
This is a repository copy of Transcriptome-based identification of the optimal reference 
CHO genes for normalisation of qPCR data.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/120973/

Version: Accepted Version

Article:

Brown, A.J., Gibson, S., Hatton, D. et al. (1 more author) (2018) Transcriptome-based 
identification of the optimal reference CHO genes for normalisation of qPCR data. 
Biotechnology Journal, 13 (1). 1700259. ISSN 1860-6768 

https://doi.org/10.1002/biot.201700259

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1 

 

Biotech Method 

 

Transcriptome-based identification of the optimal reference CHO genes for 

normalisation of qPCR data 

 

Adam J. Brown
1
, Suzanne Gibson

2
, Diane Hatton

2
, David C. James

1*
 

 

1Department of Chemical and Biological Engineering, University of Sheffield, University of 

Sheffield, Mappin St., Sheffield, S1 3JD, England 

2Biopharmaceutical Development, MedImmune, Cambridge, CB21 6GH, England 

 

*Corresponding author: David C. James, Department of Chemical and Biological 

Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD 

telephone: +44-(0)114-222-7505, Email: d.c.james@sheffield.ac.uk 

 

Keywords: Chinese hamster ovary cells, qPCR, Gene expression, Reference genes, 

Expression stability.  

 

Abbreviations: CHO = Chinese hamster ovary; CV = coefficient of variation; Ct = cycle 

threshold; MFC = maximum fold change; qPCR = quantitative polymerase chain reaction; 

SD = standard deviation 

 

 

 

 

 

 

 



2 

 

Abstract 

Real-time quantitative PCR (qPCR) is the standard method for determination of relative 

changes in mRNA transcript abundance. Analytical accuracy, precision, and reliability are 

critically dependent on the selection of internal control reference genes. In this study we have 

identified optimal reference genes that can be utilized universally for qPCR analysis of CHO 

cell mRNAs. Initially, transcriptomic datasets were analysed to identify eight endogenous 

genes that exhibited high expression stability across four distinct CHO cell lines sampled in 

different culture phases. The relative transcript abundance of each gene in twenty diverse, 

commonly-applied experimental conditions was then determined by qPCR analysis. Utilizing 

GeNorm, BestKeeper, and NormFinder algorithms, we identified four mRNAs (Gnb1, 

Fkbp1a, Tmed2 and Mmadhc) that exhibited a highly stable level of expression across all 

conditions, validating their utility as universally-applicable reference genes.  Whilst any 

combination of only two genes can be generally used for normalization of qPCR data, we 

show that specific combinations of reference genes are particularly suited to discrete 

experimental conditions. In summary we report the identification of fully-validated universal 

reference genes, optimized primer sequences robust to genomic mutations, and simple 

reference gene pair selection guidelines that enable streamlined qPCR analyses of mRNA 

abundance in CHO cells with maximum accuracy and precision. 
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1. Introduction 

Real-time quantitative PCR (qPCR) is the standard method of choice for determining relative 

changes in gene expression at the transcriptional level. In Chinese hamster ovary (CHO) cell 

research it is routinely utilized to, for example, evaluate relative clone performance, 

determine expression stability, test the functionality of genetic components, and identify 

mechanistic bases of phenotypic variation (e.g. [1-4]). Accordingly, for this industrially-

important cell type, qPCR is a commonly-used core technique, where accuracy and precision 

are of critical importance.  

Accurate relative quantification of gene expression by qPCR is dependent on a 

normalization strategy to correct for sample-to-sample variations in RNA quantity, RNA 

integrity, and reverse-transcriptase efficiency [5-7]. Typically, this is achieved by 

normalizing the expression of genes of interest to that of internal control reference genes. 

Accordingly, the quality of qPCR data is critically dependent on the ‘quality’ of reference 

genes used. However, despite the publication of the MIQE guidelines [8], and frequent 

reminders of the importance of reference gene selection (e.g. [9]), unvalidated, sub-optimal 

reference genes are still commonly utilized [10-12]. 

An ideal reference gene exhibits consistent expression levels across all experimental 

conditions of interest (e.g. cell types, physiological states, growth conditions). However, 

previous studies suggest that such ideal universal reference genes do not exist, necessitating 

the use of reference gene combinations specific to different experimental systems. Indeed, it 

has been shown that many commonly utilized, historically-popular reference genes (e.g. 

Gapdh, Actb) display divergent expression levels dependent on experimental conditions [13-

17]. Unsurprisingly, the universal application of these traditional ‘housekeeping genes’ can 

lead to significant errors in data interpretation. Accordingly, it is essential to identify and 

validate specific reference genes for specific experimental systems. This process has been 
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followed for many diverse cell-types and experimental setups [18-21]. Whilst useful 

reference genes have been previously identified in CHO cells [22], in this study we 

significantly improve upon previous work through the use of RNA-seq transcriptomic 

datasets to identify novel, optimal reference genes and genomic sequence analysis to design 

primers that are robust across all CHO cell lineages.  We validate reference gene performance 

in previously untested experimental conditions and identify specific, optimal reference gene 

combinations for commonly applied experimental designs, maximising analytical accuracy 

and precision.  We provide simple guidelines for the selection of fully-validated, universally-

applicable reference genes for any qPCR study based on CHO cells.  
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2. Materials and methods 

RNA-seq analysis of CHO cell transcriptomes and candidate reference gene selection 

Two distinct transcriptomic datasets were separately generated and analyzed. Total RNA was 

extracted from 1.) three CHO cell lines (CAT-S, derived from CHOK1 by MedImmune; 

CAT-S clone expressing glutamine synthetase; CAT-S clone expressing a monoclonal 

antibody and glutamine synthetase) during exponential and stationary phases of growth 

(dataset 1; six experimental conditions), and 2.) a single CHO cell line (CHO-S clone 

expressing a monoclonal antibody) during lag, exponential, and stationary phases of growth 

(dataset 2; three experimental conditions). For each experimental condition, RNA was 

extracted from 5 x 106 viable cells (two technical replicates) using RNAeasy mini kits 

(Qiagen, Crawley, UK). RNA purity and integrity were confirmed using a NanoDrop 

spectrophotometer (Thermo Fisher Scientific, Paisley, UK) and 2100 Bioanalyzer (Agilent 

Technologies, Wokingham, UK). RNA-seq libraries were prepared using the TruSeq RNA 

library preparation kit (Illumina, Essex, UK) and sequenced using an Illumina HiSeq 2000 

system (Illumina).  For each dataset, all libraries were indexed and sequenced simultaneously 

(i.e. dataset 1 comprised two technical replicates of six conditions = twelve libraries). 

Sequence reads were mapped to the CHO-K1 reference genome using Tophat [23, 24], and 

the relative abundance of each transcript was calculated using Cufflinks [25]. Genes with 

mean expression levels above the 80th percentile were selected, and the coefficient of 

variation (CV%; standard deviation/mean) and maximum fold change (MFC; highest 

expression level/lowest expression level) of each gene were calculated in both datasets. The 

five genes with highest expression stability across the experimental conditions (i.e. lowest 

CV% and MFCs), along with the three highest ranking ‘traditional housekeepers’ [26], were 

selected as candidate reference genes. 
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Due to confidentiality restrictions, RNA-seq data from proprietary CHO cell lines 

cannot be deposited in public databases. However, the datasets can be obtained from the 

authors for non-commercial research purposes upon acceptance of a material transfer 

agreement. 

 

Primer design and validation 

Chinese hamster, CHO-K1, and murine gene sequences were aligned using Clustal [27], and 

primers were designed to amplify conserved regions. Using Primer-BLAST [28], primers 

were designed to span exon-exon boundaries and anneal at 60°C (Table 2). Primers were 

synthesized (Sigma, Poole, UK) and amplification efficiencies were determined from 

standard curves (10-fold serial dilutions of pooled cDNA samples) using the equation E = 10 

(–1/slope) (Table 2). Primer specificities were confirmed by agarose gel electrophoresis, 

melting curve analysis, and direct sequencing of qPCR products.  

 

Cell culture and sampling conditions 

All CHO cell lines were routinely cultured in CD-CHO medium (Thermo Fisher Scientific, 

Paisley, UK) at 37°C in 5% (v/v) CO2 in vented Erlenmeyer flasks (Corning, UK), shaking at 

140 rpm, and subcultured every 3-4 days at a seeding density of 2 x 105 cells/ml. Cell 

concentration and viability were determined by an automated Trypan Blue exclusion assay 

using a Vi-Cell cell viability analyser (Beckman-Coulter, High Wycombe, UK). Clonal, 

recombinant protein-expressing cell lines were constructed under MSX (Sigma) selection in 

the glutamine synthetase expression system. CHO-S derived cell lines evolved over 200 

generations were obtained from A. Fernandez-Martell [29]. Cell-line specific RNA samples 

were obtained from exponentially growing cultures in Erlenmeyer flasks. Cell culture 

environment-specific samples were obtained from exponentially growing cells cultured in 24-
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well plates (static culture; Nunc, Stafford, UK), 96-well plates (shaking culture; Nunc), mini-

bioreactors (shaking growth; Sartorius, Epsom, UK), and 125-ml Erlenmeyer flasks (shaking 

culture; Thermo Fisher Scientific). Experimental technique-specific samples were harvested 

from i) cells transfected with DNA-lipid complexes comprising DNA and Lipofectamine 

(Thermo Fisher Scientific), prepared according to the manufacturer’s instructions, ii) cells 

electroporated with DNA using the Amaxa Nucleofector (Lonza; program U024), and iii) 

cells cultured at 32°C. All samples were collected in triplicate. 

 

RNA extraction, reverse transcription, and qPCR analysis 

Total RNA was extracted from cells using RNeasy mini kits (Qiagen, Crawley, UK). RNA 

purity was confirmed by measuring 260 : 230 nm and 260 : 280 nm absorbance ratios using a 

NanoDrop spectrophotometer (Thermo Fisher Scientific). RNA integrity was confirmed 

using a Bioanalyzer (Agilent Technologies, Wokingham, UK) and agarose gel 

electrophoresis. 800 ng of extracted RNA was reverse transcribed using the Quantitect 

reverse transcription kit (Qiagen), according to manufacturer’s instructions (genomic DNA 

was eliminated during this procedure). cDNA was diluted 1: 10 in nuclease free water prior to 

qPCR analysis using a 7500 fast real-time PCR system (Applied Biosystems, Cheshire, UK). 

Reaction mixtures containing 12.5 µl QuantiFast SYBR green PCR master mix (Qiagen), 2 

µl cDNA, 2.5 µl primer mix (final concentration of 200 nM per primer), and 8 µl nuclease 

free water were prepared in MicroAmp fast optical 96-well plates (Applied Biosystems). 

Amplification conditions were as follows: 95°C for 5 min, followed by 40 cycles at 95°C for 

15 s and 60°C for 60 s. Melting curve analysis was performed from 60 – 95°C.  Reaction 

mixtures containing no template, or products from reverse transcription reactions performed 

in the absence of reverse transcriptase, were used as negative controls. All samples were run 

in triplicate and mean Ct (cycle threshold) values were used for further analysis.  
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Analysis of gene expression stability 

Reference gene expression stabilities across varying experimental conditions were analysed 

using GeNorm ([30]; https://genorm.cmgg.be/), NormFinder ([31]; 

http://moma.dk/normfinder-software), and BestKeeper ([32]; http://www.gene-

quantification.de/bestkeeper.html) software packages according to developer’s instructions. 

 

  

http://moma.dk/normfinder-software
http://www.gene-quantification.de/bestkeeper.html
http://www.gene-quantification.de/bestkeeper.html
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3. Results and discussion 

In silico identification of candidate reference genes 

In order to identify potential reference genes, we analysed two transcriptomic datasets, 

derived from RNA-seq analyses of 1.) three discrete CHO cell lines (CAT-S, a CAT-S clone 

expressing glutamine synthetase, and a CAT-S clone expressing glutamine synthetase and a 

monoclonal antibody) in two different growth phases (exponential and stationary), and 2.) a 

further CHO cell line (CHO-S clone expressing a monoclonal antibody) in three distinct 

growth phases (lag, exponential, and stationary). Ideally reference gene expression levels are 

similar to those of the gene(s) of interest. Therefore, given that the majority of qPCR studies 

in CHO cells measure expression of strongly-expressed recombinant genes, we focussed our 

search for reference gene candidates on relatively highly-expressed endogenous genes 

(expression levels > the 80th percentile). Genes were ranked according to expression stability 

across all experimental conditions in both datasets, as measured by both coefficient of 

variation (CV%) and maximum fold change (MFC; fold change between the largest and 

smallest expression values within the dataset).  

As shown in Table 1, the five top ranked genes exhibited very high expression 

stability across the experimental conditions tested, having CVs < 5.5%, and MFCs < 1.16 in 

both datasets. Accordingly, these genes (Pkar1a, Fkbp1a, Mmadhc, Gnb1, Tmed2) were 

identified as ideal reference gene candidates for qPCR analyses in CHO cells.  We also 

determined the expression stability of commonly-used ‘traditional housekeepers’ [26]. The 

three highest ranking housekeepers (Actb, Pgam1, Gapdh) exhibited significantly lower 

expression stabilities (CVs > 25%, MFCs > 2) than the top-ranked genes. Accordingly, we 

hypothesized that the five newly-identified candidates would have superior reference gene 

performance across diverse experimental conditions in CHO cells. However, for comparison, 

we also included the three top-ranking classical ‘housekeepers’ in our candidate screen. We 
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note that all genes had significantly higher CVs in dataset 1 compared to dataset 2, 

presumably due to the increased number of experimental conditions tested (6 > 3). 

Optimized qPCR primers were designed for each of the eight candidate reference 

genes using Primer-BLAST [28]. Given that CHO cells are prone to genetic changes (e.g. via 

genetic drift and DNA replication errors [33-35]), we designed primers to target sequence 

regions that are conserved between mouse, chinese hamster [36], and CHO-K1 [24] genomes 

(see Table 2 for primer sequences). We reasoned that these regions will be less susceptible to 

genetic changes, and accordingly that our primers will be robust across diverse CHO cell 

lineages and experimental setups. Further, to facilitate the use of reference gene combinations 

in high-throughput qPCR analysis, all primers were designed to amplify targets at a unified 

annealing temperature (60°C). Specificity and acceptable amplification efficiency (96 - 

102%; Table 2) was confirmed for each primer pair by melt curve and standard curve 

analysis respectively.  

 

Gnb1, Fkbp1a, Mmadhc, and Tmed2 exhibit very high expression stability across all 

experimental conditions 

To identify reference genes that can be utilized for the vast majority of experimental designs 

we profiled the expression level of each candidate gene in a wide variety of diverse, 

commonly-applied experimental conditions (Figure 1). Samples included nine discrete CHO 

cell lines that had been subjected to cloning, selection and directed evolution processes. With 

respect to the latter, these cell lines had been maintained in culture for over 200 generations, 

and accordingly enabled a direct assessment of the hypothesis that our designed primers 

target sequence regions that are robust to genetic drift. Moreover, they provided a direct 

measurement of the impact of cell culture age (i.e. passage number) on reference gene 

expression stability.  Other conditions tested included varying growth phases (e.g. lag, 
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exponential, early stationary, late stationary), cell culture environments (e.g. shaking culture, 

static culture, mini-bioreactors), and commonly used techniques (e.g. electroporation, 

lipofection, cold-shock). Collectively, these conditions cover the majority of experimental 

manipulations that are used in qPCR studies employing CHO cells, providing a 

comprehensive assessment of candidate reference gene functionality. 

The relative transcript abundance of candidate reference genes in 20 discrete CHO 

cell samples (Figure 1) was determined by qPCR analysis. To evaluate gene expression 

stabilities across the entire dataset we utilized three distinct, commonly-applied software 

packages. These three algorithms (GeNorm [30], NormFinder [31], BestKeeper [32]) use 

different methods to measure gene expression stability. NormFinder uses a linear mixed 

effects model to estimate expression variation, GeNorm calculates the mean pairwise 

variation for each gene compared to all other candidates (M), and BestKeeper uses Ct values 

to calculate descriptive statistics such as standard deviation (SD) and CV. Whilst they 

generally provide very similar results, to account for the relative strengths and weaknesses of 

each method, they are typically utilized in combination to assess candidate reference gene 

suitability [37, 38]. Each tool provides a ranking of candidate reference gene performance 

according to expression stability (S) values (NormFinder), M values (GeNorm) and SDs 

(BestKeeper), where values greater than 0.5, 0.5 and 1 respectively are considered indicators 

of unstable expression. 

As shown in Table 3, whilst there was no absolute consensus between the three 

methods, gene rankings were similar for each algorithm and four genes were clearly 

identified as having higher expression stability than the other candidates. Gnb1, Fkbp1a, 

Tmed2 and Mmadhc were identified as the four most stably expressed genes by both 

GeNorm and Bestkeeper (in different ranking orders; Table 3), and ranked as four of the top 

five genes by NormFinder. Further, all four of these genes were ranked first by at least one 
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software package. Moreover, the relative stability values calculated for these genes were 

significantly lower (i.e. indicating greater expression stability) than those of the four 

remaining candidate genes (Gapdh, Pkar1a, Actb, Pgam1). For example, Bestkeeper-

calculated SDs and GeNorm M values ranged from 0.14 – 0.21 and 0.144 – 0.197 

respectively for the top four genes, compared to 0.37 – 0.45 and 0.282 – 0.364 for the bottom 

four genes. Indeed, GeNorm M values highlight the clear separation of the candidate genes 

into two distinct groups, as only genes with M values below 0.2 are considered to have ‘very 

high’ expression stability [39]. These findings are therefore largely in line with our original 

RNA-seq results (which only profiled relative expression levels in four distinct cell lines and 

three different growth phases), where the top five ranked genes (including Pkar1a) had 

significantly higher expression stabilities than classical “housekeepers”.  Accordingly, our 

results i) validated that traditional housekeeping genes, specifically Gapdh, Actb and Pgam1, 

are suitable reference genes for qPCR analyses in CHO cells (i.e. all three have acceptable 

expression stabilities, as evidenced by M values < 0.5, S values < 0.5, and SDs < 1), but ii) 

determined that four newly-identified genes with significantly higher expression stabilities 

offer superior reference gene performance, and, importantly iii) showed that these four genes 

exhibit stable expression across a wide range of commonly-used experimental conditions, 

potentially enabling a universal combination of reference genes to be utilized for all qPCR 

studies. With respect to the latter, GeNorm can be used to determine the optimal number of 

reference genes required for accurate data normalization by calculating the pairwise variation 

(Vn/n+1) between sequential normalization factors (NFn and NFn+1) (as described in [30]). 

Analysing the entire dataset, V2+3 is calculated to be 0.063 (V3+4 = 0.046), well below the 

proposed cut-off value of 0.15, indicating that only two of the identified reference genes are 

generally required for normalization of gene expression in CHO cells.  
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Identifying optimal reference gene-pair combinations for any qPCR study in CHO cells 

To both i) further confirm that a universal set of reference genes can be utilized generically 

for qPCR experiments in CHO cells, and ii) identify specific, optimal combinations of 

reference genes for discrete experimental setups, we analysed gene expression stability in 

distinct conditions individually. To rigorously test candidate reference gene performance in 

each specific condition, we profiled gene expression levels in all nine discrete cell lines (see 

Figure 1) following electroporation, lipofection, and cold-shock. Further, we investigated 

gene expression levels in each growth phase (lag, exponential, early stationary, late 

stationary) in three different host cell lines (CAT-S, CHO-S, CHO-K1). Late stationary phase 

RNA samples were taken from cells that had not divided for > 3 days, providing a direct 

measurement of reference gene expression stability in ‘old cells’. Table 4 shows the results 

from analysing each individual dataset with GeNorm, BestKeeper and NormFinder. Gnb1, 

Fkbp1a, Tmed2 and Mmadhc exhibited very high expression stability in all experimental 

conditions, having M values < 0.23, S values < 0.25 and SDs < 0.32 in all five datasets. 

Accordingly, these data conclusively show that all four genes exhibit constant expression 

levels across diverse experimental conditions, and are therefore ‘ideal’ reference genes that 

can be universally-applied in qPCR analyses (whilst we predict that their expression will be 

similarly stable in more unusual experimental conditions not tested here, their performance in 

such systems should be validated before use). Although we specifically selected candidate 

reference genes with relatively high expression levels in order to enable optimal 

normalization of strongly-expressed recombinant gene mRNA transcript abundances, Gnb1, 

Fkbp1a, Tmed2 and Mmadhc will also be suitable for studies measuring expression of 

endogenous CHO genes. In each of the RNA samples that we analyzed by RNA-seq, the log2 

fold change between the highest expressed reference gene and median gene expression levels 

was < 4.7 (data not shown). Accordingly, our identified reference genes are not too highly 
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expressed to prevent accurate normalization of most endogenous gene transcript abundances 

in qPCR analyses.   

As shown in Table 4, specific optimal combinations of reference genes were 

identified for different experimental conditions, where V2+3 was < 0.07 for each dataset. For 

example, our findings indicate that Gnb1+Mmadhc and Gnb1+Fkbp1a are ideal reference 

gene selections when quantifying gene expression by qPCR following electroporation and 

lipofection respectively. Whilst the four newly-identified, universally-applicable reference 

genes all exhibit highly stable expression in each experimental system, utilizing the most 

stably expressed gene pair for each condition will optimize both accuracy and precision. 

Accordingly, the use of condition-specific gene pairs may decrease the minimum detectable 

fold-change in gene expression levels. Therefore, based on our findings, we suggest the 

following simple rules for reference gene selection for qPCR analyses in CHO cells: 

1. Routinely use the same reference gene pair for all studies (we recommend Gnb1 and 

Fkbp1a, but Tmed2 and Mmadhc are also applicable; see Table 3). 

2. When maximum accuracy is required (e.g. detecting fold changes < 1.5), use condition-

specific reference gene combinations according to Table 4.  

3. If conditions are significantly different to those tested in this study (see Figure 1), validate 

the performance of Gnb1, Fkbp1a, Tmed2 and Mmadhc in the experimental system, and use 

genes that exhibit highest expression stabilities. 

 

4. Concluding remarks 

In conclusion, we have utilized transcriptomic datasets to identify novel reference gene 

candidates, and subsequently comprehensively validated their expression stability in diverse, 

commonly-used experimental conditions. We have identified a set of optimal reference genes 

(Gnb1, Fkbp1a, Tmed2, Mmadhc) that can be used universally in qPCR studies in CHO cells, 
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and specifically designed corresponding primers that are robust to genomic mutations. These 

genes function in different cellular pathways, being involved in protein folding (Fkbp1a), 

protein trafficking (Tmed2), signal transduction (Gnb1), and vitamin B12 metabolism 

(Mmadhc), and accordingly the risk of co-regulation is minimal. Our findings show that these 

newly-identified genes exhibit sufficient expression stability such that only two reference 

genes are required for accurate normalization of qPCR data, enabling significant savings in 

time, cost, and sample usage. The provision of fully-validated universal reference genes, 

optimized primer sequences, and simple gene pair selection guidelines (including specific, 

optimal gene combinations for discrete experimental conditions) will enable industrial and 

academic groups to perform streamlined qPCR analyses with maximum accuracy and 

precision. The specific route of reference gene identification and validation described in this 

study is particularly applicable to other cell-types that are commonly utilized in a large 

number of diverse experimental conditions.  



16 

 

Acknowledgements 

This work was supported by MedImmune. 

 

The authors declare no financial or commercial conflict of interest. 

 

5. References 

[1] Ahmadi, M., Mahboudi, F., Eidgahi, A., Reza, M., et al., Evaluating the efficiency of 

phiC31 integrase‐ mediated monoclonal antibody expression in CHO cells. Biotechnol. Prog. 

2016, 32, 1570-1576. 

[2] Li, H., Chen, K., Wang, Z., Li, D., et al., Genetic analysis of the clonal stability of 

Chinese hamster ovary cells for recombinant protein production. Mol. Biosyst. 2016, 12, 102-

109. 

[3] Balasubramanian, S., Rajendra, Y., Baldi, L., Hacker, D. L., Wurm, F. M., Comparison of 

three transposons for the generation of highly productive recombinant CHO cell pools and 

cell lines. Biotechnol. Bioeng. 2016, 113, 1234-1243. 

[4] Zhang, A., Tsang, V. L., Markely, L. R., Kurt, L., et al., Identifying the differences in 

mechanisms of mycophenolic acid controlling fucose content of glycoproteins expressed in 

different CHO cell lines. Biotechnol. Bioeng. 2016, 113(11), 2367-2376. 

[5] Bustin S.A., Nolan, T, Pitfalls of quantitative real-time reverse-transcription polymerase 

chain reaction. J Biomol. Tech. 2004, 15, 155-166. 

[6] Fleige, S., Pfaffl, M. W., RNA integrity and the effect on the real-time qRT-PCR 

performance. Mol. Aspects Med. 2006, 27, 126-139. 

[7] Huggett, J., Dheda, K., Bustin, S., Zumla, A., Real-time RT-PCR normalisation; strategies 

and considerations. Genes Immun. 2005, 6, 279-284. 



17 

 

[8] Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., et al., The MIQE guidelines: 

minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 

2009, 55, 611-622. 

[9] Bustin, S. A., Benes, V., Garson, J., Hellemans, J., et al., The need for transparency and 

good practices in the qPCR literature. Nat. Methods 2013, 10, 1063-1067. 

[10] Dijkstra, J. v., van Kempen, L., Nagtegaal, I., Bustin, S., Critical appraisal of 

quantitative PCR results in colorectal cancer research: can we rely on published qPCR 

results? Mol. Oncol. 2014, 8, 813-818. 

[11] Bustin, S., The continuing problem of poor transparency of reporting and use of 

inappropriate methods for RT-qPCR. Biomol. Detect Quantif. 2017, 12, 7-9. 

[12] Bustin, S. A., Nolan, T., Improving the reliability of peer reviewed publications: we are 

all in it together. Biomol. Detect Quantif. 2016, 7, A1-A5. 

[13] Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., et al., Housekeeping genes as 

internal standards: use and limits. J. Biotechnol. 1999, 75, 291-295. 

[14] Schmittgen, T. D., Zakrajsek, B. A., Effect of experimental treatment on housekeeping 

gene expression: validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. 

Methods 2000, 46, 69-81. 

[15] Bas, A., Forsberg, G., Hammarström, S., Hammarström, M. L., Utility of the 

housekeeping genes 18S rRNA, β‐ Actin and Glyceraldehyde‐ 3‐ phosphate‐
dehydrogenase for normalization in real‐ time quantitative reverse transcriptase‐ polymerase 

chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 

2004, 59, 566-573. 

[16] Derks, N., Müller, M., Gaszner, B., Tilburg-Ouwens, D., et al., Housekeeping genes 

revisited: different expressions depending on gender, brain area and stressor. Neuroscience 

2008, 156, 305-309. 



18 

 

[17] Guénin, S., Mauriat, M., Pelloux, J., Van Wuytswinkel, O., et al., Normalization of qRT-

PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation 

of references. J. Exp. Bot. 2009, 60, 487-493. 

[18] Jacob, F., Guertler, R., Naim, S., Nixdorf, S., et al., Careful selection of reference genes 

is required for reliable performance of RT-qPCR in human normal and cancer cell lines. 

PLoS One 2013, 8, e59180. 

[19] van de Moosdijk, A. A. A., van Amerongen, R., Identification of reliable reference genes 

for qRT-PCR studies of the developing mouse mammary gland. Sci. Rep. 2016, 6, 35595. 

[20] Sgamma, T., Pape, J., Massiah, A., Jackson, S., Selection of reference genes for diurnal 

and developmental time-course real-time PCR expression analyses in lettuce. Plant methods 

2016, 12, 21. 

[21] Pessoa, D. D. V., Vidal, M. S., Baldani, J. I., Simoes-Araujo, J. L., Validation of 

reference genes for RT-qPCR analysis in Herbaspirillum seropedicae. J. Microbiol. Methods 

2016, 127, 193-196 

[22] Bahr, S. M., Borgschulte, T., Kayser, K. J., Lin, N., Using microarray technology to 

select housekeeping genes in Chinese hamster ovary cells. Biotechnol. Bioeng. 2009, 104, 

1041-1046. 

[23] Trapnell, C., Pachter, L., Salzberg, S. L., TopHat: discovering splice junctions with 

RNA-Seq. Bioinformatics 2009, 25, 1105-1111. 

[24] Xu, X., Nagarajan, H., Lewis, N. E., Pan, S., et al., The genomic sequence of the 

Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 2011, 29, 735-741. 

[25] Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., et al., Transcript assembly and 

quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell 

differentiation. Nat. Biotechnol. 2010, 28, 511-515. 



19 

 

[26] Kozera, B., Rapacz, M., Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 

391-406. 

[27] Larkin, M. A., Blackshields, G., Brown, N., Chenna, R., et al., Clustal W and Clustal X 

version 2.0. Bioinformatics 2007, 23, 2947-2948. 

[28] Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., et al., Primer-BLAST: a tool to 

design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012, 13, 

134. 

[29] Mozley, O. L., Thompson, B. C., Fernandez‐ Martell, A., James, D. C., A mechanistic 

dissection of polyethylenimine mediated transfection of CHO cells: To enhance the 

efficiency of recombinant DNA utilization. Biotechnol. Prog. 2014, 30, 1161-1170. 

[30] Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., et al., Accurate normalization of 

real-time quantitative RT-PCR data by geometric averaging of multiple internal control 

genes. Genome Biol. 2002, 3(7), 0034.1-0034.11. 

[31] Andersen, C. L., Jensen, J. L., Ørntoft, T. F., Normalization of real-time quantitative 

reverse transcription-PCR data: a model-based variance estimation approach to identify genes 

suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 

5245-5250. 

[32] Pfaffl, M. W., Tichopad, A., Prgomet, C., Neuvians, T. P., Determination of stable 

housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–

Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509-515. 

[33] Davies, S. L., Lovelady, C. S., Grainger, R. K., Racher, A. J., et al., Functional 

heterogeneity and heritability in CHO cell populations. Biotechnol. Bioeng. 2013, 110, 260-

274. 



20 

 

[34] Kaas, C. S., Kristensen, C., Betenbaugh, M. J., Andersen, M. R., Sequencing the CHO 

DXB11 genome reveals regional variations in genomic stability and haploidy. BMC 

Genomics 2015, 16, 160. 

[35] Cao, Y., Kimura, S., Itoi, T., Honda, K., et al., Construction of BAC‐ based physical 

map and analysis of chromosome rearrangement in chinese hamster ovary cell lines. 

Biotechnol. Bioeng. 2012, 109, 1357-1367. 

[36] Brinkrolf, K., Rupp, O., Laux, H., Kollin, F., et al., Chinese hamster genome sequenced 

from sorted chromosomes. Nat. Biotechnol. 2013, 31, 694-695. 

[37] Zhu, J., Zhang, L., Li, W., Han, S., et al., Reference gene selection for quantitative real-

time PCR normalization in Caragana intermedia under different abiotic stress conditions. 

PLoS One 2013, 8, e53196. 

[38] De Spiegelaere, W., Dern-Wieloch, J., Weigel, R., Schumacher, V., et al., Reference 

gene validation for RT-qPCR, a note on different available software packages. PLoS One 

2015, 10, e0122515. 

[39] Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J., qBase 

relative quantification framework and software for management and automated analysis of 

real-time quantitative PCR data. Genome Biol. 2007, 8(2), R19. 

  



21 

 

Table 1: Identification of candidate reference genes. Two transcriptomic datasets derived 

from RNA-seq analysis of four discrete CHO cell lines in different growth phases were 

analysed to identify genes exhibiting highest expression stabilities (dataset 1 = three cell lines 

in two growth phases, dataset 2 = one cell line in three growth phases). Genes were ranked 

according to coefficient of variation (CV%; standard deviation/mean) and maximum fold 

change (MFC; highest expression level/ lowest expression level) in expression across 

different experimental conditions. The five genes with highest expression stabilities are 

shown, as well as the three highest ranking genes from a panel of ‘traditional housekeepers’.  

FPKM = fragments per kilobase of transcript per million mapped reads. 

 RNA-seq dataset 1 RNA-seq dataset 2 

Gene Mean 

FPKM 

CV% Max FC Mean 

FPKM 

CV% Max FC 

All Genes       

Pkar1a 160 2.55 1.08 341 0.21 1.00 

Fkbp1a 687 3.20 1.10 568 2.05 1.05 

Mmadhc 124 4.36 1.13 108 3.02 1.06 

Gnb1 457 5.49 1.15 1124 1.23 1.03 

Tmed2 217 5.43 1.14 286 3.01 1.07 

House- 

keepers 

      

Actb 2722 25 2.00 5066 4.43 1.11 

Pgam1 306 27 2.16 613 2.35 1.05 

Gapdh 803 32 2.64 2163 2.80 1.07 
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Table 2: Reference gene primer sequences and amplification efficiencies. Primers span 

exon-exon boundaries, anneal at 60°C, and amplify regions conserved in Chinese Hamster, 

CHO-K1 and Mouse. Amplification efficiencies and correlation coefficients (R2) were 

determined from standard curves (10-fold serial dilutions of pooled cDNA samples) using the 

equation E = 10 (–1/slope), and linear regression analysis respectively. Ct values represent 

the mean of twenty independent experiments (see Figure 1).   

Gene NCBI Accession 

number 

Primer sequences Primer 

Efficiency 

R
2
 Amplicon 

size (bp) 

Ct 

value 

Pgam1 XM_007617182.1 AGGCGCAGGTAAAGATCTGG 

TGCGATCCTTACTGATGTTGC 

96.06% 0.996 96 19.47 

Pkar1a XM_003500312.2 GAATCCTCATGGGAAGCACTCTG 

CCTTGCACCACGATCTTCTG 

96.49% 0.995 160 19.64 

Mmadhc XM_003513988.2 TGTCACCTCAATGGGACTGC 

CAGGTGCATCACTACTCTGAAAC 

97.63% 0.997 145 21.34 

Gapdh NM_001244854.2 GAAAGCTGTGGCGTGATGG 

TACTTGGCAGGTTTCTCCAG 

98.03% 0.998 187 15.71 

Gnb1 NM_001246701.1 CCATATGTTTCTTTCCCAATGGC 

AAGTCGTCGTACCCAGCAAG 

98.39% 0.999 184 18.02 

Tmed2 XM_007648402.1 GCCCACATGGATGGGACATAC 

TGATGAGCTTCTGTCTCCATGTC 

98.44% 0.999 131 20.57 

Fkbp1a XM_003499952.2 CTCTCGGGACAGAAACAAGC 

GACCTACACTCATCTGGGCTAC 

99.09% 0.998 95 19.74 

Actb NM_001244575.1 TGACCCAGATCATGTTTGAGACC 

CAGGATGGCATGAGGGAGAG 

101.80% 0.998 173 16.90 

 

 

  

http://www.ncbi.nlm.nih.gov/nuccore/XM_007617182.1
http://www.ncbi.nlm.nih.gov/nuccore/XM_003500312.2
http://www.ncbi.nlm.nih.gov/nuccore/XM_003513988.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_001244854.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_001246701.1
http://www.ncbi.nlm.nih.gov/nuccore/XM_007648402.1
http://www.ncbi.nlm.nih.gov/nuccore/XM_003499952.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_001244575.1
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Table 3: Gnb1, Fkbp1a, Tmed2 and Mmadhc exhibit very high expression stability 

across diverse, commonly-applied experimental conditions. The transcript abundance of 

eight candidate reference genes in twenty discrete CHO cell samples (see Figure 1) was 

measured by qPCR analysis, and relative gene expression stabilities across all experimental 

conditions were determined using GeNorm, NormFinder and Bestkeeper software packages.  

 geNorm NormFinder BestKeeper 

 Stability 

Value (M) 

Rank Stability 

Value (S) 

Rank SD (± CP) Rank 

Gnb1 0.197 4 0.148 1 0.15 2 

Fkbp1a 0.144 1 0.180 2 0.21 4 

Tmed2 0.183 3 0.288 4 0.14 1 

Mmadhc 0.144 1 0.291 5 0.18 3 

Gapdh 0.282 5 0.251 3 0.37 5 

Pkar1a 0.348 7 0.305 6 0.40 6 

Actb 0.326 6 0.309 7 0.41 7 

Pgam1 0.364 8 0.324 8 0.45 8 
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Table 4: Identification of specific, optimal reference combinations for discrete 

experimental conditions. The expression stability of the four ‘best-performing’ reference 

gene candidates (see Table 3) was analysed in distinct conditions individually. For each 

experimental system, samples were collected from nine discrete CHO cell lines (see Figure 

1). Optimal reference gene combinations recommended for use in each specific experimental 

condition are shown in bold. 

Condition Expression 

stability 

(rank) 

V2+3 V3+4 NormFinder S 

values (range) 

GeNorm M 

values (range) 

BestKeeper SD 

(± CP) (range) 

Discrete cell 

lines 

(exponential 

phase growth) 

Fkbp1a 

Tmed2 

Mmadhc 

Gnb1 

0.06 0.056 0.055 – 0.213 0.108 – 0.200 0.12 – 0.14 

Cell growth 

phases 

Mmadhc 

Fkbp1a 

Gnb1 

Tmed2 

0.041 0.057 0.051 – 0.226 0.04 – 0.165 0.12 – 0.31 

Lipofection Gnb1 

Fkbp1a 

Mmadhc 

Tmed2 

0.046 0.046 0.078 – 0.167 0.139 – 0.179 0.08 – 0.13 

Electroporation  Gnb1 

Mmadhc 

Tmed2 

Fkbp1a 

0.064 0.061 0.068 – 0.247 0.117 – 0.223 0.07 – 0.15 

Hypothermia  Tmed2 

Fkbp1a 

Gnb1 

Mmadhc 

0.042 0.045 0.044 – 0.176 0.088 – 0.152 0.07 – 0.16 
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Figure 1: Reference gene expression levels were profiled in a wide range of commonly-

applied experimental conditions. The expression stability of eight candidate reference 

genes (see Table 1) was determined across twenty discrete experimental samples (see Table 

3). Host cell-line specific RNA samples were obtained from exponentially growing cultures 

of CAT-S, CHO-S and CHOK1. Other condition-specific RNA samples were obtained from 

varying host cell lines (denoted by circle colours).  GFP = green fluorescent protein; mAb = 

monoclonal antibody; µ = growth rate. 

 

 

 

 

 

 

 

 

 


