and behaviour is consistent with the known behaviour of elephant seals and their annual

moulting and breeding cycles.

3.4 Simulation results

One of the main advantages of our approach over simpler HMMs (e.g. HMMs with fewer

states, no constraints on the switching probabilities, only based on CRWs...) is the possibility

to simulate realistic movement tracks from the fitted model. The simulation procedure is

described in Section 2.4. Figure 6 shows ten tracks, simulated from the fitted model.

The simulated tracks display many of the features of the real ones. To compare them,

we simulated 100 tracks, and summarized the proportion of time allocated to each state,

and the mean duration spent in each behaviour (before switching to another behaviour), in

Table 1. In the simulated data, we find the overall proportional state allocation very well

represented. However, we find on average slightly shorter behavioural phases for states 2 and
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Figure 6: Ten simulated movement tracks, obtained with the MLE of the parameters of the fitted

model.

3 (search and forage) than in the real data. This may partly be due to the assumed Markov

property of the state process which, for states not affected by covariates (e.g. the foraging

state), implies that the times spent within the state are geometrically distributed (Zucchini

et al., 2016). We suggest ways to relax this assumption in Section 4.2. Histograms of the

dwell times in each state, for the real and simulated tracks, are provided in Appendix A3.

Table 1: Comparison of the real tracks and 100 simulated tracks, in terms of overall proportion

of observations attributed to each state, and of mean dwell time in each behaviour (in days).

Overall proportion Mean state dwell time

Real data Simulated data Real data Simulated data

State 1 12.9% 11.2% 25.4 23.2

State 2 24.2% 23.3% 4.5 3.6

State 3 51.1% 53.7% 10.4 9.0

State 4 11.7% 11.8% 24.6 24.4

The simulation successfully captures the southward direction of the outbound trip. Then,

the process switches to search and forage behaviours at a realistic distance to the colony,

as the probability of this transition is a function of the distance to Kerguelen Island. The

extent of movements within each state, which is informed by the estimated step and angle

distributions, is also realistic. However, the spatial distribution of foraging activity is not
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tied to correspond to what is observed in real tracks. Thus, the exact locations of searching

and foraging activities in the simulated data are of no environmental relevance. This could

be improved by including environmental covariates; this is discussed in more detail in Section

4.2.

The durations of simulated trips are reasonable for the study species: out of the 100

simulated trips, 90 lasted between five and nine months.

4 Discussion

We have described a method for modelling the trip-based movements of animals undertaking

central place foraging. This approach uses a hidden Markov model to directly estimate state

movement and switching parameters from empirical telemetry observations. The model

handles the natural sequence of behaviours within a trip, i.e. “outbound”, “search”, “forage”,

and “inbound”.

4.1 Comparisons to simpler models

The four-state HMM we have constructed is relatively complex: it mixes biased and cor-

related random walks, and the transition probabilities depend on time-varying covariates

(distance from colony, and time). It is therefore necessary to consider what we gain from

using a complex behavioural model over simpler models. For example, two-state switching

CRW models have commonly been used (e.g Morales et al., 2004; Hindell et al., 2016), and

can be easily fitted across a range of datasets, e.g. using the R packages moveHMM (Michelot

et al., 2016) or bsam (Jonsen, 2016).

One key inference from the more complex model described in this manuscript is the

length of outbound and inbound journeys (both in distance and in time). In this trip-based

HMM, we can estimate this directly with the most likely state sequence, derived with the

Viterbi algorithm. Arguably, one could apply heuristic rules to the state estimates from a

two-state model, to obtain the same thing. For example, the outbound trip could be taken

to start when the animal leaves the colony, and end when the proportion of observations

categorized as “resident” behaviour reaches a threshold p (where p is relatively small, say

p = 0.1). This would have the effect of ignoring short runs of resident behaviour within the

transit. Similar rules could be envisaged based on distance from the island, for example.

These heuristic rules of thumb may be useful, but suffer from a degree of arbitrariness.

Hidden Markov models with more than two states have been used to model fishing vessel

trips – which can be considered, most basically, as another top predator. For example,

Vermard et al. (2010) and Walker and Bez (2010) used 3-state HMMs to distinguish “fishing”,
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“steaming”, and “still” behaviours of fishing vessels. Peel and Good (2011) consider a 5-

state HMM, with the addition of states for “entry” and “exit” movement between the latter

two behaviours. In such models, simulation from fitted models could be a useful extension.

However, to the best of our knowledge, they have not been used for that purpose.

The disadvantage of our trip-based 4-state model is its aforementioned complexity. With-

out reasonable starting values in the maximum likelihood estimation, the parameter estima-

tion routines can provide poor parameter estimates, by finding local maxima of the likelihood,

or fail to converge altogether. These are well-known problems with numerical maximum like-

lihood, which require careful attention. One way to address this numerical problem is to

run the estimation with many different sets of starting values (possibly chosen at random),

and compare the resulting estimates. In the case study, we tried 50 sets of randomly chosen

starting values in order to ensure that we identified the global maximum of the likelihood

function.

4.2 Progress toward prediction from estimated process models

A key feature of the models we have demonstrated is that they are able to generate simu-

lated tracks which capture certain aspects of the behaviour of seals. While it is clear that

these are gross simplifications of the true movements of CPF predators, the simulations are

nevertheless useful for predicting aggregate properties from the fitted model. For instance,

we might predict the average spatial distribution of seals from the fitted model. We can

also compute a distribution of arrival and departure times from a given area, which can be

useful for assessing effectiveness of spatial management regimes or reserve usage and connec-

tivity between populations (Stehfest et al., 2015; Abecassis et al., 2013; Guan et al., 2013;

Kanagaraj et al., 2013).

Currently, these models do not contain detailed environmental or biological predictors,

which are known to be important in influencing southern elephant seal behaviour (Bestley

et al., 2013; Pinaud and Weimerskirch, 2005); for instance, the role of specific oceanographic

variables (Biuw et al., 2007; Labrousse et al., 2015). It is in principle straightforward to

include additional covariates in the model described in Section 2.3, though doing so might

increase numerical instability. Nonetheless, incorporating such variables will be important if

these models are to truly realise their potential for understanding how CPF marine predators

might respond to changing environmental regimes. For the case of southern elephant seals, we

could for instance express the transition from outbound to search in terms of distance to the

sea ice edge, instead of distance from the colony. We could also investigate the apparent state

2 behaviour observed further from the Antarctic continent, which may well be indicative of

the animal moving slowly toward the colony and away from the continent as the ice advances

northwards. Other variables, such as response to different water masses, frontal zones, etc.,
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are likely to be more subtle, and may serve to influence transitions between search and forage

states.

Including environmental covariates to inform the probabilities of switching may also lead

to more realistic simulated tracks. In particular, it could help to simulate more realistic state

dwell-times. An alternative is to use so-called hidden semi-Markov models (Langrock et al.,

2012), where the geometric state dwell-time distribution can be replaced by more flexible

distributions. In simulations, additional covariates would also help to inform the spatial

distribution of foraging activities.

The approach presented here demonstrates progress toward melding telemetry and sensor

data with spatially explicit prediction of animal distributions and behaviour. Hidden Markov

and state space models have much to offer in this prospect (Patterson et al., 2008), but have

thus far been rather limited in being used for the purposes of prediction. A long-term goal

for animal movement research is the general prediction of realistic movements modelled (i.e.

statistically estimated from a process model) from empirical data collected at the individual

level, but applied to novel situations and scaled up to population-level responses. These

might for example include projections of future environmental conditions (Perry et al., 2005;

Trathan et al., 2007; Hazen et al., 2013), or application to changed colony conditions.

For the ultimate goal of building empirically and mechanistically based simulation mod-

els to be realised, we believe that it is necessary to directly estimate process models which

capture the key aspects of animal biology sufficiently well. Recent studies have demonstrated

that highly complex simulation models incorporating physiological details, habitat informa-

tion, etc., can be built (Schick et al., 2013; New et al., 2014). However, typically such models

are either data limited or unable to be directly estimated from empirical observations. As

such, it is likely that there will be limitations to the degree of complexity which can be

realised in estimated models. The consequence of this is that attempting to cleanly move

from an estimated model to a simulation and prediction exercise will encounter difficulties

as the estimation model fails to capture certain fundamental aspects of the real movements.

A simple example of this is the behaviour of marine animals in regard to coastlines. Arbi-

trary, but probably reasonable measures, such as using a rejection step to restrict animals to

remain in the ocean are necessary to mimic the straightforward reality that marine animals

do not typically wander over land masses. Despite the apparent triviality of this point, it

is informative to consider, as it highlights elements needed at the simulation and prediction

phase, but which may not fit within an estimation model.

4.3 Concluding remarks

Building on the general framework of Markov-switching random walks and hidden Markov

models, our method accommodates naturally trip-based movement of central place foragers.
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It offers a fast way to categorize movement tracks into behavioural modes, and to describe

the underlying mechanics of behavioural switching in terms of time-varying covariates. We

believe that models like those presented here begin to address the interesting three way

trade-off between (1) complexity and realism, (2) the desirable aspects of direct estimation

using rigorous statistical inference, and (3) computational efficiency. The first aspect allows

simulations to capture many features of the real data and makes the models potentially

useful for prediction at the individual level. The second brings the power and objectivity of

statistical methods as a way to understand the spatial dynamics of animals. The final point

allows for ease of use, and means that more realistic models can be applied to large data

sets.
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Appendix

A1. State-decoded tracks
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A2. Parameter estimates and CIs

Estimate 95% CI

µ1 40.23 [39.52, 40.94]

µ2 20.95 [20.39, 21.53]

µ3 8.10 [7.89, 8.31]

µ4 38.04 [37.25, 38.85]

σ1 10.96 [10.43, 11.52]

σ2 8.80 [8.44, 9.18]

σ3 5.30 [5.12, 5.49]

σ4 11.09 [10.51, 11.69]

λ2 -0.01 [-0.03, 0.02]

λ3 3.14 —

κ1 6.87 [6.29, 7.51]

κ2 3.70 [3.36, 4.08]

κ3 0.08 [0.04, 0.16]

κ4 8.28 [7.51, 9.12]

β
(12)
0 -7.26 [-8.97, -5.54]

β
(12)
1 1.67 [0.98, 2.36]

β
(23)
0 -2.21 [-2.40, -2.03]

β
(24)
0 -9.79 [-12.79, -6.80]

β
(24)
1 1.00 [0.51, 1.48]

β
(32)
0 -3.00 [-3.18, -2.82]

Table 2: Estimates of the model parameters and their 95% confidence intervals. In state i, µi and
σi are the mean and standard deviation of the gamma distribution for the step lengths, respectively;
λi and κi are the mean and the concentration of the von Mises distribution for the turning angles,

respectively. The step lengths are measured in kilometres, and the angles in radians. The β
(ij)
k are

defined as in the model formulation, and β32
0 = logit(γ32). The confidence intervals were derived

from the Hessian of the log-likelihood function. The confidence interval for λ3 is not given because
the estimate is on the boundary of the parameter space, (−π, π].
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A3. Dwell time distributions
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Figure 7: Histograms of the dwell times in each state, for the 15 real tracks (top row) and the
100 simulated tracks (bottom row).
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A4. Pseudo-residuals
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Figure 8: Standard normal qq-plot of the pseudo-residuals for the step lengths.
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