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A general orbital-angular-momentum (OAM) mode selection principle is put forward involving the
rotationally symmetric superposition of chiral states. This principle is not only capable of explaining the
operation of vortex generating elements such as spiral zone plate holograms, but more importantly, it
enables the systematic and flexible generation of structured OAM waves in general. This is demonstrated
both experimentally and theoretically in the context of electron vortex beams using rotationally symmetric
binary amplitude chiral sieve masks.
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Vortices are common to all wave phenomena [1],
including tornadoes at the large scale and superfluid helium
at the small scale. Optical vortex beams have been
intensively studied due to their quantized orbital-angular-
momentum (OAM) character [2]. This was followed
recently by the study of electron vortex beams [3–5] and
there are early studies of neutron [6] and atom vortex beams
[7]. Vortex beams are characterized by a phase singularity
described by an expðilθÞ azimuthal phase factor, where θ is
the azimuthal angle and l stands for the winding number
and is also called the topological charge. Vortex beams are
of special interest because of their quantized OAM of lℏ
per particle [1] and have led to various applications in the
contexts of super-resolution microscopy [8], nanomanipu-
lation [9], astronomy [10], and crystallography [11]. In
contrast to the intrinsic (spin) angular momentum, OAM
can be very large and, as such, vortex beams can lead to
new physics [12,13] and have potential in multiplex free-
space communication [14] and quantum information [15].
The establishment of a toolbox for flexible vortex beam

generation is the key to the development of science and
technology involving vortex beams. If the vortex beam
wave functions are known exactly, they can be generated by
direct phase manipulation (or wave front shaping) [16]
using, for example, spiral phase plates [3,6,17], spin-to-
orbital angular momentum convertors [18], and by phase
encoding techniques through diffraction involving com-
puter-generated holograms (CGHs) [19], including fork
grating [4,5] and spiral zone plates [20–22]. Other tech-
niques require case-by-case analysis to identify the nature
of the vortex beams produced, as in the case involving the
Aharonov-Bohm effect experienced by a charged particle
in a suitable magnetic field [23,24]. More recent methods
make use of photon sieves [25–27] and Vogel spiral arrays
[28,29] as diffractive elements for vortex beam generation.
Here we put forward a general principle for vortex beam

generation in rotationally symmetric systems. We examine

the role of rotational symmetry, not only for the purpose of
generating a specific vortex wave function, but also for the
essential symmetry elements that must be possessed by any
vortex-related state by virtue of its characteristic azimuthal
phase factor expðilθÞ. The principle would enable us to
understand, in a novel deconstructive manner, the gener-
ation of individual pure vortex beams using a diverse range
of rotationally symmetric optical elements, such as spiral
diffractive holograms (spiral zone plates) [20–22], two-
dimensional chiral cam-shaped objects [30], and plasmonic
vortex lens [31]. Furthermore, the study of rotational
symmetry in the vortex context would provide a useful
guide for exploring a broader range of vortex-related
beams, including those with complex vortex characters,
such as vortex modes that consist of a mixture of concentric
vortex states each with a different OAM content.
The principle in question emerges from the following

analysis. Consider the scenario in which m identically
monochromatic wavelets are equally spaced in the azimu-
thal angular domain. Let uðρ; z; θ þ 2πs=mÞ be the com-
plex amplitude of the sth wavelet in cylindrical polar
coordinates. Then the total field due to the rotationally
symmetric superposition of m such wavelets is the sum

ψðρ; z; θÞ ¼
Xm−1

s¼0

u

�
ρ; z; θ þ 2πs

m

�
: ð1Þ

The individual amplitude function uðρ; z; θÞ can be
expressed in terms of any complete orthonormal basis
set such as the set of Laguerre-Gaussian (LG) modes [15].
A useful alternative would be the complete set of the
Fourier transforms of the truncated Bessel functions [32].
We consider here the use of the LG set and write

uðρ; z; θÞ ∝
X∞
p¼0

X∞
l¼−∞

cp;lφp;lðρ; z; θÞ; ð2Þ
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where φp;lðρ; z; θÞ denotes a LG mode of radial and
azimuthal indices ðp;lÞ and the expansion coefficients
cp;l ¼ ∬ uðρ; z; θÞφ�

p;lðρ; z; θÞρdρdθ are the overlap inte-
grals. Substituting Eq. (2) into Eq. (1) we have

ψðρ; z; θÞ ¼
Xm−1

s¼0

X∞
p¼0

X∞
l¼−∞

cp;lφp;l

�
ρ; z; θ þ 2πs

m

�
: ð3Þ

The LG modes have the form φp;lðρ; z; θÞ ¼
Ap;lðρ; zÞ expðilθÞ where the Ap;lðρ; zÞ‘s are the mode
amplitude functions. Once this form of φp;lðρ; z; θÞ is
inserted in Eq. (3), it becomes clear that the finite series
summation over s is just a geometrical series summation
that yields

S ¼
Xm−1

s¼0

exp

�
il

2πs
m

�
¼ 1 − expðil 2πm

m Þ
1 − expðil 2π

mÞ

¼
�
m; l ¼ Mm

0; l ≠ Mm
; ð4Þ

where M is an integer, namely, M ¼ 0;�1;�2;…. As a
result, Eq. (3) gives

ψðρ;θ;zÞ¼
8<
:
m
P
l

P∞
p¼0cp;lAp;lðρ;zÞexpðilθÞ; l¼Mm

0; l≠Mm

.ð5Þ

Recall that m is the number of angularly equally spaced
wavelets andM is an integer. Equation (5) embodieswhatwe
call the principle of rotationally symmetric superposition of
chiral states and has two interesting consequences.
(i) If the initial wavelets are pure vortex beam states with

well-defined OAM, then Eq. (5) is reduced to

ψðρ; θ; zÞ ¼
�
muðρ; z; θÞ; l ¼ Mm

0; l ≠ Mm
; ð6Þ

which means that the superposition of LG modes is
nonvanishing only when the topological charge l is a
multiple of m, the number of wavelets.
(ii) If the initial wavelets are not vortex states with pure

OAM modes, then Eq. (5) shows that the superposition of
m such wavelets can produce vortex beams with OAM
modes l ¼ 0;�m;�2m;…; this is “OAM combing” by
imposing rotational symmetry. If a specific single OAM
mode is required out of the multiple OAM harmonics
allowed by the rotational symmetry of the system, two
further steps would be needed to achieve that goal: (1) the
inclusion of chiral symmetry to break the mirror symmetry;
and (2) the selection of a particular OAM mode by “spatial
filtering.” This is based on the fact that the size of an OAM
mode scales with its topological charge [33]. Furthermore,
the superposition principle in question is particularly

suitable in applications involving the generation of high
order OAM vortex beams.
As a first illustration of these OAM combing and

filtering processes we consider how to generate a pure
vortex beam with a specific topological charge. In this
example the wavelets are due to diffracted beams from
plane waves passing through a rotationally symmetric
arrangement of pinholes, as shown in Fig. 1. The result
of the superposition is observed in a plane distance z away.
The diffracted beam from each pinhole contains a geomet-
rical phase factor that can be manipulated by adjusting the
geometry and positions of the pinholes, as we now explain.
Figure 1(a) shows the simplest case of a fivefold rotation-
ally symmetric achiral mask consisting of only five pin-
holes. When the mask is illuminated by a plane wave, it
leads to the intensity and phase patterns at the observation z
plane as shown in Figs. 1(b) and 1(c), respectively.
The theoretical relative power of the individual modes

emerging on illumination is obtainable by the decompo-
sition of the complex field in terms of the LG basis set [15],
followed by subsequent summation over all the p modes
with the same topological charge l. The power spectrum
corresponding to the mask in Fig. 1(a) is displayed in

FIG. 1. Management of the OAM modes using rotationally
symmetric masks constructed from different rotationally sym-
metricmotifs: (a) the five-pinholemask, (b) the simulated intensity
pattern and (c) phase pattern at defocus Δf ¼ −33.6 μm,
and (d) the corresponding power spectra in the OAM mode l.
(e)–(h) are based on five short pinhole curves (motifs). (i)–(l) are
based on logarithmic spirals. (m)–(p) are based on Archimedean
spirals. (q)–(t) are based on the Fermat spirals. Here, the expansion
area of the complex fields that were decomposed into the LG basis
set was 10 × 10 nm.
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Fig. 1(d), which shows that the five-pinhole mask converts
a plane wave into a set of OAM modes with l ¼ 0, �5,
�10 (within the �10 range of the plot shown), which is
consistent with the result in Eq. (5). The symmetric
distribution of the power spectrum is indicative of the
mirror symmetry of the pinhole arrangement.
In order to generate vortex beams with chiral phase

structures, we have to deal with a chiral rotationally
symmetric pinhole array mask. The first example of such
a mask is shown in Fig. 1(e) consisting of five short pinhole
“motifs” each with several pinholes arranged as shown. For
an effective vortex beam production, individual motifs in
the designed mask would typically consist of many pin-
holes distributed along a number of spirals. Spiral pinhole
motifs are particularly attractive as the corresponding
masks have a clear handedness, giving rise to an azimuthal
phase ramp in the diffracted waves near the beam
axis due to angular dependent distance from the pinholes
to the axis, i.e., cp;l ≠ cp;−l in Eq. (5). The corresponding
OAM mode spectrum shown in Fig. 1(h) is seen to be
dominated by the l ¼ −5 mode. The power weights of the
other modes are very low, as desired. This OAM selection
ability is a major feature of the principle we have
introduced above.
To explore this OAM-dependent on-axis focusing effect

of the chiral multiple-pin-hole mask, we have considered
pinhole masks in which the basic unit motifs are in the form
of well-known spirals. The last three rows in Fig. 1 show
the cases of spiral-pinhole masks involving Logarithmic
[ρ ∝ a expðbθÞ], Archimedean [ρ ∝ ðaþ bθÞ], and Fermat
spiral motifs. In the case of the Fermat spiral, N pinholes
are distributed along each spiral motif according to αn ¼
2πn=N and rn ¼ ðr20 þ lzλαn=πÞ1=2, where λ is the wave-
length of the incident wave, z is the observation plane, and
r0 is the coordinate of the first pinhole from the center [34].
The results of the OAM mode analysis for this case are
shown in Figs. 1(l), 1(p), and 1(t). These results indicate
that the purity of the OAM of the vortex modes generated
near the beam axis can be progressively tuned by using
masks based on different kinds of spirals.
The rotationally symmetric arrangement of l Fermat

spiral motifs reinforces the strength of the allowed OAM
modes generated by individual motifs, while filtering out
the neighboring symmetry-incompatible OAM modes,
resulting in the purist on-axis OAM mode, as shown by
the OAM spectrum in Fig. 1(t) [also see Fig. S1 in
Supplemental Material (SI) for more details [35]]. The
resulting spiral multipinhole mask shown in Fig. 1(q) may
be considered as a simplified version of the spiral dif-
fraction grating mask designed to produce a pure vortex
beam of winding number l at the observation plane. Unlike
the spiral CGH mask, the multipinhole masks are easy to
manufacture and are mechanically more robust since our
deconstructive analysis allows us to retain the essential
features required for the pure vortex beam generation while

achieving similar vortex beam conversion efficiency (see
Fig. S2 in SI for more details [35]).
However, the true power of our “deconstructed

approach” lies in the considerable degree of freedom
afforded by the systematic and rational design of more
realistic and complex vortex beam approximates that, to
date, are difficult to foresee and achieve, either by the
traditional CGH approach or by those based on other
ad hoc bases [28,29].
To illustrate the new insight gained from our analysis, we

next consider the compact pinhole mask shown in Fig. 2(a).
This kind of mask design is shown to be suitable for the
production of vortex beams with more complicated spatial
structures. The mask in Fig. 2(a) is designed to have 11
Fermat spirals (red), each of which is the same as that given
in Fig. 1(q). Because of the degeneracy, two additional
spirals with repetition of 44 (yellow spirals) and 55 (green
spirals) can be identified. Moreover, the handedness of the
yellow spirals is opposite to those of the red and green
spirals. According to the above analysis, we expect each of
such regular spiral arrangements to support an OAMmode.
Unlike the vortex beams generated by the spiral CGH
masks where different OAM modes are focused at different
on-axis positions while other OAM modes exist only as a
complex mixture in the background, our mask generates a
beam with three bright rings corresponding to the three sets

FIG. 2. Generation of concentric electron vortex beams and
the measurement of their topological charges. (a) Simulation
of a structured electron sieve. [(b) and (c)] The corresponding
simulations of the intensity (b) and phase (c) at defocus
Δf ¼ −74.6 μm. (d) The scanning electron microscope image
of the electron sieve. (e) The experimental results of the intensity
patterns. (f) A zoomed-in view of the center part of (c). The white
curves in (f) indicate increasing direction of phase. [(g) and (h)]
The experimental results (g) and the corresponding simulation
(h) of the intensity pattern after astigmatic transformation.
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of spiral patterns in the mask [Fig. 2(b)], with the outer two
rings having 44 and 55 bright dots, respectively. The
simulated phase map of the diffracted beams shown in
Figs. 2(c) and 2(f) suggests that the total phase change for
each over a complete revolution is by −11 × 2π around the
center, by 44 × 2π and −55 × 2π in the corresponding
regions of two necklacelike beams in the clockwise
direction. This shows that the “sievelike” mask has gen-
erated a compound vortex beam containing simultaneously
three copropagating vortex beams with topological charges
l ¼ −11, 44, and−55, respectively. As we show in Fig. S3
in the SI [35], the secondary high OAM modes can be
controlled by changing the number of holes in each of the
Fermat spiral motifs.
Note that our analysis is general and is therefore applicable

to any vortex states that can be described by a scalar wave
equation, such as optical vortex beams, electron vortex
beams, and other matter vortex beams.
Wenowprovide a descriptionof the experimentalworkwe

have carried out to test the above theoretical predictions
applicable in the context of electron vortex beams. The
physicalmask presented in Fig. 2(d)was created froma 1 μm
thick Pt foil and the radius of each pinhole a ¼ 300 nm. We
illuminated the mask with a relatively coherent electron
beam in a JEOL 2200FS TEM operating at 200 kV, which
corresponds to an electron de Broglie wavelength of
λ ¼ 2.5 pm. The mask was inserted in the condenser
aperture of the electron microscope. Instead of observing
the pattern directly, the condenser lens was turned on and the
observation is conducted at the corresponding defocus
distance from the focal plane of the condenser lens, which
has a focal length of about 15 mm. Figure 2(e) displays the
experimental intensity pattern bearing three rings, in good
agreement with the simulated intensity pattern [Fig. 2(b)]. It
is well known that the vortex modes can be astigmatically
transformed intoHermite-Gausslikemodes, with the number
of dark stripes indicating the value of the OAMcarried by the
vortex [32,36]. The experimental intensity pattern [Fig. 2(g)]
and the corresponding simulation result [Fig. 2(h)] of the
vortex beam after the astigmatic transformation show that
indeed there are 11 dark stripes in the center, with respect to
the tilt direction, confirming that the inner ring of the
emerging beam is a vortex beam with topological charge
l ¼ −11. Furthermore, both Fig. 2(g) and Fig. 2(h) also
exhibit two ellipses tilted in different directions, consistent
with the fact that the topological charges of the two outer
rings of the intensity pattern [Figs. 2(b) and 2(e)] do indeed
have opposite signs [36].
We can further explore the characteristics of the electron

vortex state consisting of three copropagating OAM modes
by following the evolution of the intensity distribution
near the focal plane (P4 in Fig. 3) of the condenser
lens. The experimental observation displayed together with
the simulated normalized intensity distribution in the y-z
plane in Fig. 3 constitutes a clear agreement, including the

confirmation that the Fermat spirals have led to an OAM
mode of topological charge of magnitude 11, which has its
beam waist at the observation planeΔf ¼ −74.6 μm (P2 in
Fig. 3). The two other spirals in the sieve mask are non-
Fermat-like and hence have no clear beam waist at the plane
P2. The different focusing behaviors of the three vortex rings
also mean they have different Gouy phase change near the
observation plane. This is consistent with the different stages
of the astigmatic transformation of the three OAM rings seen
in Figs. 2(g) and 2(h). The supplemental movie indicated in
SI [35] shows that these outer two necklacelike rings have
opposite senses of rotation and each maintains its fixed
number of pearlswhen they propagate fromplaneP1 to plane
P3, demonstrating the correct identification of the helicities
of the vortex modes.
We reiterate that our general design approach and the

results we have obtained with electron sieve masks are also
applicable to other matter waves as well as optical vortex
beams. A specific advantage of the methods we have
described is that it can produce complicated structured
beams, such as concentric electron vortices and optical
vortices, which carry different OAMs with different radii.
These vortex beams with superposition of OAM states are
of importance in classical physics and quantum science.
For example, they may be used in the manipulation of fluid-
borne particles and also as a nano-optomechanical Couette
shear cell [37] as well as in multiplex broadband
communication.
In conclusion, we have put forward and demonstrated the

utility of a fundamental superposition and selection prin-
ciple of OAM modes. This constitutes a new approach in

FIG. 3. The propagation of vortex beams generated by electron
sieves. (a) Experimental results of the intensity pattern in the y-z
plane. (b) The corresponding result of simulation. The exper-
imental result in (a) was reconstructed from 140 slices of the x-y
plane intensity pattern recorded in the experiment. P1–P4
represent four transverse planes perpendicular to the propagation
axis. P2 corresponds to the intensity patterns shown in Fig. 2(e),
and P4 denotes the focal plane of the condenser lens.
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the design of convertors for structured beam generation
from plane waves, providing a versatile and robust alter-
native to the conventional CGH approach. Our analysis
provides a new understanding of the essential components
of the OAM conversion process by rotationally symmetric
wave-optical structures. It is applicable to the generation
and analysis of OAM distributions of all scalar waves in
axially symmetric systems.
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