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Abstract

Purpose - The purpose of this paper is to provide an insight and to solve numerically
the identification of an unknown coefficient of radiation/absorption/perfusion appearing
in the heat equation from additional temperature measurements.
Design/methodology/approach - First, the uniqueness of solution of the inverse co-
efficient problem is briefly discussed in a particular case. However, the problem is still
ill-posed since small errors in the input data cause large errors in the output solution.
For the numerical discretisation, the finite difference method combined with a regular-
ized nonlinear minimization is performed using the MATLAB toolbox routine lsqnonlin.
Finding - Numerical results presented for three examples show the efficiency of the
computational method and the accuracy and stability of the numerical solution even in
the presence of noise in the input data.
Research limitations/implications - The mathematical formulation is restricted to
identify coefficients which separate additively in unknown components dependent individ-
ually on time and space, and this may be considered as a research limitation. However,
there is no research implication to overcome this since the known input data is also limited
to single measurements of temperature at a particular time and space location.
Practical implications - Since noisy data are inverted, the study models real situations
in which practical measurements are inherently contaminated with noise.
Social implications - The identification of the additive time- and space-dependent
perfusion coefficient will be of great interest to the bio-heat transfer community and ap-
plications.
Originality/value - The current investigation advances previous studies which assumed
that the coefficient multiplying the lower order temperature term depends on time or
space separately. The knowledge of this physical property coefficient is very important
in biomedical engineering for understanding the heat transfer in biological tissues. The
originality lies in the insight gained by performing for the first time numerical simulations
of inversion to find the coefficient additively dependent on time and space in the heat
equation from noisy measurements.

Keywords: Inverse problem; nonlinear optimization; regularization; heat equation.
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1 Introduction

Inverse problems for the parabolic heat equation consisting of determining the unknown
radiative/absorption/perfusion coefficient depending on both time and space have re-
cently received some attention, (Deng et al., 2008, 2010; Savateev, 1995). The knowledge
of this physical property is important in understanding the heat transfer in biological
tissue, (Trucu, 2009). Its direct measurement is not available in the general case when it
depends on both space and time. However, it can be inferred by inverse methods based
on the measurement of the interior temperature, as considered in (Trucu et al., 2011). On
the other hand, this formulation means that infinitely many intrusive temperature mea-
surements with thermocouples embedded inside the material are necessary at all space
points and for all times. A possible alternative to this general inverse modelling is to
restrict the generality of the coefficient by seeking it as a sum of a function dependent of
time and one dependent of space. This additive class in which the admissible coefficient
is sought allows to formulate an inverse problem for which measurement of the tempera-
ture in time at a single fixed space point together with measurement in space at a fixed
time are sufficient to ensure that the identification is possible. A similar approach has
previously been investigated in related problems concerned with the identification of an
additive heat source, (Hazanee and Lesnic, 2013; Hao et al., 2014). However, the inverse
heat source problem is linear whilst the coefficient identification problem investigated in
this paper is nonlinear and this significantly complicates its study.

The paper is structured as follows: In Section 2, the mathematical formulation of
the inverse problem is given. In Section 3, the numerical solution of the direct problem
based on the finite difference method (FDM) with a Crank-Nicolson scheme is briefly
introduced. In Section 4, the numerical approach to solve the inverse problem based on a
minimization algorithm is given. Numerical results are presented and discussed in Section
5. Finally, conclusions are stated in Section 6.

2 Mathematical formulation

Fix the parameters L > 0 and T > 0 representing the length of a finite slab and the
time duration, respectively. Denote by QT = {(x, t)| 0 < x < L, 0 < t < T} the solution
domain. We consider the parabolic heat equation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + (f(t) + g(x))u(x, t), (x, t) ∈ QT , (1)

where f(t) and g(x) are coefficient functions to be identified together with the temperature
u(x, t). In (1), the term q(x, t) := f(t)+g(x) represents a radiative or perfusion coefficient.
Previous studies, e.g. (Trucu et al., 2008, 2010), considered the cases g = 0 or f = 0,
so in that respect, our identification of an additive coefficient q(x, t) = f(t) + g(x) with
unknown functions f and g, is a generalization. At the other extreme, when q(x, t)
does not separate its identification requires the measurment of u(x, t) at all points inside
the solution domain QT , (Deng et al., 2008, 2010; Trucu et al., 2011), which may be
impractical.

Equation (1) has to be solved subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ L, (2)
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the homogeneous Neumann boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, 0 ≤ t ≤ T, (3)

and the additional temperature measurements

u(X0, t) = β(t), 0 ≤ t ≤ T, (4)

at a fixed space location 0 < X0 < L, and

u(x, T ) = ψ(x), 0 ≤ x ≤ L, (5)

at the final time t = T . The conditions (3) express that the ends {0, L} of the finite slab
(0, L) are insulated. In order to avoid non-uniqueness reproduced by the trivial identity
f(t) + g(x) = (f(t) + c) + (g(x)− c), where c is an arbitrary non-zero constant, we take
a fixing condition, say at x = X1 fixed in (0, L), assuming that

g(X1) = α (6)

is given. Alternatively, one could have a fixing condition on f instead of (6). In the
above equations, the functions φ, β, ψ and the constant α are given, whilst the triplet of
functions f(t), g(x) and u(x, t) are unknown. Further, assume that the conditions (2)–(5)
are compatible, i.e.

φ′(0) = φ′(L) = ψ′(0) = ψ′(L) = 0, β(0) = φ(X0), β(T ) = ψ(X0). (7)

The existence and uniqueness of a classical solution to the inverse problem (1)–(7) were
established in (Savateev, 1995). Without going into too much detail, for illustration it is
useful to state the unique solvability of the inverse problem (1)–(7) in a particular case,
as follows.

Proposition 1. Suppose

0 < φ ∈ C4[0, L], 0 < ψ ∈ C4[0, L], 0 < β ∈ C1[0, T ] (8)

and assume that

ψ(x) = cφ(x), x ∈ [0, L], (9)

where c = β(T )/β(0). Then the inverse problem (1)-(7) has a unique solution (u, f, g) ∈
(C2(QT ) ∩ C1(QT ))× C1[0, T ]× C1[0, L] which is explicitly given by

u(x, t) =
β(t)

β(0)
φ(x), (x, t) ∈ QT , (10)

f(t) =
β′(t)

β(t)
− α− φ′′(X1)

φ(X1)
, t ∈ [0, T ], (11)

g(x) = −φ
′′(x)

φ(x)
+ α +

φ′′(X1)

φ(X1)
, x ∈ [0, L]. (12)
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Proof. We proceed as in (Savateev, 1995) and remark that from (1)–(3) using the
maximum principle for the parabolic heat equation we have that u > 0 in QT and let us
put

u = ev. (13)

Then equations (1)–(5) become

vt(x, t) = vxx(x, t) + v2x(x, t) + f(t) + g(x), (x, t) ∈ QT , (14)

v(x, 0) = ln(φ(x)) =: Φ(x), x ∈ [0, L], (15)

vx(0, t) = vx(L, t) = 0, t ∈ [0, T ], (16)

v(x, T ) = ln(ψ(x)) =: Ψ(x), x ∈ [0, L], (17)

v(X0, t) = ln(β(t)) =: β1(t), t ∈ [0, T ]. (18)

From (9), (15) and (17) one can see that

Ψ(x) = Φ(x) + ln(c), x ∈ [0, L]. (19)

Differentiating equation (14) with respect to x we get

vtx(x, t) = vxxx(x, t) + 2vx(x, t)vxx(x, t) + g′(x), (x, t) ∈ QT . (20)

Now differentiating (20) with respect to t and using (17) we obtain, (Savateev, 1995),

wt(x, t) = wxx(x, t) + 2
(

∫ t

T

w(x, τ)dτ +Ψ′(x)
)

wx

+2
(

∫ t

T

wx(x, τ)dτ +Ψ′′(x)
)

w(x, t), (x, t) ∈ QT , (21)

where

w(x, t) = vtx(x, t). (22)

Also, from (15)–(17), (19) and (20) one can derive that

w(0, t) = w(L, t) = 0, t ∈ [0, T ], (23)

w(x, T )− w(x, 0) = vxxx(x, T ) + 2vx(x, T )vxx(x, T ) + g′(x)− vxxx(x, 0)

−2vx(x, 0)vxx(x, 0)− g′(x) = Ψ′′′(x) + 2Ψ′(x)Ψ′′(x)− Φ′′′(x)− 2Φ′(x)Φ′′(x) = 0,

x ∈ [0, L]. (24)

Then, one can observe that the initial boundary value problem for the parabolic equation
(21) has only the trivial solution w ≡ 0. Hence, from (22) we obtain

v(x, t) = a(t) + b(x). (25)
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Then, (14)–(19) give

a′(t) = b′′(x) + b
′2(x) + f(t) + g(x), (x, t) ∈ QT , (26)

Φ(x) = ln(φ(x)) = a(0) + b(x), x ∈ [0, L], (27)

b′(0) = b′(L) = 0, (28)

Φ(x) + ln(c) = Ψ(x) = ln(ψ(x)) = a(T ) + b(x), x ∈ [0, L], (29)

β1(t) = ln(β(t)) = a(t) + b(X0), t ∈ [0, T ]. (30)

From (26), we immediately obtain that

f(t) = a′(t)− C, g(x) = −b′2(x)− b′′(x) + C, (31)

where C is some arbitrary constant. From (27), (29) and (30) we get

b(x) = ln(φ(x)) + const., a(t) = ln(β(t)) + const. (32)

Then, using (13), (25) and (32) we have

u(x, t) = C1β(t)φ(x) (33)

for some constant C1,

f(t) =
β′(t)

β
− C, g(x) = −φ

′′(x)

φ(x)
+ C. (34)

Imposing (6) we obtain C = φ′′(X1)
φ(X1)

+ α from which (11) and (12) follows. Finally, from

(4), (7) and (33) we obtain that C1 = 1/β(0) from which (10) follows. This completes the
proof of the proposition.

This proposition is useful because it indicates how to construct analytical solutions
of the inverse problem (1)–(7) for which numerical methods can be assessed, see later
on Examples 1 and 2 in Section 5. In addition, the explicit formulas (11) and (12)
contain derivatives of the measured data which is numerically unstable. That is, although
the inverse problem (1)–(7) is uniquely solvable it is still ill-posed since small errors in
the input measured data (4) and (5) cause large error in the output solution for f and
g. Therefore, in the numerical computation the main focus is on the development of
stable nonlinear optimization algorithms, (Samarskii and Vabishchevich, 2007), as will be
described in Section 4. But before we do that, in the next section we briefly describe the
FDM employed for discretising the direct problem.
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3 Numerical solution of the direct problem

In this section, we consider the direct initial boundary value problem given by equations
(1)–(3) when f and g are given. We use the finite-difference method (FDM) with a
Crank-Nicholson scheme, (Smith, 1985), which is unconditionally stable and second-order
accurate in space and time. Other interesting time-stepping schemes are described in
(Wood and Lewis, 1975; Lewis et al., 1978). The discrete form of the direct problem is as
follows. We denote u(xi, tj) = ui,j, f(tj) = fj and g(xi) = gi, where xi = i∆x, tj = j∆t
for i = 0,M, j = 0, N, and ∆x = L

M
, ∆t = T

N
.

Considering the general partial differential equation

ut = G(x, t, u, uxx), (35)

the Crank-Nicolson method, (Smith, 1985), discretises (35), (2) and (3) as

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1), i = 1, (M − 1), j = 0, (N − 1), (36)

ui,0 = φ(xi), i = 0,M, (37)

u1,j − u−1,j

2(∆x)
=
uM+1,j − uM−1,j

2(∆x)
= 0, j = 1, N, (38)

where

Gi,j = G
(

xi, tj, ui,j,
ui+1,j − 2ui,j + ui−1,j

(∆x)2

)

,

Gi,j+1 = G
(

xi, tj+1, ui,j+1,
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2

)

,

i = 0,M, j = 0, (N − 1) (39)

and u−1,j and uM+1,j for j = 1, N are fictitious values at points located outside the
computational domain.

For our problem, equation (1) is of the form (35) and the above discretisation then
renders the following discrete form of (1):

−Aui−1,j+1 + (1 + Bi,j+1)ui,j+1 − Aui+1,j+1 = Aui−1,j + (1− Bi,j)ui,j + Aui+1,j, (40)

for i = 0,M, j = 0, (N − 1), where A =
(∆t)

2(∆x)2
, Bi,j =

(∆t)

(∆x)2
− (∆t)

2
(fj + gi).

At each time step tj+1, for j = 0, (N − 1), using the homogeneous Neumann boundary
conditions (38), the above difference equation can be reformulated as an M ×M system
of linear equations of the form,

Luj+1 = Euj, (41)

where

uj+1 = (u0,j+1, u1,j+1, ..., uM,j+1)
T,
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L =















1 + B0,j+1 −2A 0 ... 0 0 0
−A 1 + B1,j+1 −A ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... −A 1 + BM−1,j+1 −A
0 0 0 ... 0 −2A 1 + BM,j+1















,

and

E =















1− B0,j 2A 0 ... 0 0 0
A 1− B1,j A ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... A 1− BM−1,j A
0 0 0 ... 0 2A 1− BM,j















.

The grid convergence of the above FDM is considered next for solving the direct
Neumann problem (1)–(3) with T = L = 1, and input data

φ(x) = u(x, 0) = x2(x− 1)2 + 1, (42)

f(t) =
1

1 + t
, g(x) =

−2 + 12x− 12x2

1 + x2 − 2x3 + x4
. (43)

The analytical solution for the temperature is given by

u(x, t) =
(

x2(x− 1)2 + 1
)

(1 + t). (44)

Figure 1 shows the surface plots of the analytical solution (44) in comparison with the
numerical FDM solutions obtained with various M = N ∈ {10, 20, 40}. The absolute
errors between those solutions are also included and it can be seen that these errors
decrease as the FDM grid becomes finer.
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Figure 1: The exact (44) and numerical solutions for the temperature u(x, t), with various mesh

sizes (a) M = N = 10, (b) M = N = 20, and (c) M = N = 40, for the direct problem. The

absolute error between them is also included.

The numerical solutions for the interior temperatures (4) and (5) are compared in
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Figure 2 with the exact solutions given by

β(t) = u(X0, t) =
17

16
(1 + t), ψ(x) = u(x, T ) = 2

(

x2(x− 1)2 + 1
)

,

T = 1, X0 =
1

2
. (45)

From Figure 2 it can be seen that the numerical solutions converge to the corresponding
exact solutions (45), as the FDM grid becomes finer. In fact, the root mean square errors
(rmse) defined by

rmse(β) =

√

√

√

√

1

N

N
∑

j=1

(

βnumerical(tj)− βexact(tj)
)2

, (46)

rmse(ψ) =

√

√

√

√

1

M

M
∑

i=1

(

ψnumerical(xi)− ψexact(xi)
)2

, (47)

indicated in Table 1, show more clearly their decreases as the grid size becomes smaller.
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Figure 2: The exact and numerical solutions for: (a) β(t) and (b) ψ(x), various mesh sizes

M = N ∈ {10, 20, 40}, for the direct problem.
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Table 1: The (rmse) given by equations (46) and (47) for β(t) and ψ(x), with various mesh

sizes M = N ∈ {10, 20, 40}, for the direct problem.

M = N 10 20 40
rmse(β)
rmse(ψ)

0.0179
0.0374

0.0044
0.0094

0.0011
0.0024

4 Numerical approach to solve the inverse problem

In this section, we wish to obtain simultaneously the unknown functions f(t) and g(x) in
the inverse problem (1)–(7) reformulated as minimizing the regularized objective function

F(f, g) = ‖u(x, T )− ψ(x)‖2 + ‖u(X0, t)− β(t)‖2 + β1‖f(t)‖2 + β2‖g(x)‖2

+ (g(X1)− α)2, (48)

where u solves (1)–(3) for given f and g, β1 ≥ 0 and β2 ≥ 0 are regularization parameters,
and the norm is usually the L2-norm. Assuming, for convenience, that we take X0 ∈ (0, L)
such that there exists i0 ∈ {1, ...,M} for which X0 = xi0 , in discrete form (48) becomes

F(f ,g) =
L

M

M
∑

i=1
i 6=i0

[

u(xi, T )− ψ(xi)
]2

+
T

N

N
∑

j=1

[

u(X0, tj)− β(tj)
]2

+ (g(X1)− α)2

+ β1

N
∑

j=1

f 2
j + β2

M
∑

i=1

g2i . (49)

The value for i = i0 in the first sum has been excluded in order to avoid duplicating the
compatibility condition (in (7)) u(X0, T ) = u(xi0 , T ) = β(T ) = β(tN) = ψ(xi0) = ψ(X0).

The minimization of (49) is performed using the MATLAB toolbox routine lsqnonlin,
which does not require the user to supply the gradient of the objective function, (Math-
works, 2012). This routine attempts to find the minimum of a sum of squares by starting
from arbitrary initial guesses f (0),g(0) for f ,g, respectively. We have compiled this routine
with the following parameters:

• Algorithm = Trust-Region-Reflective (TRR), (Coleman and Li, 1996).

• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals) = 102×(number
of variables.)

• Termination tolerance on the function value, (TolFun) = 10−20.

• x Tolerance, (xTol) = 10−20.

• The lower and upper simple bounds are −103 and 103 for f and g.
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The inverse problem under investigation is solved subject to both exact and noisy data
which are numerically simulated as

βǫ1(tj) = β(tj) + ǫ1j, j = 1, N, (50)

ψǫ2(xi) = ψ(xi) + ǫ2i, i = 1,M, i 6= i0, (51)

where ǫ1j and ǫ2i are random variables generated from Gaussian normal distributions
with mean zero and standard deviations σ1 and σ2 given by

σ1 = p× max
t∈[0,T ]

|β(t)|, σ2 = p× max
x∈[0,L]

|ψ(x)|, (52)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ǫ1 = (ǫ1j)j=1,N and ǫ2 = (ǫ2i)i=1,(M−1) given by

ǫ1 = normrnd(0, σ1, N), ǫ2 = normrnd(0, σ2,M − 1). (53)

5 Numerical results and discussion

In this section, we present examples in order to test the accuracy and stability of the
numerical methods introduced in Sections 3 and 4, respectively. The root mean square
errors (rmse) are used to evaluate the accuracy of the numerical results and are defined
by

rmse(f) =

√

√

√

√

1

N

N
∑

j=1

(

fnumerical(tj)− f exact(tj)
)2

, (54)

rmse(g) =

√

√

√

√

1

M

M
∑

i=1

(

gnumerical(xi)− gexact(xi)
)2

. (55)

In all examples we take, for simplicity, T = 1, L = 1 and X0 = X1 = L/2 = 0.5.
Consequently, i0 =M/2 in (49). In all the inverse calculations we take M = N = 40.

5.1 Example 1

We solve the inverse problem (1)–(7) with unknown coefficients f(t) and g(x) and the
input data (42), (45) and α = g(0.5) = 16/17. From this data one can observe that the
conditions of Proposition 1 of Section 2 are satisfied and hence the inverse problem has
a unique solution given by (10)–(12) which yield the expressions (43) and (44). We take
the inital guess as

f 0(t) = 1− t

2
, g0(x) =

{

−2 + 100
17
x, 0 ≤ x ≤ 0.5,

66
17

− 100
17
x, 0.5 < x ≤ 1,

(56)

which are straight lines passing through f(0) = 1, f(1) = 1/2, and g(0) = −2, g(0.5) =
16/17, g(1) = −2.

Considering no noise in the measurement data (4) and (5), the unregularized objective
function (49), i.e. β1 = β2 = 0, as a function of a number of iterations plotted in Figure 3,
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shows a rapid decrease to a low value of O(10−29) in 19 iterations. Figure 4 shows the
exact and numerical solutions of the functions f(t) and g(x), respectively. From this
figure it can be seen that very accurate numerical solutions are obtained.
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Figure 3: Objective function (49) for Example 1 with no noise and no regularization.

Next, we add a small amount of p = 0.01% noise to the measured data (4) and (5). For
higher amounts of noise the numerical results were less accurate and therefore they are
not presented. The point to stress here is that since the inverse problem is ill-posed then
we expect that regularization is needed in order to achieve stable and accurate results.
The monotonic decreasing convergence of the objective function (49), as a function of the
number of iterations, is shown in Figure 5 with and without regularization. Figure 6 shows
the graphs of the recovered functions. From Figure 6 it can be seen that, as expected,
when β1 = β2 = 0 we obtain unstable and inaccurate solutions because the problem is
ill-posed and very sensitive to noise. Thus regularization is needed in order to stabilise
the solutions. We selected by trial and error the regularization parameters β1 = 10−9 and
β2 = 10−7 which give stable and reasonable accurate solutions for the functions f(t) and
g(x). For more elaborate choices of multiple regularization parameters, see (Belge et al.,
2002; Fornasier et al., 2014).

The related numerical results for the temperature u(x, t) with p = 0.01% noise, and
with and without regularization, are presented in Figure 7 showing good agreement with
the exact solution (44).

Other details about the number of iterations, the number of function evaluations, the
value of the objective function (49) at the final iteration, the rmse(f) and rmse(g) in (54)
and (55), respectively, and the computational time are given in Table 2. Overall, from this
table as well as from Figures 3-7 it can be seen that accurate and stable numerical results
are rapidly achieved by the MATLAB toolbox iterative routine lsqnonlin minimizing the
objective function (49).
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Figure 4: (a) Coefficient f(t) and (b) coefficient g(x), for Example 1 with no noise and no

regularization.

Table 2: Number of iterations, number of function evaluations, value of the objective func-
tion (49) at final iteration, rmse(f) and rmse(g), and computational time, for Example
1.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = 10−9, β2 = 10−7)

Number of iterations
Number of function evaluations
Value of objective function
(49) at final iteration
rmse(f)
rmse(g)
Computational time (sec)

19
1660
4.4E-29

0.0013
0.0156
163

36
3071
6.5E-11

0.1454
0.6698
306

46
3901
3.2E-6

0.1024
0.1634
386
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Figure 5: Objective function (49), for Example 1 with p = 0.01% noise, with and without

regularization.
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Figure 6: (a) Coefficient f(t) and (b) coefficient g(x), for Example 1 with p = 0.01% noise,

with and without regularization.
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Figure 7: The exact and approximate solutions for the temperatures u(x, t), for Example 1,

with (a) β1 = β2 = 0 and (b) β1 = 10−9, β2 = 10−7, for p = 0.01% noise. The absolute error

between them is also included.

5.2 Example 2

Consider the inverse problem (1)–(7) with the input data

φ(x) = u(x, 0) = 2 + cos(πx), (57)

β(t) = u(0.5, t) = 2e
t
2

1+t , ψ(x) = u(x, 1) =
√
e(2 + cos(πx)), α = g(0.5) = 0. (58)

As in Example 1, the conditions of Proposition 1 are satisfied and the unique solution of
the inverse problem (1)–(7) is given by (10)–(12) which yield

f(t) =
t(t+ 2)

(t+ 1)2
, g(x) =

π2 cos(πx)

2 + cos(πx)
, (59)

u(x, t) = e
t
2

1+t

(

2 + cos(πx)
)

. (60)
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We take the inital guess as

f 0(t) = 0, g0(x) =

{

π2

3
− 2π2

3
x, 0 ≤ x ≤ 0.5,

π2 − 2π2x, 0.5 < x ≤ 1.
(61)

Analogous quantities and conclusions to Figures 3–6 and Table 2 of Example 1 are pre-
sented and obtained in Figures 8–11 and Table 3 of Example 2.
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Figure 8: Objective function (49), for Example 2 with no noise and no regularization.
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Figure 9: (a) Coefficient f(t) and (b) coefficient g(x), for Example 2 with no noise and no

regularization.
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Table 3: Number of iterations, number of function evaluations, value of the objective func-
tion (49) at final iteration, rmse(f) and rmse(g), and computational time, for Example
2.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = 10−12, β2 = 10−11)

Number of iterations
Number of function evaluations
Value of objective function
(49) at final iteration
rmse(f)
rmse(g)
Computational time (mins)

16
1411
4.9E-27

0.0077
0.0025
2

39
3320
1.5E-10

0.1462
1.2917
5

52
4316
1.02E-8

0.1084
1.2847
7
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Figure 10: Objective function (49), for Example 2 with p = 0.01% noise, with and without

regularization.
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Figure 11: (a) Coefficient f(t) and (b) coefficient g(x), for Example 2 with p = 0.01% noise,

with and without regularization.

5.3 Example 3

The previous examples possessed an analytical solution available for the triplet
(u(x, t), f(t), g(x)). In this section, we investigate an example for which an analytical
solution for u(x, t) is not available. We take the initial condition (2) given by

u(x, 0) = φ(x) =















1, 0 ≤ x < 1/4,
5
4
− x, 1/4 < x ≤ 1/2,

x+ 1
4
, 1/2 < x ≤ 3/4,

1, 3/4 < x ≤ 1,

(62)

which represents a non-smooth function. In the absence of an analytical solution for
u(x, t) being available we generate the input data (4) and (5) numerically by solving first
the direct problem given by (1)–(3) with φ(x) given by (62), and the known functions

f(t) = 1 + t, g(x) = 1 + x, (63)

using the FDM described in Section 3.
The numerical results for β(t) and ψ(x) in equations (4) and (5), respectivly, are shown

in Figure 12, for various M = N ∈ {20, 40, 80}. From this figure, it can be seen that the
numerical solution is convergent as the FDM mesh size decreases.

18



The example considered in this subsection violates the sufficient conditions of unique-
ness of solution of Proposition 1 and (Savateev, 1995) and therefore, it is a severe test for
our method of regularization.

In order to avoid committing an inverse crime the mesh that is used for numerically
simulating the measured data (4) and (5) by solving the direct problem is taken to be more
dense than the one used for the solution of the inverse problem, (Kaipio and Somersalo,
2007). Consequently, in the inverse problem we use the FDM with M = N = 40 and half
of the data for β and ψ obtained from solving the direct problem with M = N = 80. We
also take the initial guess as

f 0(t) = 1, g0(x) = 1. (64)

The objective function (49) with no noise and no regularization, as a function of the
number of iterations, is plotted in Figure 13. From this figure it can be seen that a rapid
monotonic decreasing convergence to a low value of O(10−28) is achieved in about 12
iterations.
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Figure 12: The numerically convergent solutions for (a) β(t) and (b) ψ(x), for Example 3 with

various mesh sizes M = N ∈ {20, 40, 80} for the direct problem.

Figure 14 shows the exact and numerical solution of the unknown coefficients f(t) and
g(x), and one can see that stable and accurate solutions are obtained.
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Figure 13: Objective function (49), for Example 3 with no noise and no regularization.
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Figure 14: (a) Coefficient f(t) and (b) coefficient g(x), for Example 3 with no noise and no

regularization.

Next, we add p ∈ {0.01, 0.1, 1}% noise to the measured data (4) and (5). The nu-
merical results without regularization have been found unstable and therefore they are
not presented. The regularized objective function (49), as a function of the number of
iterations, is shown in Figure 15. Figure 16 presents the graphs of the recovered functions.
From this figure one can observe that stabilised solutions are obtained by employing reg-
ularization.
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Finally, details about the number of iterations, the rmse(f) and rmse(g) in (54) and
(55), respectively, and the computational time, are given in Table 4 for various values
of the regularization parameters β1 = β2. For p = 1% noise and no regularization the
computational time and the number of iterations increase drastically and the rmse(f)
and rmse(g) become very large, which is expected due to the instability of the inverse
and ill-posed problem. However, as previously obtained from Figure 16, it can be seen
that accurate and stable numerical results are achieved if regularization is employed.
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Figure 15: Objective function (49), for Example 3 with noise p = 0.01% (−�−), p = 0.1%

(−△−) and p = 1% (− ◦ −), with regularization.
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Figure 16: (a) Coefficient f(t) and (b) coefficient g(x), for Example 3 with noise p = 0.01%
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Table 4: Number of iterations, computational time, and rmse values for p ∈
{0.01, 0.1, 1}% noise, with and without regularization, for Example 3.

p Regularization rmse(f) rmse(g) Iter Time

0.01%

β1 = β2 = 0
β1 = β2 = 10−5

β1 = β2 = 10−4

β1 = β2 = 10−3

β1 = β2 = 10−2

β1 = β2 = 10−1

0.3373
0.0406
0.0525
0.0613
0.0899
0.1831

0.5775
0.0658
0.0448
0.0403
0.0494
0.1180

18
42
41
38
41
41

3 mins
4 mins
5 mins
6 mins
5 mins
5 mins

0.1%

β1 = β2 = 0
β1 = β2 = 10−5

β1 = β2 = 10−4

β1 = β2 = 10−3

β1 = β2 = 10−2

β1 = β2 = 10−1

3.3704
0.2458
0.1018
0.0678
0.0909
0.1830

5.7759
0.3619
0.0895
0.0335
0.0466
0.1197

47
47
39
39
50
50

8 mins
8 mins
6 mins
6 mins
9 mins
9 mins

1%

β1 = β2 = 0
β1 = β2 = 10−5

β1 = β2 = 10−4

β1 = β2 = 10−3

β1 = β2 = 10−2

β1 = β2 = 10−1

35.9469
2.5250
0.9086
0.2720
0.1139
0.1820

53.9733
3.5760
0.7765
0.1581
0.0527
0.1366

401
50
47
50
38
50

1 hour
9 mins
8 mins
9 mins
6 mins
9 mins

6 Conclusions

This paper has presented the determination of an additive time and space-dependent per-
fusion coefficient from data measurements in the one-dimensional parabolic heat equation.
The direct solver based on a Crank-Nicolson finite difference scheme was employed. The
resulting inverse problem has been reformulated as a constrained regularized minimization
problem which was solved using the MATLAB optimization toolbox routine lsqnonlin.
The numerically obtained results are stable and accurate.

Future work will concern inversion of real physical temperature data (4) and (5) to
reconstruct the additive time- and space-dependent perfusion coefficient in the context or
bio-heat transfer, (Lesnic and Trucu, 2010) or the heat transfer coefficient in the context
of fins used in condensers and evaporators, (Marin et al., 2004).
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