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Abstract. Stemming from polynomial metamodels, multipoint approximation method (MAM) and 
moving least square method (MLSM) focus on the development of metamodels for the objective and 
constraint functions in solving a mid-range optimization problem with a trust region. Although both 
of these methods could solve problems successfully, there is still some room for improvement on the 
computational effort and search capability. To address this problem, the extended multipoint 
approximation method is proposed to seek the optimal solution in this paper. The developed method 
assimilating the advantage of Taylor’s expansion used in MLSM demonstrates its superiority over 
other methods in terms of the computational efficiency and accuracy by some well-established 
benchmark problems. 

Introduction 

For better meeting the challenges in temporary tough competition in engineering products, 
metamodel-based optimization method has become increasing popular cause it could relieve the 
computation burden during analysis and minimize the total cost during experiments than normal 
detailed simulation methods (e.g. finite element method) 

The Multipoint Approximation Method (MAM) [1] is one of the best-known metamodel-based 
optimization methods, which replaces the original optimization problem by a succession of simpler 
mathematical programming. This method is based on an assembly of multiple surrogates into a single 
surrogate using linear regression. The coefficients of the model assembly are not weights of the 
individual models but tuning parameters determined by the least squares method [2].  

Although the MAM shows good performance on solving continuous problems, its full potential is 
not yet utilized. In this paper, an extended MAM has been studied and validated to be more efficient 
in searching ability and accuracy. In current research, another new surrogate called Tylor’s expansion 
surrogate is added together with other five surrogates into an assembly to build the metamodel. This 
approach is intrigued by the Moving Least Squares Method (MLSM), which is a metamodel building 
technique that has been suggested for the use in the meshless form of the Finite Element method [3]. 
And it has been proposed for the applications to design optimization[4–6]. 

However, for the aim of optimization, the weighting coefficients here is no longer a function of 
Euclidian distance but a function related to the constraint and function values. 

In current research, several benchmark problems have been tested by both the MAM and the 
Extended MAM with comparison to other algorithms. Analytical analysis validates that the extended 
MAM has better optimization ability. 

Multipoint Approximation Method 

In the present work, the metamodel is built by two subsequent steps. In the first step, single surrogate ߮ is identified using the weighted least squares method as follows: 
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σ ൯࢞൫ܨൣݓ െ ߮൫࢞ǡ ൯൧ଶࢇ ՜ ݉݅݊ୀଵ                                            (1) 

Where the coefficients ݓ  refer to the weights that reflect the inequality of data obtained in 

different sampling points ܲ  [7] and ࢇ  is the tuning parameters with respect to the specific 
surrogate. 

In the second step, based on the known parameters ࢇ and keeping the same design of experiments 
fixed, different approximate models could be assembled into one metamodel in the same manner: σ ൯࢞൫ܨൣݓ െ ǡ࢞ఫ෩൫ܨ ൯൧ଶ࢈ ՜ ݉݅݊ୀଵ                                             (2) 

In other words, the assembly metamodel could be expressed as: ܨ෨ሺݔሻ ൌ σ ܾ ή ߮ሺݔሻேிୀଵ                                                          (3) 
That leads to solving the linear system of ܰܨ equations with ܰܨ unknowns ܾ where ܰܨ is 

the number of regressors in the model bank ሼ߮ሺݔሻሽ . Here, the coefficients ܾ  are regression 
coefficients that should not be considered as weight factors, e.g. could be positive or negative. 

Extended MAM 

Intrigued by the Moving Least Square Method (MLSM), which builds the highly-dependent 
metamodel in the local space around the specific point, an extended MAM could be developed to 
explore the full potentials of the polynomial regression metamodels. 

Other than the surrogates built by Liu and Toropov [2], one new surrogate called the Taylor’s 
Expansion surrogate is introduced in the extended MAM by the following equation: ߮ሺݔሻ ൌ ߮  σ ቀడఝబడ௫ ή οቁேୀଵ                                                     (4) 

Where  οൌ ݔ െ   is the starting point e.g. the sub-optimal point during the optimization loop and ߮ is theݔ                                                                          (5)ݔ
primary function value at the starting point. 

Unlike the metamodel built by the MLSM, the weight ݓ is no longer the functions related to the 
Euclidian distance from a sampling point to the specific point where the surrogate model is evaluated. 
Actually, the points that belong to the boundary of the feasible region should be treated with great 

weights. In the current work, this can be achieved by the formula ߱ ൌ ݁ିସหிೕ൫࢞൯ିଵห. 
Examples  

Design of Tension/Compression Spring 

This problem was first described by Belegundu [8] and Arora[9]. The design objective is to minimize 
the weight of a tension/compression spring subject to constraints on shear stress, surge frequency and 
minimum deflections as shown in Figure 1. The design variables include the wire diameter ݀; the 
mean coil diameter ܦ, and the number of active coils ܰ. (see detailed formulation in [8]) 

 
Figure 1. Schematic of the tension/compression spring with indication of design variables 
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Table 1 and Table 2 compare the best results obtained by present algorithms and those of the other 
researchers. As is shown in table 1, the MAM and extended MAM found the best design overall 
(0.0126653). In fact, the lighter design found by Kaveh actually violates the first two optimization 
constraints which could be seen in Table 2. 

By choosing different starting points, it can be seen as showed in Table 3.9 that the evaluations 
called by the extended MAM are 10% less than MAM. And the average optimal weight also 
demonstrates the extended MAM has better search performance (0.01274 VS 0.01283). In conclusion, 
from this typical case, the sixth regressor added in the extended MAM enhances the robustness and 
the accuracy of metamodel. 

Table 1. Comparison of present optimized designs with literature for the spring 

Methods ݀ ܦ ܰ weight 

Belegundu [8] 0.050000 0.315900 14.250000 0.0128334 

Arora [9] 0.053396 0.399180 9.185400 0.0127303 

Coello [10] 0.051480 0.351661 11.632201 0.0127048 

Coello & Montes [11] 0.051989 0.363965 10.890522 0.0126810 

Montes & Coello [12]  0.051643 0.355360 11.397926 0.012698 

Kaveh & Talatahari [13] 0.051744 0.358532 11.165704 0.0126384 

MAM 0.051604352 0.35468326 11.409247 0.0126653 

Extended MAM 0.051656017 0.35592318 11.3357128 0.0126653 

Table 2. Comparison of present constraint values with literature for the spring 

Methods ݃ଵ ݃ଶ ݃ଷ ݃ସ 

Belegundu [8] -0.000014 -0.003782 -3.938302 -0.756067 

Arora [9] 0.000019 -0.000018 -4.123832 -0.698283 

Coello [10] -0.002080 -0.000110 -4.026318 -4.026318 

Coello & Montes [11] -0.000013 -0.000021 -4.061338 -0.722698 

Montes & Coello [12] -0.001732 -0.0000567 -4.039301 -0.728664 

Kaveh & Talatahari [13] 8.78603e-6 0.0011043 -4.063371 -0.726483 

MAM -1.0843e-7 -6.10541e-8 -4.0497478 -7.291416 

Extended MAM -6.3091e-7 -3.2158e-7 -4.052208 -7.282805 

Table 3. Statistical results from present algorithms for the spring 

Methods MAM Extended MAM 
Number of sample points 8 8 
Starting point (݀ǡ ǡܦ ܰሻ Output Value No. of iteration Output Value No. of iteration 

0.05 0.4 9 0.01269 17 0.01267 19 
0.08 1.0 10 0.01311 58 0.01277 28 
0.06 0.5 11 0.01267 11 0.01266 17 
0.07 0.8 8 0.01303 15 0.01296 25 
0.05 0.5 11 0.01269 10 0.01266 14 

Average 0.01283 22 0.01274 20 

Design of a Pressure Vessel 

The second case is the design optimization of the cylindrical pressure vessel capped at both ends by 
hemispherical heads (Figure 2). The main topic of this problem is to minimize the total manufacturing 
cost of the vessel including the combination of welding, material and forming costs. The design 
variables consist of the shell thickness ௦ܶ, the spherical head thickness ܶ, the radius of cylindrical 
shell ܴ, and the shell length ܮ. The detailed problem formulation could be seen in [14]. 
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Figure 2. Schematic of the spherical head and cylindrical wall of the pressure vessel with indication of design variables 

Table 4. Comparison of present optimized designs with literature for the pressure vessel 

Methods ௦ܶ ܶ ܴ ܮ cost 
Kannan & Kramer [14] 1.125000 0.625000 58.29100 43.6900 7198.0428 

Deb [15] 0.937500 0.500000 48.32900 112.6790 6410.3811 
Coello [10] 0.812500 0.437500 40.32390 200.0000 6288.7445 

Coello & Montes [11] 0.812500 0.437500 42.09739 176.6540 6059.9463 
Montes & Coello [12] 0.812500 0.437500 42.098087 176.64051 6059.7456 

Kaveh & Mahdavi [16] 0.779946 0.385560 40.409065 198.76232 5889.911 
MAM 0.7781687 0.3846492 40.319619 200.000 5885.268 

Extended MAM 0.7781687 0.3846492 40.319619 200.000 5885.268 

It can be seen from Table 4 that the present algorithms found the best design that is 0.8% less than 
the best-known design quoted in literature (5885.268 vs. 5889.911). Table 5 supports that the 
optimized designs are feasible cause all constraints are not violated. Statistical results given in Table 
6 indicate that the extended MAM reduces the number of response analysis by 8%. 

Table 5. Comparison of present constraint values with literature for the pressure vessel 

Methods ݃ଵ ݃ଶ ݃ଷ ݃ସ 

Kannan & Kramer [14] 1.6e-5 -0.0689 -21.220 -196.31 
Deb [15] -4.7e-3 -0.0390 -3652.877 -127.321 

Coello [10] -3.4e-2 -0.0528 -27.106 -40.000 
Coello & Montes [11] -2.0e-5 -0.0359 -27.886 -63.346 
Montes & Coello [12] -7.0e-6 -0.0371 2.94791 -63.360 

Kaveh & Mahdavi [16] -5.1e-5 -0.0013 -19.195 -41.237 
MAM -5.3e-8 -0.0012 -0.01962 -40.000 

Extended MAM -5.3e-8 -0.0012 -0.01962 -40.000 

Table 6. Statistical results from present algorithms for the pressure vessel 

Methods MAM Extended MAM 

Number of points 9 9 

Starting point ( ௦ܶǡ ܶ ǡ ܴǡ  ሻ Output Value No. of iteration Output Value No. of iterationܮ

1.0 1.0 100 150 5885.268 10 5885.268 10 

0.8 0.5 50 150 5885.268 10 5885.268 9 

0.5 0.5 100 100 5885.268 21 5885.268 17 
1.5 1.5 50 50 5885.268 9 5885.268 10 

Average 5885.268 13 5885.268 12 

Summary 

The extended multipoint approximation method is proposed to solve complex optimization problems 
with the high efficiency and accuracy. It significantly reduces the calls for evaluations on objective 
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and constraint functions, which is really important when solving complex optimization problems. The 
robustness of the extended multipoint approximation method is validated by some benchmark 
examples. The potential of this developed method demonstrates that it can be easily implemented in 
MAM to solve mixed-variable problems and outperforms the other methods in terms of the 
computational accuracy. 
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