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Abstract. The two dominant approaches for the analysis of species–habitat associations in
animals have been shown to reach divergent conclusions. Models fitted from the viewpoint of
an individual (step selection functions), once scaled up, do not agree with models fitted from a
population viewpoint (resource selection functions [RSFs]). We explain this fundamental
incompatibility, and propose a solution by introducing to the animal movement field a novel
use for the well-known family of Markov chain Monte Carlo (MCMC) algorithms. By design,
the step selection rules of MCMC lead to a steady-state distribution that coincides with a given
underlying function: the target distribution. We therefore propose an analogy between the
movements of an animal and the movements of an MCMC sampler, to guarantee convergence
of the step selection rules to the parameters underlying the population’s utilization distribu-
tion. We introduce a rejection-free MCMC algorithm, the local Gibbs sampler, that better
resembles real animal movement, and discuss the wide range of biological assumptions that it
can accommodate. We illustrate our method with simulations on a known utilization
distribution, and show theoretically and empirically that locations simulated from the local
Gibbs sampler give rise to the correct RSF. Using simulated data, we demonstrate how this
framework can be used to estimate resource selection and movement parameters.

Key words: animal movement; habitat selection; Markov chain Monte Carlo; resource selection function;
space use; step selection function; utilization distribution.

INTRODUCTION

Understanding how animals use a landscape in

response to its habitat composition is a crucial question

in pure and applied ecology. Such insights are achievable

only by confronting species–habitat association models

with usage data, collected either via transect surveys or

via biologging methods. Statistical inference, to link these

data to environmental variables, can be approached from

a population perspective, using resource selection func-

tions (RSF; Manly et al. 2002). Alternatively, if individu-

ally referenced data (i.e., telemetry) are available, the

question can be addressed from the viewpoint of the sin-

gle animal, via step selection functions (SSF; Thurfjell

et al. 2014). The population/individual dichotomy

between these two approaches is not always clear-cut,

because RSFs can be applied to the utilization distribu-

tion of single animals, and SSFs can combine joint

insights from multiple individuals. Nevertheless, the two

methods roughly fall at opposite ends of the Eulerian-

Lagrangian spectrum outlined by Turchin (1998).

Therefore, researchers in this area have tended to think of

the habitat preference parameters obtained via SSFs as

the microscopic rules of movement, while the correspond-

ing parameters of an RSF are implicitly thought of as the

macroscopic patterns obtained in the long term. Hence,

SSF models are increasingly concerned with the geometry

of movement trajectories (e.g., step lengths and turning

angles in different behavioural states in Squires et al.

[2013]), while RSF predictions often make a pseudo-equi-

librium assumption (Guisan and Thuiller 2005), which is

a biological term reminiscent of the mathematical idea of

steady-state distributions. But herein lies a fundamental

problem for this entire field of statistical analysis. A cor-

rectly formulated framework of movement must work

across scales, such that, when the microscopic rules of

individual movement are scaled up in space and time,

they give rise to the expected macroscopic distribution of

a population. However, there is now both analytical (Bar-

nett and Moorcroft 2008, Moorcroft and Barnett 2008)

and numerical (Signer et al. 2017) evidence that the distri-

bution constructed from the coefficients of a SSF does

not match the spatial predictions of the RSF fitted to the

same data. Here, we explain how this discrepancy arises

and propose a solution.

A RSF w(c) is proportional to the probability of a unit

of habitat c being used (Boyce and McDonald 1999).
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Depending on the type of usage data available, RSFs are

derived in two steps. First, a model is fitted to the

response and explanatory data. For example, a point pro-

cess model (Aarts et al. 2012) or a use-availability logistic

regression (Boyce and McDonald 1999, Aarts et al. 2008)

can be used for telemetry data, and a log-linear regression

can be used on count data from regular grids or line tran-

sects. Second, irrespective of the type of response data

and model fitting method, the linear predictor of the

resulting statistical model is transformed via a non-nega-

tive function (Manly et al. 2002: Chapter 2), of which the

most common is the exponential

wðcÞ ¼ expðb1c1 þ b2c2 þ � � � þ bmcmÞ (1)

where c is a vector of m covariate values, and b1, b2, . . . ,

bm are the associated regression coefficients. The RSF

can be used to model the utilization distribution pðxÞ,
i.e., the distribution of the animal’s space use

pðxÞ ¼
expðb1c1ðxÞ þ b2c2ðxÞ þ � � � þ bmcmðxÞÞ

R

X
expðb1c1ðzÞ þ b2c2ðzÞ þ � � � þ bmcmðzÞÞdz

(2)

where the functions c1, c2, . . ., cm associate a spatial loca-

tion x to the corresponding covariate values, and X is

the study region. The utilization distribution is normal-

ized by the denominator in Eq. 2 to ensure that it

defines a valid probability distribution for x, hence the

lack of an intercept in the linear predictor. Although

they can encompass a wider range of environmental con-

ditions, the covariates are often called resources in this

context. In the following, we use “covariates” and “re-

sources” interchangeably.

Resource selection function approaches are commonly

used to estimate the apparent effect of a spatial covariate

on a species. The resource selection coefficients bk char-

acterize this effect for each of the m covariates (bk > 0:

preference; bk < 0: avoidance; bk = 0: indifference; see

Avgar et al. [2017] for a discussion of the interpretation

of the bk in terms of selection strength). However, recent

work has shown that these interpretations are highly

sensitive to the context in which the organisms are being

studied, in particular, the availability of all habitat types

to the animals (Beyer et al. 2010, Matthiopoulos et al.

2011, Paton and Matthiopoulos 2016). Thus, in this

framework, the definition of habitat availability, deter-

mined by assumptions of spatial accessibility (Matthio-

poulos 2003), is important in deducing preference from

observed usage. For example, when using RSFs to ana-

lyze a time series of positions from a ranging animal, it

may not be plausible to assume that all locations in the

home range are accessible by the animal at every step

(Northrup et al. 2013). Resource selection function

approaches are often forced to treat such non-indepen-

dence as a statistical nuisance (Aarts et al. 2008, Fieberg

et al. 2010, Johnson et al. 2013), but step selection

approaches treat it as an asset.

In step selection analyzes, the likelihood p(y|x) of a

potential displacement by the animal to a location y over

a given time interval (typically, the sampling interval) is

modeled in terms of the habitat composition in the

neighborhood of the animal’s current position x

pðyjxÞ ¼
/ðyjxÞwðcðyÞÞ

R

X
/ðzjxÞwðcðzÞÞdz

(3)

where /ð�jxÞ is defined over a spatial domain X, and, for

any location x, c(x) = (c1(x), c2(x), . . ., cm(x)). The func-

tion /ð�jxÞ is called the resource-independent movement

kernel around x (Rhodes et al. 2005, Forester et al. 2009),

and it describes the density of endpoints for a step starting

in x, in the absence of resource selection. To link the

movement to environmental covariates, w is modeled

using the same log-linear link as the RSF, given in Eq. 1.

In this context, the term “step selection function” is most

often used for w (e.g., by Fortin et al. 2005, Thurfjell et al.

2014); however, note that it is sometimes used for the

whole numerator in the right-hand side of Eq. 3 (see For-

ester et al. 2009). In the following, we call w the SSF.

The choice of the function / characterizes accessibility,

and hence determines availability, in a step selection

model; it corresponds to the distribution of feasible steps

over one time interval, with origin x, when the resources

do not affect the movement. It can, for example, be a uni-

form distribution on a disc around the current location x

(e.g., Arthur et al. 1996), or obtained from the empirical

distributions of movement metrics (e.g., step lengths and

turning angles in Fortin et al. [2005]).

Step selection functions are most often fitted using

conditional logistic regression on matched use-availabil-

ity data, where each observed step xt ! xtþ1 is matched

to a set of random steps generated from /ð�jxtÞ (Thurf-
jell et al. 2014). Duchesne et al. (2015) showed that a

step selection model defines a movement model equiva-

lent to a biased correlated random walk. Biased corre-

lated random walks are routinely used in ecology as a

flexible basis for models of individual movement

(Turchin 1998, Codling et al. 2008). Avgar et al. (2016)

extended the step selection approach to allow simultane-

ous inference on habitat selection and on the movement

process, making it a very attractive framework to esti-

mate habitat preference from movement data (Proko-

penko et al. 2017, Scrafford et al. 2018). Step selection

models have been used to analyze the impact of land-

scape features on animal space use (e.g., Coulon et al.

2008, Roever et al. 2010), as well as animal interactions

(Potts et al. 2014b).

Although the RSF and SSF are typically described

with the same notation, and used for the same purpose

of estimating habitat preference, it can be shown that

their steady-state predictions do not generally coincide.

For a known utilization distribution, Signer et al. (2017)

showed empirically that the normalized SSF (“naive”

estimate) differed from the utilization distribution. In
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particular, the difference was greater when / was narrow

compared to the scale of habitat features. Similarly, Bar-

nett and Moorcroft (2008) showed that, for the step

selection model defined in Eq. 3, the steady-state distri-

bution of the animal’s location (i.e., its utilization distri-

bution) is given by

pðxÞ ¼
wðcðxÞÞ

R

wðcðyÞÞ/ðyjxÞdy
R

wðcðyÞÞ
R

wðcðzÞÞ/ðzjyÞdzdy
: (4)

That is, the steady-state distribution of the model is

generally not proportional to the SSF w, and that dis-

crepancy crucially depends on the choice of the

resource-independent movement kernel /. An example

of this is their earlier result (Moorcroft and Barnett

2008) that under one specific set of assumptions, the

steady-state distribution is approximately proportional

to the square of the SSF.

Although it may seem disconcerting that the two

approaches lead to different estimates of w, the cause of

this apparent paradox is partly due to the notational mis-

use of the same symbol for what are, in effect, different

objects. The SSF captures local aspects of the animal’s

movement, because it only considers a neighborhood of

the current location of the animal (determined by /) and

only becomes a better approximation of the RSF when

the scale of / increases (Barnett and Moorcroft 2008).

The parameters of the two objects coincide in the limiting

case of unconstrained mobility, i.e., when the availability

assumed by both methods is global. However, in every

other case, the two methods are different. Schl€agel and

Lewis (2016) also noted that, unlike RSF models, stan-

dard SSFs are scale dependent, in that their habitat selec-

tion estimates depend on the time scale of the

observations (although see Hooten et al. [2014] for a SSF

approach with a user-defined scale of selection).

Several approaches have been suggested to approxi-

mate the steady-state distribution of SSF movement

models. In particular, Avgar et al. (2016) and Signer

et al. (2017) showed that simulations from a fitted SSF

could be used to obtain estimates of the underlying uti-

lization distribution. Similarly, Potts et al. (2014a)

described a numerical method to compute the utilization

distribution given in Eq. 4, as it generally has no closed

form expression. Those approaches are useful to predict

space use from SSFs, but they do not allow the steady-

state distribution of locations to be modeled in a simple

parametric form, as in Eq. 2. One important conse-

quence is that, because the utilization distribution of SSF

models is not modeled by a RSF, joint inference from

telemetry data and survey data into habitat selection and

space use has not been possible with existing approaches.

Rather than seeking an equivalence of the parameters

estimated by RSF and SSF methods, a better question to

ask is: under what assumptions do the parameters esti-

mated by a SSF lead to movement that scales to the distri-

bution yielded by the parameters of a RSF model? In A

model of step selection using a movement-MCMC analogy,

we reconcile resource selection and step selection concep-

tually, with a new step selection model for which the long-

term distribution of locations is guaranteed to be propor-

tional to the RSF. Our method uses an analogy between

the movement of an animal in geographical space and the

movement of a Markov chain Monte Carlo (MCMC)

sampler in its parameter space. In The local Gibbs sampler,

we make these concepts applicable in practice, by develop-

ing a family of MCMC algorithms with considerable

potential for encompassing realistic movement assump-

tions. In Simulations, we illustrate our method using simu-

lations on a known utilization distribution. We verify that

the distribution of simulated locations corresponds to the

correct RSF, and we present a proof-of-concept analysis

to demonstrate the potential of the method for estimating

resource selection coefficients and parameters of the

movement process from telemetry data.

A MODEL OF STEP SELECTION USING A

MOVEMENT-MCMC ANALOGY

Markov chain Monte Carlo methods are a general

framework to sample from a probability distribution, ter-

med the target distribution (Gilks et al. 1995). This

approach is mostly used for Bayesian inference, to sample

from the (posterior) distribution of a set of unknown

parameters (Gelman et al. 2014: Chapter 11). It includes

a very wide class of algorithms, among them the widely

used Metropolis-Hastings and Gibbs samplers. An

MCMC algorithm describes the steps to generate a

sequence of points x1, x2, x3 . . ., whose long-term distri-

bution is the target distribution. Each MCMC algorithm

is defined by its transition kernel p(xt+1|xt), which deter-

mines (for any t = 1, 2, . . .) how the point xt+1 should be

sampled, given xt. For example, in a Metropolis-Hastings

algorithm, the transition kernel is a combination of the

proposal distribution and the acceptance probability

pðxtþ1jxtÞ ¼ pðxtþ1 is proposedjxtÞ pðxtþ1 is acceptedjxtÞ:

In general, given some easily satisfied technical condi-

tions, a sufficient condition for pðxtþ1jxtÞ to define a

valid MCMC algorithm for the target distribution p

(i.e., to ensure that the distribution of samples will con-

verge to p) is the detailed balance condition

8x; y; pðyÞpðxjyÞ ¼ pðxÞpðyjxÞ: (5)

That is, if the process is in equilibrium with distribu-

tion p, then the rates of moves in each direction between

any x and y balance out.

We propose an analogy between an animal’s observed

movement in n-dimensional geographical space, and the

movement of an MCMC sampler in a n-dimensional

parameter space, for which the target distribution is the

utilization distribution. That is, we consider that a

tracked animal “samples” spatial locations in the short

term from some movement model and, in the long run,
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from its utilization distribution, in the same way that an

MCMC algorithm samples points in the short term from

some transition kernel and in the long term from its tar-

get distribution. An MCMC algorithm then defines a

movement model, for which the steady-state distribution

is known. The dynamics of the movement process xt are

described by the transition kernel of the algorithm such

that, at each time point t = 1,2,. . ., the next location xt+1

is sampled from p(xt+1|xt). By the properties of MCMC

samplers, the steady-state distribution for xt is p. The

utilization distribution can be modeled with the RSF, as

defined in Eq. 2, to link the target distribution of the

movement model to the distribution of resources.

An MCMC algorithm, if viewed as a movement

model, can then be used to analyze animal tracking

data, in the following steps. Although we focus on step 1

in this paper, we illustrate steps 2 and 3 with a simulated

example in Local Gibbs estimation.

1) Choose an MCMC algorithm, to be used as a model

of animal movement and habitat selection. We sug-

gest one such algorithm in The local Gibbs sampler.

2) Write the likelihood of the model. Under an MCMC

movement model, the likelihood of an observed step

from xt to xt+1 is a function of the resource selection

coefficients and of the other parameters of the sam-

pler, given by the transition kernel p(xt+1|xt).

3) Use maximum likelihood estimation, or other likeli-

hood-based methods, to estimate the resource selec-

tion and movement parameters.

In this framework, the choice of the MCMC algo-

rithm determines the movement model. For example,

with a Metropolis-Hastings model, different proposal

distributions might capture different features of the ani-

mal’s movement. The parameters of the algorithm,

which are usually regarded as tuning parameters, are

here parameters of the movement process. For example,

the variance of the proposal distribution can be thought

of as a measure of the animal’s speed. It is important to

make a distinction between these parameters of move-

ment, and the parameters of the target distribution (i.e.,

the resource selection parameters). Two different sam-

plers might have the same target distribution, but the

rate at which it is approached by the MCMC samples

will depend on the choice of algorithm. Indeed, part of

the success of MCMC in its Bayesian context is the flexi-

bility in choosing the transition kernel for a given target

distribution. The suitability of an MCMC sampler is

usually assessed by the speed of convergence of the simu-

lated samples to the target distribution. However, for

our application, we want an algorithm corresponding to

a realistic model of movement, in addition to having the

correct target distribution. It could happen that an

MCMC algorithm that describes animal movement very

realistically has a slow rate of convergence to the target

distribution. This would merely mean that the animal,

when observed at the time step of the observations, does

not sample efficiently from its utilization distribution. In

such a case, inference about the utilization distribution

would be limited regardless of the modelling framework

that is used.

In rejection-based MCMC algorithms such as Metro-

polis-Hastings, a relocation is proposed at each time step,

and is accepted with some probability. If the proposed

step is not accepted, the process remains in the same

location. Although it can happen that a tagged animal is

immobile over several time steps (in particular if tempo-

ral resolution is high), many telemetry data sets do not

include such “rejections.” Classic MCMC algorithms

might thus seem to be an unnatural choice to analyze

those data, because the animal will almost always change

position in the process of sampling a new candidate loca-

tion. To circumvent this problem, we design a new rejec-

tion-free MCMC algorithm in The local Gibbs sampler.

THE LOCAL GIBBS SAMPLER

Standard Metropolis-Hastings samplers require a

rejection step to ensure convergence to the target distri-

bution. Viewing this as a movement model would imply

the unlikely scenario of a return by the animal to its pre-

vious position, after having tested and rejected a reloca-

tion. Instead, it is more natural to think about tracking

data as the outcome of a rejection-free sampler. Several

such algorithms are possible; see Discussion. Here, we

describe one such algorithm, which we call the local

Gibbs sampler.

In the classic Gibbs sampler, each “step” involves

updating just one of the n parameters, xj say, while keep-

ing x1,. . ., xj�1, xj+1, . . ., xn fixed; the values of j can be

chosen systematically or randomly. Thus, each step is a

move within a one-dimensional subspace of the parame-

ter space, rather than over the whole space. It is used

when the target distribution over each such one-dimen-

sional space (the so-called “full conditional distribu-

tion”) is mathematically tractable, so that when it is used

as the transition kernel for that step, the acceptance

probability is guaranteed to be 1.

The local Gibbs sampler uses the same idea of sam-

pling from a restricted part of the target distribution: at

each iteration t, the updated parameter xt+1 is sampled

directly from the target distribution, truncated to some

neighborhood of xt. The way in which this neighborhood

is selected is crucial to ensuring that the algorithm sam-

ples from the required target distribution in the long run.

In explaining the details of the algorithm, we focus on

the case of n = 2 dimensions, by far the most important

case for ecological applications, though the algorithm

works for any n with straightforward changes. For any

point x, and r > 0, we define DrðxÞ to be the disc of cen-

tre x and radius r.

The local Gibbs sampler for p is given by the following

steps, and the notation is illustrated in Fig. 1. The track

starts from a location x1, and moves to locations xt+1

over iterations t = 1,2,. . ..
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1) On iteration t, sample a point c uniformly from the

disc DrðxtÞ.
2) Define ~p the truncated distribution

~pðyÞ ¼
pðyÞ=CrðcÞ if y 2 DrðcÞ,
0 elsewhere,

�

where CrðcÞ ¼
R

z2DrðcÞ
pðzÞdz is a normalizing constant.

3) Sample the next location xt+1 from DrðcÞ according

to the constrained pdf ~p.

The local Gibbs sampler has one parameter: the

radius r > 0 of the relocation disc. Here, for simplicity,

we only consider the case where r is fixed, but the algo-

rithm would still work if r were generated independently

at each iteration from a probability distribution.

Using the analogy introduced in A model of step selec-

tion using a movement-MCMC analogy between animal

movement and MCMC sampling, the local Gibbs algo-

rithm can be used as the basis for a model of animal

movement and habitat selection, that we will call the

local Gibbs model. It relies on the assumption that an

animal “samples” locations from its utilization distribu-

tion based on the step selection rules described above.

Note that, at each time step, the overall relocation

region of the local Gibbs model is symmetric around the

animal’s current location. The choice of the relocation

disc DrðcÞ, based on the selection of a point c in step 1 of

the algorithm, might seem biologically unrealistic,

because a moving animal would not relocate to a disc

that is shifted at random from its current location. Nev-

ertheless, because c is chosen uniformly from DrðxtÞ, one
should think of the relocation region once c has been

integrated over, i.e., a disc of radius 2r around xt.

In the local Gibbs model, the parameter r determi-

nes the size of the area that is available to the animal

over one time step. As in most step selection analyzes,

the region of availability is a simplistic but useful

model for a combination of the animal’s mobility and

perception.

Taking p to be the normalized RSF (Eq. 2), the local

Gibbs algorithm defines a step selection (movement)

model in which the distribution of the animal’s space

use is guaranteed to be proportional to the RSF. Indeed,

it satisfies the detailed balance condition (Eq. 5), which

can be shown as follows. Given r, we have

pðxÞpðyjxÞ ¼ pðxÞ

Z

c2R2

pðyjcÞpðcjxÞdc:

Given c, y is sampled from DrðcÞ with a density propor-

tional to pðyÞ and, given x, c is sampled uniformly from

DrðxÞ, so

pðyjcÞ ¼
pðyÞ

CrðcÞ
Ify2DrðcÞg; and pðcjxÞ ¼

1

pr2
Ifc2DrðxÞg

where IA is the indicator function for the event A. We

can then write

pðxÞpðyjxÞ ¼ pðxÞ

Z

c2DrðxÞ\DrðyÞ

pðyÞ

pr2CrðcÞ
dc

¼
pðxÞpðyÞ

pr2

Z

c2DrðxÞ\DrðyÞ

1

CrðcÞ
dc

¼
pðyÞpðxÞ

pr2

Z

c2DrðyÞ\DrðxÞ

1

CrðcÞ
dc

¼ pðyÞpðxjyÞ;

as required.

The local Gibbs model is superficially similar to the

availability radius model of Rhodes et al. (2005), first

introduced by Arthur et al. (1996). In that model, at

each time step, the next location xt+1 is sampled from

the RSF truncated and scaled on a disk centered on xt.

That is, in step 1 of the algorithm described above, they

take c = xt. This means that there is no mechanism in

their approach to guarantee that the overall distribution

of the sampled locations is the RSF. Specifically, the two

sides of the detailed balance equation involve different

normalization constants, and so their movement models

do not have the normalized RSF as their equilibrium

distributions. For this reason, the coefficients they esti-

mate will differ from the resource selection coefficients

estimated from a RSF approach.

We can derive the resource-independent movement

kernel /LGðyjxÞ of the local Gibbs model, to describe

the distribution of steps on a flat target distribution. In

the case where r is fixed

/LGðyjxÞ ¼
1

ðpr2Þ2
AðDrðxÞ \DrðyÞÞ ifky� xk�2r

0 otherwise

�

(6)

r

Dr(c)

Dr(xt)
xt

c

FIG. 1. Notation for the local Gibbs sampler in two dimen-
sions. The point c is sampled uniformly from DrðxtÞ, and the
next location xt+1 is sampled from the resource selection func-
tion (RSF) truncated to DrðcÞ.
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where ky� xk is the distance between x and y, and

AðDrðxÞ \ DrðyÞÞ is the area of the intersection of the

discs of centers x and y, and of radius r. The point c is

such that kc� xk\ r and kc� yk\ r, and so, in the

absence of environmental effects, the relative probability

of a step from x to y is proportional to

AðDrðxÞ \ DrðyÞÞ. By construction, it is impossible to

have a step between two points if the distance between

them is larger than 2r, hence /LGðyjxÞ ¼ 0 when

ky� xk [ 2r. The detail of the derivation is given in

Appendix S1. A graph of the density function /LG is

shown in Fig. 2.

The transition kernel given in Eq. 6 and plotted in

Fig. 2 describes the distribution of steps in the absence

of habitat selection, in the case where the radius parame-

ter r is fixed. A more flexible movement model can be

obtained by taking r to be time varying, and drawn at

each time step from a probability distribution (e.g.,

exponential or gamma distribution, to ensure r > 0).

It is important to note that the transition kernel of the

local Gibbs algorithm cannot be written in the form

given in Eq. 3, i.e., p(y|x) is in general not proportional

to /LGðyjxÞwðcðyÞÞ. For this reason, the local Gibbs

model is not merely a special case of the step selection

model described by Forester et al. (2009).

SIMULATIONS

The local Gibbs algorithm, described in The local

Gibbs sampler, can be used to simulate tracks based on a

known RSF. The truncation of the RSF to the disc DrðcÞ
requires the calculation of the normalizing constant

CrðcÞ. It is not generally possible to derive it analytically,

but Monte Carlo sampling can be used to approximate

it. In practice, to sample from the truncated target distri-

bution ~p, nd points are generated uniformly in DrðcÞ, and
xtþ1 is sampled from those points, with probabilities pro-

portional to their RSF values. Simulation using the local

Gibbs algorithm is illustrated in Fig. 3.

Here, we illustrate the method described in A model of

step selection using a movement-MCMC analogy, with the

local Gibbs sampler. In Local Gibbs simulation, we show

that our algorithm can produce movement tracks on a

known utilization distribution and, in Local Gibbs estima-

tion, we illustrate the use of the local Gibbs movement

model for the estimation of resource selection and move-

ment parameters from simulated data. The R code used

for the simulations is available in the supplementary

material, as Data S1.

Simulated resources

To mimic the type of environmental data of a real case

study, we simulated two covariate distributions c1 and c2
as Gaussian random fields on square cells of size 1,

using the R package gstat (Pebesma 2004). We restricted

the study region to X ¼ ½�15; 15� � ½�15; 15�, to ensure

that the target distribution is integrable. Plots of c1 and

c2 are shown in Fig. 4A,B. The utilization distribution

was defined by

x coordinate

D
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s
it
y

−2r −r 0 r 2r

0

1 πr
2

FIG. 2. Resource-independent transition kernel for the local Gibbs sampler with a fixed radius parameter r. The x-axis shows
the distance from the origin point xt, and the y-axis shows the density of the endpoint xt+1.
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FIG. 3. Illustration of the local Gibbs sampler in two
dimensions. The background is the resource selection function
(RSF); the solid line is the simulated track up to time t; the red
cross is the current location xt; the red circle delimits DrðcÞ. The
next location xt+1 is sampled from the black dots, with probabil-
ities proportional to their RSF values.
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pðxÞ ¼
expðb1c1ðxÞ þ b2c2ðxÞÞ

R

z2X expðb1c1ðzÞ þ b2c2ðzÞÞdz
;

with b1 = �1 and b2 = 4 (i.e., avoidance for c1 and pref-

erence for c2). A plot of the RSF is shown in Fig. 4C.

Local Gibbs simulation

In this section, we demonstrate that the local Gibbs

algorithm, described in The local Gibbs sampler, can be

used to sample from a given probability distribution. We

considered the utilization distribution p defined in Simu-

lated resources. To analyze the behavior of the local Gibbs

sampler at different spatial scales, we ran three simula-

tions, with three different values for the radius r of the

movement kernel: r = 0.5, r = 2, and r = 8. The value of r

affects the range of perception of the animal and, indi-

rectly, its speed. For each r, 5 9 105 locations were simu-

lated with the local Gibbs algorithm, starting from the

point x1 = (0,0). (Given the length of the simulated tracks,

the choice of the starting point has only a minor impact

on the overall distribution of sampled locations.)

For comparison, we also illustrate the results of Barnett

and Moorcroft (2008), that the steady-state distribution

of a standard SSF model (p in Eq. 4) differs from the nor-

malized SSF. We sampled a movement track from a step

selection model with uniform sampling, as defined by For-

ester et al. (2009), that we denote SSFunif. We simulated

5 9 105 locations from SSFunif, as follows. We started

from x1 = (0,0). Then, at each time step t = 1,2,. . ., we

generated 100 proposed locations y1, y2,. . ., y100 uniformly

from a disc of radius r = 3 centred on xt. The next loca-

tion xt+1 was sampled from the proposed locations, with

each point yi having a probability to be picked propor-

tional to p(yi). That is, we use p as the (normalized) SSF

to simulate from the uniform sampling model. Here, we

chose r = 3 because it gave rise to approximately the same

mean step length as the local Gibbs sampler with r = 2

(i.e., comparable speed of spatial exploration).

The first 300 steps of each simulated track, and the

density of all simulated points, are shown in Fig. 5. The

density of points simulated from the local Gibbs sampler

(right column, first three plots) displays the same

patterns as the true RSF (Fig. 4C). By contrast, the den-

sity of the locations obtained in the SSFunif simulation

(right column, last plot) fails to capture many features of

the landscape, as the process spends a disproportionate

amount of time in areas of high values of w(x).

To compare the empirical distribution of simulated

points to the distribution p used in the simulations, we

plotted the (normalized) count of locations simulated in

each grid cell against the corresponding value of p. The

comparison is presented in Fig. 6. Alignment with the

identity line indicates similarity between the empirical dis-

tribution and p. For the three local Gibbs simulations, the

points align well with the identity line, in particular in the

experiments with r = 2 and r = 8, in which the speed of

spatial exploration is higher than when r = 0.5. This con-

firms that the local Gibbs algorithm can sample movement

trajectories on a given target distribution. It defines a

movement model for which the long-term distribution of

locations is known. However, the plot for the SSFunif simu-

lation reveals a clearly nonlinear relationship between the

density of simulated points and the normalized SSF. This

confirms the results of Barnett and Moorcroft (2008),

Avgar et al. (2016), and Signer et al. (2017): the coeffi-

cients of a SSF do not measure the underlying steady-state

distribution. (Note that SSF models may be used to esti-

mate space use, with simulations, as in Avgar et al. [2016],

but the parameters of the SSF only measure local habitat

selection.) We illustrated how the local Gibbs sampler can

generate movement tracks that converge in distribution to

the underlying RSF.

Local Gibbs estimation

The approach introduced in A model of step selection

using a movement-MCMC analogy shows great promise

for the estimation of movement and resource selection

parameters from observed animal movement data. Con-

sidering the MCMC algorithm as a movement model, it

is in principle straightforward to express the likelihood

of observed steps, given the parameters of the sampler

(e.g., radius r in the local Gibbs model) and of the RSF

(b1, b2, . . .). In cases where the transition kernel of the

chosen sampler, p(xt+1|xt), can be calculated, the
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FIG. 4. Resource distributions (A) c1 and (B) c2, and (C) resource selection function, for the simulations.
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likelihood of T observations (x1, x2, . . ., xT) is derived as

L ¼
QT�1

t¼1 pðxtþ1jxtÞ.
In this section, we wish to demonstrate its practical

application, with the example of the local Gibbs model.

We simulated a track of T = 3,000 locations from the local

Gibbs sampler (described by the algorithm in The local

Gibbs sampler), with r = 2, on the RSF defined in Simu-

lated resources. Then, similarly to a real analysis, we used

the local Gibbs model to recover estimates of the RSF

(i.e., of b1 and b2) and of r, from the (simulated) movement

data and covariate rasters.

The likelihood of an observed track under the local

Gibbs model is obtained as the product of the likeli-

hoods of the individual steps

L ¼
Y

T�1

t¼1

pðxtþ1jxtÞ

¼
Y

T�1

t¼1

1

pr2

Z

c2DrðxtÞ\Drðxtþ1Þ

pðxtþ1Þ
R

z2DrðcÞ
pðzÞdz

dc

(7)

The details of the derivation are given in

Appendix S1. This likelihood is a function of the move-

ment parameter r, and of the coefficients bi of the RSF

(which appear in the expression of p). Maximum likeli-

hood techniques can then be used to obtain parameter

estimates. We implemented the likelihood function of

Eq. 7, and used the numerical optimizer nlminb in R to
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FIG. 6. Results of the simulations. In each plot, the distribution of simulated points (on the x-axis) is compared to the distribu-
tion p used in the simulations (on the y-axis). In the local Gibbs simulations, p denotes the (normalized) resource selection function
(RSF) and, in the uniform step selection function (SSFunif) simulation, p denotes the (normalized) SSF. Each dot represents the
value associated with one grid cell. The closer the dots are to the identity line, the more similar the empirical distribution is to p. In
the local Gibbs simulations, the empirical distributions are very similar to the RSF; the similarity increases with r, because a larger
radius leads to faster spatial exploration. For the SSFunif model, there is a clear discrepancy between the empirical distribution and
the SSF, as predicted by Barnett and Moorcroft (2008: Eq. 4).
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get maximum likelihood estimates of b1, b2, and r. The

results are summarized in Table 1.

Fig. 7 shows a plot of the estimated utilization value

of each grid cell against its true utilization value. If we

denote ŵi the estimated value of the RSF in cell i, its

estimated utilization value p̂i is derived as

p̂i ¼
ŵi

P

j2cells ŵj

:

In Fig. 7, the alignment of the dots with the identity

line indicates that the estimated utilization distribution

captures the shape of the true utilization distribution

well. In addition, the parameter r of the movement pro-

cess was successfully estimated (Table 1).

This example demonstrates how the method can be used

to estimate resource selection and movement parameters

from tracking data. In real applications, unlike with simu-

lated data, the true form of the movement process would

not be known, and additional work would be needed to

assess the fit. We discuss this further in Discussion.

DISCUSSION

We have presented a versatile class of models of ani-

mal movement, for which the steady-state distribution of

locations is proportional to the same RSF that influ-

ences short-term movement. Our approach reconciles

the resource selection and step selection approaches to

the analysis of space use data. We anticipate that the res-

olution of this discrepancy between RSF and SSF mod-

els will have important implications for the study of

individual movement and, also, species distributions.

The central point of this paper is the idea that multiscale

modelling of a dynamic system can be achieved using

stochastic processes for which both the short-term tran-

sition density and the long-term stationary distribution

are explicitly formulated (in particular, here, MCMC

samplers). Although we have presented this method for

the analysis of animal movement and resource selection,

we expect that the underlying idea could have other eco-

logical applications. For example, this problem is remi-

niscent of population genetics, where both the

microscopic heritability laws and the macroscopic allele

frequencies are of interest.

At the level of the individual, we have recognised a ten-

dency in the current literature to embed increasingly real-

istic movement models in SSF analyzes. We hazard that

the subtext of this trend is the intuitive notion that the

habitat selection coefficients of SSF models that stay faith-

ful to movement biology, will automatically correspond to

the estimates of RSF models. As we have argued and

demonstrated here, this is not necessarily the case, because

SSF coefficients measure local habitat selection rather

than long-term space use. Conversely, any given popula-

tion distribution may be achievable by multiple movement

models, just as, in the simplest of movement models, the

same degree of population diffusivity can be achieved by

an infinity of different movement rules, simply by trading

off individual speed against path sinuosity. Although

meticulous realism in movement turns out not to be a

strict requirement for achieving agreement between the

microscopic and macroscopic models of space use, our

paper demonstrates how SSFs (through the application of

statistical estimation and model selection) might in the

future be used to learn about movement biology.

This manuscript serves as a proof of concept for the

approach, but stops short of describing a complete work-

flow for the analysis of animal location data. In Local

Gibbs estimation, using simulated data, we explained how

the local Gibbs model can be used to estimate resource

selection and movement parameters from a movement

track. In a real data analysis, it would be necessary to

investigate the goodness of fit. One possibility would be

to simulate many locations from the fitted local Gibbs

sampler, and compare the simulated and observed data in

terms of some metrics of movement (e.g., distribution of

step lengths). Discrepancies between features of the true

and simulated data sets would point to possible model

misspecifications. In addition, different models of

TABLE 1. Maximum likelihood estimates and Hessian-based
95% confidence intervals for the parameters of the local
Gibbs model, obtained for one simulated track.

Parameter True value Estimate 95% confidence interval

b1 �1 �0.86 [�1.46,�0.26]

b2 4 4.15 [3.53,4.77]

r 2 2 [1.81,2.20]

Note: b1 and b2 are the resource selection parameters, and r
is the radius parameter of the local Gibbs algorithm.
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individual movement, described by different MCMC

algorithms but all guaranteed to scale up to the same

long-term distribution, may be allowed to compete in a

setting of statistical model selection, pointing to parsimo-

nious explanations of the movement observations. In the

estimation framework introduced in Local Gibbs estima-

tion, likelihood-based model selection criteria, such as the

Akaike information criterion (AIC), could be used to

compare several candidate models. The likelihood derived

from an MCMC movement model accounts for the serial

correlation found in telemetry data. As such, it is a more

defensible measure of likelihood than what might be

obtained with other RSF approaches (Aarts et al. 2008,

Fieberg et al. 2010).

This modeling framework combines some of the

advantages of process-based movement models and of

distribution-based resource selection models. In addition

to its advantages for individual-level inference, the pro-

spect of reconciliation between RSF and SSF

approaches will also benefit population-level results. In

particular, the problem of formally combining the two

major sources of space-use information, telemetry and

transect data, has, in our experience, resisted several

analytical attempts. The approach proposed here offers

a solution to this problem of joint inference. For exam-

ple, the steady-state distribution implied by an SSF fit-

ted to telemetry data would be required to coincide with

the utilization distribution generated by fitting a RSF to

independently obtained transect data. As described in

Local Gibbs estimation, the likelihood of a track (x1, . . .,

xT) under an MCMC movement model with transition

kernel p(xt+1|xt) is Lmov ¼
QT�1

t¼1 pðxtþ1jxtÞ and, in the

same framework, the likelihood Lind of isolated survey

locations {y1, . . ., yn} can be obtained using standard

RSF methods (e.g., logistic regression or Poisson GLM).

The two types of data can be combined by multiplying

Lmov and Lind, thus enhancing the effective sample size

of the resulting estimates. Incorporating additional con-

straints, for example if the survey is confined to a subre-

gion, is also straightforward.

Because it builds on the very wide and flexible class of

MCMC samplers, various other movement rules could

be considered. The slice sampler (Neal 2003) is an exist-

ing rejection-free sampler that shares some mathematical

details with our local Gibbs sampler, and a “local” ver-

sion may give some additional flexibility in movement

modeling. Models of animal movement often incorpo-

rate directional persistence, such as the discrete-time and

continuous-time correlated random walks (e.g., Jonsen

et al. 2005, Johnson et al. 2008, respectively). Within the

framework we described, this feature of movement could

be modeled using non-reversible MCMC samplers,

which often display this type of autocorrelation (e.g.,

Michel and S�en�ecal 2017). Such algorithms could be

used for more realistic movement models.

Although we have focused on the case where the radius

parameter r of the local Gibbs algorithm is taken to be

constant, allowing r to be stochastic is straightforward, as

mentioned above. The flexibility of the model depends in

part on the choice of this distribution. More realistic fea-

tures of animal movement, such as different distributions

of step lengths, could thus be incorporated in the local

Gibbs sampler by choosing a flexible parametric distribu-

tion for r (e.g., a gamma or Weibull distribution). A further

refinement would be to combine this approach with the

state-space modeling framework (Patterson et al. 2008),

with the state of the process representing true location,

thus incorporating measurement error on locations and

giving some robustness against errors of measurement,

classification, or registration in the habitat map.

The present paper therefore opens the way for future

research in three vital directions: the exploration of the

wealth of biological models that can be implemented

with our MCMC analogues, the development of inferen-

tial methods for the integrated analysis of different data

types, and the investigation into how population-level

space use arises from individual rules of movement.
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