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Abstract 

Additive manufacturing technologies enable the creation of very precise and well-defined 

structures that can mimic hierarchical features of natural tissues. In this paper we describe 

the development of a manufacturing technology platform to produce innovative 

biodegradable membranes that are enhanced with controlled microenvironments produced 

via a combination of selective laser melting techniques and conventional electrospinning. 

This work underpins the manufacture of a new generation of biomaterial devices that have 

significant potential for use as both basic research tools and components of therapeutic 

implants. The membranes were successfully manufactured and a total of 3 

microenvironment designs (niches) were chosen for thorough characterisation. Scanning 

electron microscopy analysis demonstrated differences in fibre diameters within different 

areas of the niche structures as well as differences in fibre density. We also showed the 

potential of using the microfabricated membranes for supporting mesenchymal stromal cell 

(MSC) culture and proliferation. We demonstrated that MSCs grow and populate the 

membranes penetrating within the niche-like structures. These findings demonstrate the 

creation of a very versatile tool that can be used in a variety of tissue regeneration 

applications including bone healing. 
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Introduction 

During the past decade there has been a marked growth in the use of additive 

manufacturing technologies (AM) for medical and dental applications. AM offers great 

possibilities in terms of product development, control and prototype design from which the 

medical industry can definitely benefit [1-3]. Apart from a custom design, AM also provides 



clear advantages including the opportunity for developing internal complexity, a significant 

reduction in waste materials and great possibilities for scaling-up [4].  

Selective laser sintering (SLS), Stereolithography (SLA) and Fused Deposition Modeling 

(FDM) are three of the most commonly used techniques for the manufacture of scaffolds and 

biomaterial devices for regenerative medicine [1]. Although they are all based in the same 

principle, “layer by layer manufacturing”, the fundamental science behind each technique is 

very different and is intimately related to the availability of materials that can be structured 

and ultimately transformed into a medical device. Thus, in general terms, we could say that 

stereolithography and related techniques (including two-photon polymerisation) require the 

presence of a photocurable working solution [5, 6], selective laser sintering requires a 

material in a powder form [7, 8], and fused deposition modelling relies on working materials 

that can be extruded via temperature control [9, 10]. The possibilities offered by these 

techniques themselves are vast, although their potential can be enhanced further when 

combined with conventional techniques historically used for biomedical applications (e.g. 

electrospinning). Electrospinning is a versatile fabrication process that uses a high voltage 

between a syringe containing a polymer solution and an earthed collector in order to create 

3D fibrous constructs. Controlling the processing conditions and the design of the collector is 

possible to manufacture complex membranes with different fibre alignment, diameter, 

porosity, and topography. The incorporation of additive manufactured collectors within the 

electrospinning process permits the creation of intricate structures with micron accuracy. 

This combination of techniques was patented in 2013 [11] and it was initially developed 

using microstereolithography for emulating aspects of the limbal stem cell niche in the 

cornea [12-14]. In essence, the continuous deposition of electrospun fibres on top of a 3D 

collector fabricated using additive manufacturing will result in the generation of mats that 

reproduce the underlying topography of the 3D collector. This way it is possible to provide 

the scaffold with levels of complexity that the electrospun fibres on their own cannot achieve.  

There is an increasing interest in designing biomedical devices with the ability of directing 

cell behaviour via the inclusion of controlled and intricate topography. In the past 5 to 10 

years, the design and fabrication of scaffolds containing well-defined microfeatures has been 

identified as a rapidly evolving field, and this growing body of research has shown that 

topography can be controlled using a wide range of fabrication routes including laser-based 

techniques [15-18], micromoulding [19, 20], compression-based techniques [21, 22] and 

electrospinning [12-14]. One powerful approach to create intricate topographies is the 

development of ‘synthetic niches’ that are designed to mimic specific aspects of the stem cell 
native niche. Stem cell niches can be described as complex and well-defined 

microenvironments that play a fundamental role in tissue repair, controlling to a certain 

extent stem cell renewal and differentiation [23]. The ability to recapitulate aspects of the 

stem cell microenvironment opens the door to a broad range of applications in regenerative 

medicine, especially in the design of smart biomaterial devices for tissue healing [24, 25]. 

There is a need to develop innovative biomaterial devices able to be delivered to the patient 

in conditions that mimic the physiological environment as closely as possible. The inclusion 

of the concept of “Stem Cell Niche” within their design philosophy would be an innovative 

and valuable approach in which additive manufacturing technologies play a key role, 

allowing the creation of custom devices presenting tailored features with dimensions in the 

scale of microns. 

In this study, electrospinning has been combined with selective laser melting (SLM) to 

produce complex scaffolds in which to study and control cell behaviour. The use of SLM 

offers specific advantages. Firstly, the manufactured SLM-metallic collectors can be reused 

indefinitely, due to their durability, which can have a tremendous impact in the price of future 



medical devices. Secondly, SLM offers great accuracy and it is already used in a variety of 

medical and dental applications [26]. Finally, the commercially available rig we have used 

allows the fabrication of between 10-15 collectors at once, making the process very efficient. 

We describe here the manufacture of a range of electrospun membranes incorporating 

different morphologies and distributions of synthetic microenvironments setting the basis for 

the design and future delivery of a new generation of devices with enhanced regenerative 

capability to be used in bone healing applications. These prototype membranes have been 

evaluated using mesenchymal stromal cells (MSCs) to determine biocompatibility and 

potential for control of stem cell populations. 

Materials and Methods 

1. Scaffold Fabrication and Characterisation 

1.1. Manufacturing of SLM Collectors 

The microfabricated electrospinning collectors were manufactured using a Renishaw SLM 

125 machine and Stainless steel 316L. The plates were manufactured using a range of 

niche-like morphologies designed using CAD software (Solidworks). The specific processing 

parameters for the fabrication of the collectors were: Laser power 200W, Speed 480 mm/s, 

Point distance 50 micrometres, and exposure time 70 microseconds. The metallic collectors 

were then used as targets in a conventional electrospinning set-up for creating electrospun 

positive imprints (see Figure1).  

1.2. Manufacturing of Microfabricated Electrospun Membranes 

Electrospun membranes were fabricated using solutions of 10 wt% poly(caprolactone) (PCL) 

(Average Mw 80000; Sigma Aldrich, UK) prepared in a blend of dichloromethane (DCM) 

(Fisher Scientific, UK) and dimethylformamide (DMF) (Fisher Scientific, UK) with ratio 90/10 

wt% DCM/DMF [27]. For this, PCL was added to the solvents and continuously stirred at 

room temperature until the polymer dissolved completely. Electrospinning was performed 

using equipment composed of a PHD2000 infuse/withdraw syringe pump (Harvard 

Apparatus, UK) and an Alpha IV Brandenburg power source (Brandenburg, UK). Plastic 

syringes (1 mL; Becton Dickinson, UK) were used to drive the solutions into 20-gauge blunt 

metallic needles (Intertronics, UK). The voltage applied was 17 kV, the flow rate was 2.5 

mL/h, and the distance from the tip of the needle to the collector was 21 cm. 

1.3. Characterisation of Electrospun Membranes 

The topography of the SLM-fabricated collectors was studied using optical microscopy. The 

morphology and size of the synthetic electrospun niches was studied in greater detail using 

scanning electron microscopy (SEM, Philips X-L 20). Fibre diameter was measured inside 

and outside the niche-like areas using ImageJ software and SEM micrographs at a 

magnification of x800. Two (2) different samples were analysed and a total of 4 random 

areas per sample were examined. A final number of 80 fibres were measured for each of the 

cases.  

 

For collecting micro-CT data, electrospun membranes were mounted in plastic straws (0.4 

cm in diameter) and placed into the micro-CT machine (SKYSCAN 1272). No filter was used 

and pixel size was set at 4.5 µm with a 0.7° rotation step. No averaging was used and a 

360° scan rotation was carried out. NRecon software was utilised to construct the image 

series using the following settings: 20% beam hardening, 2 smoothing setting, 4 ring artefact 

setting and 0 – 0.1 greyscale range was applied. An area of interest was chosen manually to 

contain several niche-areas, and then these specific areas were narrowed down. 



 

2. Biological Testing 

2.1. Culture of Mesenchymal Stromal Cell  

Mesenchymal stromal cells (MSCs) were isolated from the bone marrow of 5-6 weeks old 

male Wistar rats following the method described by Maniatopoulos et al. [28]. The femora of 

3 animals were dissected in aseptic conditions, cleaned of soft tissues, and immersed in 10 

mL of Dulbecco’s modified Eagle’s medium (DMEM) (Sigma Aldrich, UK) supplemented with 
100 units/ml of penicillin (Sigma Aldrich, UK) and 1 mg/ml of streptomycin (Sigma Aldrich, 

UK). The ends of the femora were removed and the bone marrows were flushed into 5 mL of 

DMEM supplemented with 10 units/ml of penicillin, 0.1 mg/ml streptomycin, 20 mM alanyl-

glutamine (Sigma Aldrich, UK), and 10% v/v foetal calf serum (Biosera, UK). The cells were 

then seeded into 75 cm2 culture flasks containing 10 ml of cell culture medium, and were 

incubated at 37°C and 5% CO2 for 24 h. The non-adherent cells and debris were then 

washed away with fresh cell culture medium. All cell cultures were inspected daily and the 

medium was changed every 48 to 72 h. At near confluence, the adherent cells were 

removed from culture using 0.05% Trypsin/0.02% ethylenediaminetetraacetic acid (Sigma 

Aldrich, UK), pooled into a single population, and seeded for experimentation or stored for 

later use. 

For cell culture purposes the electrospun microfabricated membranes were cut into 

circles/disks (13 mm diameter) and placed in 24 well plates. Test groups used were 

microfabricated scaffold with cells, plain sheet of electrospun PCL with cells, electrospun 

scaffolds without cells and TCP controls, 5 replicates and n = 3. The individual membranes 

were sterilised in 70% methanol and 30% dH2O for 30 minutes before rinsing with PBS three 

times. Membranes were finally left submerged in 1 ml of media for 30 minutes before cells 

were added. 

 

2.2. Metabolic Activity and Cell Morphology  

The metabolic activity of cells on the 3 different niche designs and plain membranes (without 

added topography) was measured using PrestoBlue (resazurin-based dye, n=3). Cells were 

seeded at a concentration of 50,000 cells per scaffold, and fluorescence measurements 

were taken at 1, 7 and 14 days. Cell viability and proliferation in the microfabricated scaffolds 

was compared to both 2D-TCP (tissue culture plastic) controls and plain sheets of PCL 

electrospun scaffolds (membranes without microfeatures presenting randomly distributed 

fibres). 

At each time point membranes were moved to a new well plate to prevent contamination of 

Prestoblue with any cells growing in the well. Cells were gently washed with PBS and the 

PrestoBlue reagent was mixed at a 1:9 ration in media and 700 µl added to each well for 90 

minutes. Three aliquots of 200 µl were taken from each sample and fluorescence 

measurements were taken using a microplate fluorescence reader FLx 800 Bio-Tek 

Instruments using an excitation wavelength of 540 nm and an emission wavelength of 635 

nm. After fluorescence measurements the PrestoBlue solution was removed, the cells were 

washed with PBS, fresh media was added and they were returned to the incubator. 

For fluorescent staining, MSCs were seeded onto the electrospun membranes at a 

concentration of 20000 cells per scaffold and stained with Phalloidin-FITC (to label actin 

filaments) and DAPI (nucleic acid stain). At day 5 after cell seeding, the membranes were 

fixed in 3.7% formaldehyde in PBS for 20 min at room temperature. 0.1% of triton-X100 in 

PBS was added to the samples for 20 minutes before rinsing with PBS. Phalloidin-FITC 



(1:500) and DAPI (1:1000) was added in PBS for 30 min. Cells were observed using a 

confocal scanning microscope (Carl Zeiss LSM510-META, Germany). Images (1024 x 1024 

pixels) were obtained using a Zeiss LSM 510Meta inverted confocal microscope and x10/0.3 

water dipping objective, with a pixel dwell time of 6.4 µs. Phalloidin-FITC was excited using a 

488 nm laser (20% transmission) and emission detected 505 nm. DAPI was excited using an 

800 nm laser (12% transmission) and emission detected between 435 and 485 nm. All 

image analysis was performed using Zeiss LSM image browser and ImageJ. 

2.3. Histology 

PCL scaffolds were mounted in tissue freezing medium (Leica) by submersion in liquid 

nitrogen. Samples were sectioned to 10 µm thickness using a cryostat (Leica CM1860 UV) 

at a controlled temperature of -24 °C. Slides were rinsed gently under tap water to remove 

remaining cryostat Optimal cutting temperature (OCT) compound, and then, they were 

submerged on a rack in haematoxylin for 60 seconds before being rinsing with a constant 

flow of tap water for 5 minutes. Slides were then submerged in Eosin for 5 minutes and then 

1 minute in water. Samples were exposed briefly to 70% Industrial Methylated Spirits (IMS), 

95% IMS, and left for 30 seconds submerged in 100% IMS to dehydrate the sample. 

Samples were finally submerged in xylene before mounting under a coverslip. 

2.4. Collagen deposition (Sirius red staining) 

Scaffolds were washed in PBS 3 times and fixed in 3.7% formaldehyde. The scaffolds were 

then stained using a solution of 0.1% Sirius red in picric acid (Direct Red 80, C.I. 35780, 

Sigma-Aldrich) and placed on a rocker for 18 hours. The scaffolds were then washed with 

water until no further dye was eluted. For quantitative analysis scaffolds were de-stained in 1 

ml of 0.2 M solution of NaOH and methanol (1:1) for 60 minutes on a rocker. Afterwards, 300 

µl from each sample were added in triplicate to a 96 well plate and absorbance was 

measured at a wavelength of 490 nm using a spectrophotometer plate reader.  

2.5. Stem Cell Markers 

Samples were washed in PBS and then they were submerged in 0.1% formaldehyde for 15 

minutes. CD44 antibody (Anti-rat with fluorochrome Alexa Fluor 647) (1:250) and DAPI 

(1:500) in PBS were added to the scaffolds for 1 hour before being washed with PBS. 

Images (1024 x 1024 pixels) were obtained using a Zeiss LSM 510Meta inverted confocal 

microscope and x10/0.3 water dipping objective, with a pixel dwell time of 6.4 µs. DAPI was 

excited using an 780 nm laser (8.1% transmission) and emission detected between 435 and 

485 nm. CD44 was excited using a 633 nm laser (51% transmission) and emission detected 

between 650 and 710 nm. All image analyses were performed using Zeiss LSM image 

browser and ImageJ. 

2.6. SEM fixation 

Samples were washed with distilled water for 5 minutes then sequentially submerged in the 

following solutions of ethanol (prepared in distilled water) for 15 minutes each: 35%, 60%, 

80%, 90% and 100%. Hexamethyldisilazane (HDMS) (Sigma-Aldrich) was made up to a 1:1 

mixture with ethanol by weight and added to the samples for 1 hour. 100% HDMS solution 

was then added to submerge the samples for 5 minutes, twice. Samples were left to air dry 

and then gold coated. 

3. Statistical Analyses 



Statistical analyses were performed on GraphPad Prism software using two-tailed 
Student T-test, one-way ANOVA, and post-hoc Tukey tests. In all cases, p values 
<0.05 were considered as statistically significant. 

Results 

1. Niche and fibre diameter in the microfabricated electrospun mats 

SLM allowed the creation of 3 cm x 7 cm rectangular collectors with 1 mm in thickness. The 

average niche diameter of the SLM collectors was calculated using optical micrographs and 

ImageJ (n=5). The average dimensions were 667 µm ± 85 (Niche1), 1038 µm ± 60 (Niche 2) 

and 1168 µm ± 170 (Niche 3). The electrospun replicas were analysed in the same way 

showing the following niche diameters: 892 µm ± 76 (Niche 1), 1158 µm ± 32 (Niche 2) and 

1287 µm ± 134 (Niche 3) (See Figure 2 for optical microscopy and SEM images). 

One-way ANOVA reported statistically significant differences (F (8, 1071) = 3.937, p = 

0.0001) between the diameters of fibres belonging to electrospun mats with and without 

niches (see table 1 for the average values of fibre diameters).  More specifically, post-hoc 

Tukey test showed that statistically significant differences between fibre diameters were 

found at niche locations 2a and 2b (p < 0.05), 2a and 3a (p<0.0005), and between the 

diameter plain mat (without niches) and location 3a (p <0.005) (see schematic of locations in 

Figure 3). 

It was observed in the SEM images that the density of the fibres per mm2 was visibly lower 

in the inner areas of the niche structures (see Figure 2 N-P). This was then corroborated 

with Micro-CT scans. 

2. Rat MSCs characterisation on microfabricated electrospun mats 

Rat MSCs grew and proliferated in the microfabricated scaffolds. MSCs were observed fully 

infiltrating the artificial stem cell niches, and confocal z-stacks enabled the accurate imaging 

of 3D niche areas (see Figure 4B). Sectioned samples showed cells did not penetrate 

greater than 40µm into the fibrous plain mats but they did achieve deeper penetration in 

niche areas, as mapped using the DephCod tool in the LSM Confocal software (See Figures 

4E and 4F). SEM images corroborated cell attachment (See Figure 4D) and cell distribution 

showing that the cellular population of the niches was less dense than in the surrounding not 

microfabricated areas (See Figures 4C, 4D). 

 

Discussion 

Here we present for the first time the use of selective laser melting for introducing complexity 

within electrospun membranes for biomedical applications. The use of SLM for creating 

electrospinning collectors is versatile and efficient, as the designs can be easily changed 

and adjusted with a high degree of accuracy in terms of size, morphology, depth and 

distribution of the incorporated microfeatures. On the other hand, the metallic collectors can 

be re-used indefinitely (which is highly desirable from a future end-product point of view). 

Electrospun membranes are well-known due to their great potential as regenerative 

medicine constructs since they can mimic, to a certain extent, the 3D extracellular matrix, 

providing cells with mechanical support and with a porous environment in which to 

proliferate. In this work we have achieved the incorporation of a second level of complexity 

within our electrospun membranes, which has been introduced via the use of SLM. We have 

provided the electrospun constructs with artificial well-defined microenvironments as an 

extra tool for influencing cell behaviour. The development of niche-like environments is 



indeed a new and rapid growing area of research [12-17, 19, 20, 29, 30]. In this specific 

study we have used SLM to aid in the development of electrospun membranes containing 

microfeatures and we have chosen 3 types of topography (niche structures) to develop a 

preliminary study using primary mesenchymal rat stem cells.  

The accuracy in reproducing the features incorporated within the underlying metallic 

template was high (higher than 70% for the 3 topographies studied); it was observed that a 

decrease in accuracy of reproduction was intimately related with a decrease in the size of 

the microfeature. However, this fact does not present a problem for the proposed approach 

since we aim to work with features with dimensions ranging from 250µm to 1000µm, which 

are biologically relevant in terms of reproducing aspects of a physiological niche 

environment. It is also possible to accommodate for this effect when designing the 

templates, making the features a different size so that the eventual microfeatures on the 

electrospun material are the desired size and dimensions. 

Fibre diameter was studied in different parts of the microenvironments (see schematic in 

Figure 3) and it was compared to a plain random mat of electrospun fibres. It was observed 

that the diameters corresponding to the areas in which the scaffold stretches to reproduce 

the morphology of the underlying collector the fibres presented a certain degree of alignment 

and, for these cases, the diameter was significantly smaller. These differences are 

consistent for all the distinct fibre patterns showed in this study and we attribute the changes 

in diameter to the stretching of the fibres during the formation of the scaffold. For example, 

for Niche 2, the bottom of the niche (a) presents a random distribution of fibres with a very 

similar diameter to the areas outside the niche (c); on the other hand, when we compare the 

diameter of the fibres in the bottom of the niche with the diameter on the wall of the niche (b) 

we observe a difference in the overall distribution of the fibres (which appear to be more 

aligned) and we also observe a significant difference in their diameter. Changes in fibre 

diameter can affect cell behaviour, as previously reported in the literature [31, 32]; in our 

case, we have performed an accurate study showing that our new methodology allow us to 

introduce complexity within the membranes creating niches with different fibre densities and 

different areas of fibre diameter which we hypothesise will have a direct effect in influencing 

cell behaviour. 

Mesenchymal stromal cells were found to attach to our structures and they were located 

within the microfeatures (See Figure 4). Confocal Z-stacks provided us with information 

regarding the distribution of cells within the niche structures and in their surroundings as well 

as regarding the degree of cell penetration within the scaffolds. Cells were homogeneously 

distributed within the scaffolds and the use of heat maps was key in allowing us to visualise 

the areas in which cells populated the niche structures. Cells were able to proliferate on the 

PCL scaffolds as expected; (see PrestoBlue results in Figure 4). Proliferation rate was found 

to be slower for the cells seeded on the PCL electrospun mats compared to our Tissue 

Culture Plastic (TCP) controls; we anticipated this outcome, since differences in cell 

proliferation within 2D (tissue culture plate) and 3D (scaffolds) samples are well documented 

in the literature [33]. No significant differences were observed between the different types of 

scaffolds with niche morphologies 1-3 or when comparing the scaffolds to a plain mat of 

fibres; the inclusion of intricate topography does not seem to have a direct effect in the 

degree of cell proliferation which is supported by our previous publications in which 

comparable results were reported using equivalent metabolic activity assays [13, 14]. 

The cells were found to produce collagen, which was measured using Sirius Red (Figure 5), 

and no differences between a plain scaffold and the niche-decorated scaffolds were 

observed. Collagen production can be used as a guide to determine whether MSC cells 



have differentiated into ECM producing cells such as Osteoblasts. The presence of 

extracellular collagen can indicate the proportion of cells present that are producing ECM, as 

an indicator of osteoblast activity. MSC cells have a rapid proliferation rate and produce 

lower quantities of ECM as a result. In contrast, the main function of an osteoblast cell is to 

produce ECM and to facilitate the calcification of bone. Further research needs to be carried 

out to determine the relationship between the niche-structures and osteoblastic behaviour, in 

this preliminary work we just aimed to demonstrate the general osteoblastic capability of our 

system.  

In this study, CD44 was successfully imaged on the surface of MSCs using confocal 

microscopy; CD44 is a surface glycoprotein which is involved in cell adhesion, proliferation, 

differentiation and migration processes, and has also been associated with cancer stem cells 

[34].  The International Society of Cell Therapy (ISCT) has stated that positively identified 

human MSCs must express CD105, CD73 and CD90 [35].  However, the situation for animal 

models (a rat model in our case) is not as well defined; for example, CD105, CD73 and 

CD90 are not expressed equally by all species [36] and, on the other hand,  additional 

markers, (such as CD44) are more consistently expressed across species. Nevertheless, the 

simultaneous presence of CD44 in many cell types (e.g. MSCs, haematopoietic stem cells, 

lymphoid, myeloid, megakaryotic, erythroid and endothelial cellular lineages) reduces its 

specificity and limits its use severely [36].  Additionally, evidence has shown that the levels 

of CD44 expression in rat bone marrow MSCs may vary significantly depending on animal 

strain and passage [37]. In this context, Barzilay et al [37] reported significantly high and 

constant levels of expression of CD90 and CD29 antigens on bone marrow MSCs isolated 

from four different rat strains and (at passages 2 and 7) which indicates that CD90 and 

CD29 would be a good alternative for a more extended study. In our preliminary study the 

number of CD44 positive cells seemed to be lower within the niche areas but exhaustive cell 

count studies need to be performed to support this claim and, as explained above, the use of 

extra markers will be necessary to fully understand the relationship between the niche 

environment and the specific behaviour of both a single cell and a cell population. Future 

work will focus on the use of CD90 and CD29 in order to enhance the identification of our 

MSC cells and determine if cell stemness is directly influenced by the presence of the 

microfabricated niche. In this sense, is also known that the incorporation of biomolecules 

and/or polymer coatings can also influence and direct cell behaviour [17, 38, 39]; current 

work developed in our laboratory is now focussing on the incorporation of specific 

biomolecules within our SLM-assisted optimised niche environments; these molecules are 

aimed to encourage stemness and we believe will be crucial in dictating the future 

regenerative capacity of the overall constructs.  

To summarize, in this piece work we have successfully developed and established a 

manufacturing method for the fabrication of complex electrospun scaffolds containing niche-

like structures and we have demonstrated the ability of these scaffolds to support MSC 

growth and proliferation showing the potential for these membranes to be used in bone 

regeneration and related musculoskeletal applications. 

 

Conclusion 

This paper reports for the first time a manufacturing method to rapidly and reproducibly 

fabricate intricate 3D features within biocompatible electrospun membranes using a metal 

template itself produced using SLM. These complex electrospun membranes have the 

potential to be used as tissue engineering scaffolds and/or as components of biomaterial 

devices with enhanced regenerative capability. The inclusion of SLM within the fabrication 



process allows a wide range of possibilities of design and the creation of bespoke tailored 

features. Moreover, the metallic collectors used for electrospinning may be reused, so 

having a direct impact in future scaling-up procedures and commercialisation of the end 

product.  
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Table Captions 

 

Table 1. Average fibre diameters for each area of the Niche structures. Mean ± SD is 

presented in this table. 

 

 

 

 

 

 

 

 

 



Figure Captions 

 

 

Figure 1. Schematic of the manufacturing process comprising two parts: (1) the use of SLM 

for manufacturing the stainless steel templates with a variety of niche-like topographies 

(fitting 10 templates in a single built) (1); the use of electrospinning for creating a 

biodegradable complex electrospun replica with controlled topography (2).  

 

 

Figure 2. Optical and scanning electron microscopy micrographs of SLM-manufactured 

metallic collectors and electrospun scaffolds. Images A-D show a plain collector and three of 

the chosen niche-morphologies (x1 magnification); Images E-H are higher resolution optical 



micrographs showing the metallic structures (x5 magnification); Images I-L show plain and 

niche- electrospun mats (x1 magnification); Images M-P are SEM micrographs of the plain 

electrospun scaffold and the three selected niche morphologies, scale bar is 1 mm. 

 

 

 

 

 

 

 

Figure 3. Plot highlighting the differences in fibre diameter between plain scaffolds and Niche 

1, Niche 2 and Niche 3, and schematic highlighting the different areas of the Niche 

structures chosen for measuring fibre diameter (“a”, inside the niche; “b”, lateral or side of 

the niche; “c”, outside the niche).  
 

 



 
 

Figure 4. PrestoBlue values (emission at 635nm) at 1, 7 and 14 days showing the 

proliferation of MSC cells both in plain scaffolds and niche morphologies; the samples were 

compared to a TCP-2D control. No significant differences were observed between the plain 

scaffold and the scaffolds containing microfeatures (A); confocal z-stack of Phalloidin-FITC 

stained (green) rat MSCs on a scaffold 2 Niche-like structure (x10 magnification) (B); SEM 

image of a type1 Niche-like structure supporting MSC cell growth within the 

microenvironment area and in its surroundings (scale bar is 200 µm) (C, D); D’ is showing an 
SEM false coloured micrograph of an MSC cell inside the niche microenvironment; Confocal 

image of a scaffold 2 niche presenting MSC growth (phalloidin-FITC (green) and DAPI 

(blue)) within and outside the microenvironment (x10 magnification) (E); Confocal 

representation highlighting the differences of depth within a microenvironment type 1 and its 

surroundings showing a map of cell nuclei distribution (F).  

 

 



 

 

Figure 5. Sirius red measurements showing collagen deposition in samples with niches and 

plain scaffolds. A plain scaffold was used as a control. No significant differences were 

observed between scaffolds with and without niches (A). Confocal image of DAPI and CD44 

on a plain scaffold after 7 days in culture (x10 magnification) (B). Confocal image of DAPI 

and CD44 on a type 1 scaffold after 7 days in culture (C). H&E stain of a 10 µm thick section 

of a scaffold (x5 magnification)(D). H&E optical image of a 10 µm thick section of a scaffold 

displaying the inter-niche area (x20 magnification) (D’). 
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