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Abstract. We make a refined comparison between the Navier-Stokes equations and

their dynamically-scaled Leray equations solely on the basis of their scaling property.

Previously it was observed using the vector potentials that they differ only by one drift

term [Ohkitani (2017)]. The Duhamel principle recasts the equations in path integral

forms, which differ by twoMaruyama-Girsanov densities. In this brief paper we simplify

the concept of quasi-invariance (or, near-invariance) by combining the result with a

Cole-Hopf transform and the Feynman-Kac formula. That way, as a multiplicative

characterisation we can place those equations just one Maruyama-Girsanov density

apart. Furthermore, as an additive characterisation we express the difference in terms

of the Malliavin H-derivative.

Keywords: Navier-Stokes equations, Leray equations, dynamic scaling, critical spaces,

Cameron-Martin-Maruyama-Girsanov theorem, Malliavin derivative, global regularity
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1. Introduction

The theory of the Navier-Stokes equations [13] has a long history, see e.g. [3, 7, 6], or

[22] for references cited therein. There have been substantial progress recently, including

the results regarding critical norms such as ‖u‖L3 or ‖u‖Ḣ1/2 . These norms are defined

respectively by ‖u‖3L3 =
∫
R3 |u|3dx and ‖u‖2

Ḣ1/2 =
∫
R3 |k||û(k)|2dk, where û(k) denotes

a Fourier transform of the velocity u(x). As a motivation for the current research, we

recall some of the known results: i) the regularity criterion using ‖u‖L3 [8] and ii)

the global regularity result for small initial data; in ‖u‖Ḣ1/2 [11] and in ‖u‖BMO−1

[12].‡ We recall the standard embedding Ḣ1/2 ⊂ L3 ⊂ BMO−1, which follows from

‖u‖Ḣ1/2 ≥ c‖u‖L3 ≥ c′‖u‖BMO−1 with constants c, c′. Both the L3 and Ḣ1/2-norms are

’extensive,’ defined with spatial integrals, as opposed to ’intensive’ norms defined with

sup operations, which are local in space.

It seems that intensive norms are more suitable for the analysis of the Navier-

Stokes equations because it is expected in incompressible fluids integrations are weakly

nonlocal through the action of pressure term [1]. It would then be advantageous to take

up dependent variables, which are critical and can be treated as an ’intensive norm’.

This can be achieved by using the vector potential in 3D and the stream function in 2D.

One example of benefits of such an approach is the following. (See Section 2

for details.) Consider the Navier-Stokes equations in the velocity variable, which is

subcritical, and apply the Duhamel principle to rewrite them as integral equations. The

so-called Serrin’s regularity condition
∫ T

0
‖u‖2L∞dt < ∞ is well-known for regularity

of solutions on [0, T ]. However, non-trivial efforts would be required to deduce local

existence by successive approximations and identify a condition under which classical

solutions can be extended.

In contrast, basically the same criterion is obtained immediately once the equations

are written in the vector potentials and the Cole-Hopf transform is introduced [23]. This

is because in converting to the path-integral equations the Feynman-Kac theorem states

that solutions are smooth provided that the potential term is bounded. In other words,

we can identify the boundedness condition for the potential term (to be a martingale)

as the Serrin’s condition for regularity.

By applying dynamic scaling to the Navier-Stokes equations written in the vector

potential, it was found [22] that the Navier-Stokes and the Leray equations are just one

drift term apart. Moving onto path-integral forms, it was also found that the equations

are identical up to two Maruyama-Girsanov densities G. Our purpose here is to nail

down the difference to just one G, by combining the above idea with the Cole-Hopf

transform [23], followed by an application of the Feynman-Kac formula.

The rest of the paper is organised as follows. In section 2 we apply the Cole-Hopf

‡ We mean by BMO a class of functions f of bounded mean oscillations, defined with the semi-norm

‖f‖BMO = supQ
1

|Q|

∫
Q
|f(x)− fQ| dx, where fQ = 1

|Q|

∫
Q
|f(x)| dx denotes the average over a volume

|Q| of a cube Q. Note also that u ∈ BMO−1 ⇐⇒ u = ∂ψ, ψ ∈ BMO, where ∂ denotes a spatial

derivative.
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transform to the Navier-Stokes and Leray equations written in the vector potential.

We then apply the Feynman-Kac formula to convert them to path-integral forms. In

Section 3, by changing probability measures using the Cameron-Martin-Maruyama-

Girsanov theorems, we remove or add the effect of the drift term, thereby characterising

the difference in both multiplicative and additive manners. Section 4 is devoted to a

summary.

2. Basic equations

2.1. Navier-Stokes and Leray equations

We consider the incompressible Navier-Stokes equations with standard notations in R
3

∂u

∂t
+ u · ∇u = −∇p+ 1

2
△u, (1)

∇ · u = 0,

u(x, 0) = u0(x).

Assuming that a solution to the Navier-Stokes equations blows up at t = t∗, we apply

the dynamic scaling transformations e.g. [4, 14, 20, 22]

u(x, t) =
1√

2a(t∗ − t)
U (ξ, τ), (2)

ξ =
x√

2a(t∗ − t)
, τ =

∫ t

0

ds

λ(s)2
=

1

2a
log

t∗
t∗ − t

, (3)

where λ(t) =
√

2a(t∗ − t) and a > 0 is a zooming parameter. We then obtain the

non-steady version of the Leray equations

∂U

∂τ
+U · ∇ξU + a(ξ · ∇ξU +U ) = −∇ξP +

1

2
△ξU , (4)

∇ξ ·U = 0.

We take 2at∗ = 1 so as to make the initial condition in common U (·, 0) = u0(·). The
equations (1) and (4) differ by the two terms multiplied by the factor a, which represent

drift and damping. Hence the Navier-Stokes equations written in u are not invariant

under dynamic scaling transform. It is known [16] that under mild conditions there are

no nontrivial steady solutions to (4).

We introduce the vector potentials ψ defined in such a way that u = ∇ × ψ and

∇·ψ = 0. The Navier-Stokes equations can then be written as a nonlocal version of the

Hamilton-Jacobi equations [19]

∂ψ

∂t
− 1

2
△ψ = T [∇ψ], (5)
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where

T [∇ψ] ≡ 3

4π
−
∫

R3

[r · (∇×ψ(y))] r × (∇×ψ(y))
|r|5 dy, (6)

with r = x−y and −
∫

denotes a principal-value integral. We assume that |ψ(x, t)| → 0

as |x| → ∞ for all t ≥ 0. Note that ∇ · T [∇ψ] = 0 is satisfied. (See [18] for the 2D

counterpart.)

The dynamic scaling transformation for ψ(x, t) is defined by [22]

ψ(x, t) = Ψ(ξ, τ) (7)

and it satisfies

∂Ψ

∂τ
− 1

2
△ξΨ+ aξ · ∇ξΨ =

3

4π
−
∫

R3

ρ× (∇×Ψ(ξ′))ρ · (∇×Ψ(ξ′))

|ρ|5 dξ′, (8)

where ρ = ξ − ξ′ and ψ(·, 0) = Ψ(·, 0). The difference between (5) and (8) is just one

drift term, which is minimal due to the critical nature of ψ.

2.2. Cole-Hopf and Feynman-Kac formulas

We introduce the Cole-Hopf transform[23] by

ψj = k log θj, (j = 1, 2, 3), (9)

with a constant k( 6= 0) and derive the equations for θ. Their derivation is straightforward

and brief, but best stated here for completeness

∂ψj

∂t
− Tj[∇ψ]−

1

2
△ψj =

k

θj

∂θj
∂t

− k2Tj

[∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
− 1

2
k

(△θj
θj

− |∇θj|2
θ2j

)

= k

{
1

θj

(
∂θj
∂t

− 1

2
△θj

)
−

(
k Tj

[∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
− 1

2

|∇θj|2
θ2j

)}
,

where no summation over j is implied. Setting the right-hand side to zero, we obtain

a system of heat equations with a potential term

∂θj
∂t

=
1

2
△θj + fj(x, t)θj, (no summation) (10)

where

fj(x, t) ≡ kTj

[∇θ1
θ1

,
∇θ2
θ2

,
∇θ3
θ3

]
− 1

2

|∇θj|2
θ2j

, j = 1, 2, 3. (no summation)

A more specific form of T [∇ψ] can be obtained by substituting

∇×ψ = k

(
1

θ3

∂θ3
∂x2

− 1

θ2

∂θ2
∂x3

,
1

θ1

∂θ1
∂x3

− 1

θ3

∂θ3
∂x1

,
1

θ2

∂θ2
∂x1

− 1

θ1

∂θ1
∂x2

)



Cole-Hopf–Feynman-Kac formula for the Navier-Stokes equations 5

into (6). Regarding the nonlinear term as forcing in the spirit of Duhamel principle, we

rewrite (10) by the Feynman-Kac formula in a form of integral equations

θj(x, t) = E

[
θj(W t, 0) exp

(∫ t

0

fj(W s, s)ds

)]
. (no summation) (11)

Here W t denotes Brownian motion starting from the origin x = 0 at t = 0, that

is, W 0 = 0 and E an expectation value with respect to the corresponding Gaussian

probability measure. See Appendix for alternative forms of functional integrals. The

path-integral expression (11) is a way of writing down the Navier-Stokes equations. We

recall that a condition for the regularity
∫ t

0
supx |fj(x, s)|ds < ∞, (j = 1, 2, 3) follows

from (11). (See also [21].) We note a corresponding formula in two dimensions has been

used to capture near-singularities in 2D turbulence [23].

We hereafter use the following notation for convenience

Fj[θ](W t) ≡ θj(W t, 0) exp

(∫ t

0

fj(W s, s)ds

)
. (12)

3. Change of probability measures

A method is available in stochastic analysis that allows us to add or remove the effect

of drift, the so-called Cameron-Martin-Maruyama-Girsanov theorems [22]. We refer e.g.

[2, 15, 17, 24, 25, 26, 28, 29] for stochastic analysis in general. In this section, we make

a formal comparison between the two equations using these tools.

scale invariance

θ(x, t) Θ(ξ, τ)

N-S
∥∥∥ Leray

∥∥∥
E [F [θ](W t)] E [F [Θ](W τ + ah(τ))]

M-G
∥∥∥ C-M

∥∥∥

E

[
F [θ](W t + ah(t))Ĝa(t)

]
E [F [Θ](W τ )Ga(τ)]

Figure 1: Scale-invariance, the dynamical equations and the transformation of probability

measures; N-S stands for the Navier-Stokes equations, M-G for Maruyama-Girsanov theorem

and C-M for Cameron-Martin theorem.

3.1. Leray equations

We consider the Leray equations first, because it has a global smooth solution by

construction. Defining Θ by Ψj = k log Θj, (j = 1, 2, 3) the scale-invariance is

represented by

θ(x, t) = Θ(ξ, τ).
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The drift term is taken as b(x) = −x and h(t) =
∫ t

0
b(W s)ds. We write (x, t) for (ξ, τ)

for a more direct comparison. (See Figure.1 for a list of relationships with independent

variables distinguished.) The transformed variable Θ satisfies the following equations

Θ = E
[
F [Θ](W t + ah(t))

]
, all t ≥ 0 (13)

= E
[
F [Θ](W t)Ga

]
, 0 ≤ t <

√
2

a
(14)

where the Cameron-Martin theorem has been applied with the density

Ga = exp

(
a

∫ t

0

b(W s) · dW s −
a2

2

∫ t

0

|b(W s)|2ds
)
.

In (13), X t = W t + ah(t) denotes the Ornstein-Uhlenbeck process and “all t ≥ 0”

means that Θ is smooth (and strictly positive) for t ≥ 0. We should bear in mind that

Θ depends on a. The above comparison is based on the presence or absence of one

multiplicative factor Ga. It is a “good” factor in that it restores smoothness which is

otherwise broken at t = 1/2a; if Ga is neglected in (14), the solution becomes short-lived.

On the other hand, if we insert Ĝa, which is valid as a martingale in t <
√
2/a, into (13),

we obtain (22) below. (We are using the Maruyama-Girsanov theorem as a pull-back

to retrieve the Navier-Stokes equations from the Leray equations.) The expression (22)

does make sense as a path-integral equation on the same time interval.

Passing to the limit a → 0 is equivalent to assume that there is no blowup to the

Navier-Stokes equation because t∗ = 1/2a→ ∞.§ In that limit we find formally

lim
a→0

(
Θ− E

[
F [Θ](W t)

])
= 0,

and

lim
a→0

1

a

(
Θ− E

[
F [Θ](W t)

])
= E

[
〈DF [Θ](W t),h〉

]
. (15)

The expression (15) follows from a definition of Malliavin derivative

∂

∂ǫ

∣∣∣∣
ǫ=0

; E
[
F [Θ](W t + ǫh)

]
= E

[
F [Θ](W t)Gǫ

]
,

which resembles an elementary vectorial formula

h · ∇f = lim
ǫ→0

f(x+ ǫh)− f(x)

ǫ
=

d

dǫ
f(x+ ǫh)

∣∣∣∣
ǫ=0

.

We recall a formal definition of the Malliavin derivative h∗ by d
dǫ
F (W t + ǫh)

∣∣
ǫ=0

=

〈h,h∗〉 , where h ∈ H, h∗ ∈ H∗ and 〈, 〉 denotes an inner-product, H the Cameron-

Martin space and H∗ its dual space. The dual h∗ is denoted by DF .

§ It is known that no blowup can happen at very late times of order T = O
(
E2

0/ν
5
)
, where E0 is the

initial kinetic energy [13, 20]. Hence what a → 0 actually means is a → O
(
ν5/E2

0

)
.
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We next consider the case where a is not too small and characterise the difference

in an additive fashion. We have

Θ− E
[
F [Θ](W t)

]
︸ ︷︷ ︸

Navier−Stokes part

= E
[
F [Θ](W t + ah(t))− F [Θ](W t)

]
(16)

= E
[
F [Θ](W t)(Ga − 1)

]
, (17)

≡ E
[
〈DF [Θ](W t + µh(t)), ah〉

]
, 0 < µ < a, (18)

which is valid for t <
√
2/a. Applying the usual mean-value theorem to Ga, we find

Ga − 1

a
=
∂Ga

∂a

∣∣∣∣
a=µ

, 0 < ∃µ < a,

where
∂Ga

∂a

∣∣∣∣
a=µ

=

(∫ t

0

b(W s) · dW s − µ

∫ t

0

|b(W s)|2ds
)
Gµ.

The equation (18) can be regarded as a result of an application of “the mean-value

theorem”‖ to (16), whose precise meaning is given by (17). The equation (18) shows

that the Leray equations have an extra additive term in the form of the Malliavin

H-derivative, on top of the Navier-Stokes equations.

To summarise, we have for finite a

1

a

(
Θ− E

[
F [Θ](W t)

])
= E

[
〈DF [Θ](W t + µh(t)),h〉

]
(19)

= E

[
F [Θ](W t)

∂Ga

∂a

∣∣∣∣
a=µ

]
. (20)

Note that we recover (15) in the limit a→ 0, because µ→ 0 in that limit.

3.2. Navier-Stokes equations

Now we turn our attention to the Navier-Stokes equation of the form (11) and carry

out an analysis in a parallel fashion. By assumption, it has a short-lived solution θ for

t < 1/2a(= t∗), which satisfies

θ = E
[
F [θ](W t)

]
, 0 ≤ t <

1

2a
(21)

= E

[
F [θ](W t + ah(t))Ĝa

]
, (22)

where the Maruyama-Girsanov theorem has been applied with the density

Ĝa = exp

(
−a

∫ t

0

b(W s) · dW s −
a2

2

∫ t

0

|b(W s)|2ds
)
.

‖ This is reminiscent of an application of the elementary mean-value theorem f(x+a) = f(x)+af ′(x+

µ), 0 < ∃µ < a.
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As above, we have

θ − E
[
F [θ](W t + ah(t))

]
︸ ︷︷ ︸

Leray part

= E
[
F [θ](W t)− F [θ](W t + ah(t))

]
(23)

= E

[
F [θ](W t + ah(t))(Ĝa − 1)

]
(24)

= − E
[
〈DF [θ](W t + µ′h(t)), ah〉

]
, (25)

where
Ĝa − 1

a
=
∂Ĝa

∂a

∣∣∣∣∣
a=µ′

, 0 < ∃µ′ < a

∂Ĝa

∂a

∣∣∣∣∣
a=µ′

= −
(∫ t

0

b(W s) · dW s + µ′

∫ t

0

|b(W s)|2ds
)
Ĝµ′ .

In short, we find

1

a

(
θ − E

[
F [θ](W t + ah(t))

])
= − E

[
(DF [θ](W t + µ′h(t)),h)

]
(26)

= E


F [θ](W t)

∂Ĝa

∂a

∣∣∣∣∣
a=µ′


 . (27)

In the limit a→ 0, we have formally

lim
a→0

1

a

(
θ − E

[
F [θ](W t + ah(t))

])
= −E

[
(DF [θ](W t),h)

]
.

The equation (26) shows that the Navier-Stokes equations have an extra additive term in

the form of the MalliavinH-derivative on top of the Leray equations. This time, it serves

as a “bad” term because its presence makes otherwise long-lived solution short-lived.

Overall, we conclude that the presence or absence of the term DF would change

the property of solutions drastically, if a solution to the Navier-Stokes equations breaks

down in finite time.

4. Summary

We have compared the Navier-Stokes equations

θ = E
[
F [θ](W t)

]
, 0 ≤ t <

1

2a
.

with the dynamically-scaled Leray equations

Θ = E
[
F [Θ](W t + ah(t))

]
, t ≥ 0.

The Leray equations can be viewed as a distorted version of the Navier-Stokes equations

Θ = E
[
F [Θ](W t) + 〈DF [Θ](W t + µh(t)), ah〉

]
, 0 ≤ t <

√
2

a
.
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If the H-derivative term DF is neglected, the equations would have a smooth solution

only for 0 ≤ t < 1/2a
(
<

√
2/a

)
. That is, the life-span must shrink at least by a factor

of 2
√
2.

Alternatively, the Navier-Stokes equations can be viewed as a distorted version of

the Leray equations

θ = E
[
F [θ](W t + ah(t))− 〈DF [θ](W t + µ′h(t)), ah〉

]
, 0 ≤ t <

1

2a
.

If the H-derivative term is neglected, the equations would have a smooth solution for
∀t ≥ 0. Whether these are actually possible or not depend on the detailed properties of

F beyond scaling.

The simplified exposition of quasi-invariance makes a clearer comparison between

the Navier-Stokes and the Leray equations. A similar comparison in terms of

the Malliavin derivatives can be done without introducing the Cole-Hopf transform.

However, with the Cole-Hopf transform, i) we have only one G to take into account and

ii) we can use the Feynman-Kac formula in its original form. Hence we believe that the

current approach is the simplest way to characterise quasi-invariance.

In comparing the two equations before and after dynamic scaling, we recall that the

closer they are, the more difficult it is for their solutions to behave in drastically different

manners, i.e. one short-lived and the other long-lived. As the functional F is given in

a fully explicit form, it seems worth investigating which of its specific properties, if any,

can conclude to global regularity, e.g. by contraction. It is hoped that non-trivial use

of stochastic analysis will improve understanding the Navier-Stokes equations.

*

Appendix A. Feynman-Kac formula for time-dependent potential

For given fj(x, t), a number of different representations are available for the (unique)

solution to (10). To distinguish them properly, we assume here that Brownian motion

starts from the origin W 0 = 0, as opposed to the convention W 0 = x adopted in the

main text.

The expression (11)

θj(x, t) = E

[
θj(x+W t, 0) exp

(∫ t

0

fj(x+W s, s)ds

)]
(no summation) (A1)

can be obtained by applying the time-dependent Trotter formula, see Section 11.2 of

[27].

Another form

θj(x, t) = E

[
θj(x+W t, 0) exp

(∫ t

0

fj(x+W s, t− s)ds

)]
(no summation) (A2)

may be found in [9].
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Yet another form

θj(x, t) = E

[
θj(x+W t, 0) exp

(∫ t

0

fj(x+W t −W s, s)ds

)]
(no summation)

(A3)

may be found in [10]. The expression (A3) can be extended to the case where the

potential term fj itself is stochastic [5]. If alternative forms are to be used, we should

change all the arguments in fj(·, ·) accordingly.

Acknowledgments

This work has been partially supported by an EPSRC grant: EP/N022548/1.

References

[1] Bardos, C. & Frisch, U. 1976 Finite-time regularity for bounded and unbounded ideal

incompressible fluids using holder estimates, Turbulence and Navier Stokes Equations, 1-13,

Lecture Notes in Mathematics 565, (ed.) R. Temam, Springer, Berlin.

[2] Bell, D.R. 2006 The Malliavin Calculus Dover, New York.

[3] Constantin, P. & Foias, C. 1988 Navier-Stokes Equations University of Chicago Press, Chicago.

[4] Chae, D. 2007 Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-

Stokes equations Math. Ann. 338, 435–449.

[5] Chow, P.L. 2014 Stochastic partial differential equations CRC Press, Boca Raton.

[6] Doering, C.R. 2009 The 3D Navier-Stokes problem Annu. Rev. Fluid Mech. 41 109–128.

[7] Doering, C.R. & Gibbon, J.D. 1995 Applied Analysis of the Navier-Stokes Equations Cambridge

University Press, Cambridge.

[8] Escauriaza, L., Seregin, G. & Sverak, V. 2003 L3,∞-solutions of the Navier-Stokes equations and

backward uniqueness Russ. Math. Surv. 58, 211–250.

[9] Freidlin, M.I. 1985 Functional Integration and Partial Differential Equations Annals of

Mathematics Studies 109, Princeton University Press, Princeton.

[10] Friedrichs, K.O., Seidman, T., Wendroff, B., Shapiro, H.N., & Schwartz, J. 1957 Integration of

functionals New York University, Institute of Mathematical Sciences.

[11] Fujita, H. & Kato, T. 1964 On the Navier-Stokes initial value problem. I Arch. Rat. Mech. Anal.

16, 269–315.

[12] Koch, K. & Tataru, D. 2001 Well-posedness for the NavierStokes equations Adv. Math. 157, 22–35.

[13] Leray, J. 1934 Essai sur le mouvement d’un liquide visqueux emplissant l’espace Acta Math. 63,

193–248.

[14] Hou, T. and Li, R. 2007 Nonexistence of locally self-similar blow-up for the 3D incompressible

Navier-Stokes equations Dis. Cont. Dyn. Sys. 18, 637–642.

[15] Malliavin, P. & Thalmaier, A. 2006 Stochastic Calculus of Variations in Mathematical Finance

Springer, Berlin, Heidelberg.
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