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1 Introduction

In this paper, K is a commutative ring with 1, algebra means a K-algebra. In general, it is not assumed that a
K -algebra has an identity element. Module means a left module. Missing definitions can be found in [11]. The
aim of the paper is to introduce new large classes of algebras—quiver generalized Weyl algebras, skew category
algebras, diskew polynomial rings, skew semi-Laurent polynomial rings and the simplex generalized Weyl algebras.

2 Skew Category Algebras

The aim of this section is to introduce skew category algebras; to consider new interesting examples (skew tree rings,
skew semi-Laurent polynomial rings, etc); to give criteria for a skew category algebra to be a left/right Noetherian
algebra (Theorem 2.2, Proposition 2.3). In Sect. 3, skew category algebras are used to define the quiver generalized
Weyl algebras.

Skew category algebras Let C be a category, Ob(C) be the set of its objects and Mor(C) be the set of its
morphisms. For objects i, j € Ob(C), C(i, j) = Cj; is the set of morphisms f : i — j, the objects i = ¢(f) and
j = h(f) are called the tail and head of the morphism f, respectively. For each object i € Ob(C), 1; = ¢; is the
identity morphism i — i. A ring R is called a C-graded ring if R = @ cyor(c) Ra and for all a, b € Mor(C),
R.Rp C Ry if t(a) = h(b) and R, Ry = 0, otherwise.

V. V. Bavula (X))
Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK
e-mail: V.Bavula@sheffield.ac.uk

W Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-017-0313-5&domain=pdf

254 V. V. Bavula

Definition Let C be a category and o be a functor from the category C to the category of K-algebras over a
commutative ring K (eg, K = Z or K is a field). So, for each object i € Ob(C), D; := o (i) is a K -algebra and for
each morphism f : i — j,or : D; — D; is a K-algebra homomorphism, and o, = o s0, for all morphisms f
and g such that #(f) = h(g). The direct sum of left K-modules C(0) = @ remorc) Pn(s) f» where Dy () f is a free
left Dy ry-module of rank 1, is a K -algebra with multiplication given by the rule: For all f, g € Mor(C),a € Dy y)
and b € Dy ),

acp(b)fg  if1(f) = h(g).

af -bg =
f-bs 0 otherwise.

The K -algebra C(o) is called a skew category K -algebra. If K = Z, the Z-algebra C (o) is called a skew category
ring.

By the very definition, the algebra C(o) is a C-graded algebra, that is Dy(ryf - Dhg)& S Dp(re) fg for all
f, & € Mor(C). The algebra C(o) is also an Ob(C)-graded algebra, i.e., C(0) is a direct sum

Clo)= @ C)i; where Clo)ij= P Dif (1
i,jeOb(C) feC(j.i)

and for all i, j, k, 1 € Ob(C),
C(0)ijC(o)i S 6kC(0)is (2)

where § i is the Kronecker delta. In particular, for each i € Ob(C), C(0);; is a K -algebra without 1, in general. For
each i, j € Ob(C), C(0),j is a (C(0);;i, C(o)j)-bimodule.

Example Let C be a category that contains a single object, say 1, and Mor(C) = (x, ..., x,) is a free semigroup
on n elements. Then the skew category algebra C(o') denoted by F,,(0) = D(x1, ..., Xp; Oy, ..., Ox,, Oc) is called
the skew free algebra. As an abstract ring, it is generated by a ring D = o (1) and elements x1, . .., x,, subject to
the defining relations: Foralld € Dandi =1,...,n,

xid = oy, (d)x;, ed =o.(d)e.

Notice that 0,0y, = 0y,0, = 0y,. If n = 1 and 0, = idp then C(0) = D[x; o,] is a skew polynomial ring. If
o, # idp then C(o) is not a skew polynomial ring since ed = o,(d)e and, in general, o,(d)e # de foralld € D
(since o, # idp). For example, let D = D x D, x D3 and o, and o, are the projections onto Dy x D, and Dy,
respectively. Then eD3 = 0.

Example Let C be a category that contains a single object, say 1, and Mor(C) = (xf—Ll, ce x,jfl) is a free group on n
elements. Then the skew category algebraC (o) denoted by G, (o) = D(xlil, e, x,jtl; Oxps Op=ts vvvs Oxys O, Op)
is called the skew free group algebra. As an abstract ring, it is generated by a ring D - o (1) and elements
xl,xl_l, R xn_l, subject to the defining relations: Foralld € Dandi =1, ...,n,

xid = oy, (d)x;, xfld = O’x_—l(d)xl', ed = o,.(d)e.

Notice that o.0y, = o0y0, = 0y, and 0x;0,~1 = 0 10y, = O. If n = 1 and 0, = idp then C(o) =
1 1

D[x,x oy, 0;1] is a skew polynomial ring. If o, # idp then C(0) = Dlx, x Loy, 0,.-1,0.] is not a skew
polynomial ring since ed = o.(d)e and, in general, o, (d)e # de for all d € D (since o, # idp). For example, let
D = Dj x Dy x D3 and o, and o, are the projections onto D x D, and Dy, respectively. Then e D3 = 0.

Definition Let I' = (I'g, I'1) be a tree, i.e., a connected, non-oriented graph without cycles, where I'y is the set
of vertices and I'; is the set of edges. Let I be the groupoid associated with I': Ob(I') = T, for each i € Ob(I"),



Quiver Generalized Weyl Algebras 255

I'(i,i) = {e;;}, for distinct i, j € Ob(I') such that (, j) € I'1,I'(;, j) = {e;;} and T'(j, i) = {e;;}, eijeji = e;; and
ejiejj = ejj. Let o be a functor from I' to the category of rings. Then I' (o) is called the skew tree ring. We say
that the functor o is of isomorphism type if o (e;;) : o (i) — o (j) are ring isomorphism for all (Z, j) € I'y.

Example Let C be a category that contains a single object, say 1, and the monoid C(1, 1) is generated by elements
x and y subject to the defining relation yx = 1. The functor o is determine by the algebra D = o (1) and its three
algebra endomorphisms oy, oy and o, such that 0,0, = o.. The skew category algebra C(o) is called the skew
semi-Laurent polynomial ring. It is a new class of rings. Suppose, for simplicity, that o, = idp. Then the ring
C(o) is generated by a ring D and elements x and y subject to the defining relations:

yx =1, xd =o0x(d)x and yd =oy(d)y forall d € D.
We denote this ring by D[x, y; oy, oy]. In particular, D[x, y; T, r_l] where t is an automorphism of D.

The ideal a and the algebra C(o) By (1), the formal sum e = ZieOb(C) e; determines two well-defined maps
e-:C(o) > C(0),ar> ea,and -e : C(c) — C(0), a > ae. Clearly, the map -e is the identity map id on C(o') but
the kernel a of the map e- is equal to a = @ remorC)On(s) f Where a; := ker(o,,) and o; : D; — D; is a K-algebra
endomorphism.

Lemma 2.1 The set a is an ideal of the algebra C(o) such that C(o)a =0, aC(c) = a and a> = 0.
Proof C(o0)a =C(0) -e-a =0, the rest is obvious. O

The ideal ais a C-graded ideal of the algebra C (o). Furthermore, a = ®; jcobc)®ij Where a;; = @ rec(j.iy@i f S
C(0)ij, ajjax S 8jka; forall i, j, k,I € Ob(C). The factor algebra C(c) = C(0)/a = @feMor(C) Dypyfisa
C-graded algebra where D; = D; /a; >~ im(o;). Furthermore,

Clo)= P Clo); where C(0);; =C(0)ij/ai 3)
i,jeOb(C)

and C(0);;C(o)y; < 8xC(0); for all i, j, k,I € Ob(C). The maps e- and -e are the identity map on C(o). In

particular, the image e; of the element ¢; in C(0);; is the identity of the ring C(0);;. If a = 0 then ¢; the identity of
the algebra C(o0);;. The next two results are corollaries of (3).

Theorem 2.2 (Criterion for C(o) to be a left Noetherian algebra) The algebra C (o) is a left Noetherian algebra iff

1. The set Ob(C) is a finite set,

2. The ideal a is a finitely generated abelian group,

3. For every objecti € Ob(C), the K -algebra C(0);; is a left Noetherian algebra, and

4. For all objects i, j € Ob(C) such thati # j, the left C(o);;-module %U is finitely generated.

Proposition 2.3 (Criterion for C(o) to be a right Noetherian algebra) The algebra C(o) is a right Noetherian
algebra iff

1. The set Ob(C) is a finite set,
2. For every object i € Ob(C), the K -algebra C(o);; is a right Noetherian algebra, and
3. Forall objects i, j € Ob(C) such thati # j, the right C(o) jj-module C(0);; is finitely generated.

Example LetC: 1 —f> 2 and the functor o is as follows: (1) = K; and ¢ (2) = K are fields such that K| C K>
and dimg, (K») = o0, 0., = idg,, 0, = idg, and oy : K| — K3, k > k. Then the algebra C (o) is isomorphic
Ki 0
K> Ky
Noetherian, by Proposition 2.3 (since K> is not a finitely generated right K;-module).

to the lower triangular matrix algebra ( ) . By Theorem 2.2, the algebra C (o) is left Noetherian but not right
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3 Quiver Generalized Weyl Algebras

In this section, the quiver generalized Weyl algebras (QGWAs) are introduced. Each QGWA admits two natural
gradings, the object grading (see 9) and the double quiver groupoid grading (see 15). Natural classes of involutions
are introduced (Proposition 3.2). An interesting subclass of QGWAs, the class of simplex generalized Weyl algebras,
is introduced.

The quiver generalized Weyl algebras Let QO = (Qo, Q1) be a quiver where Q is the set of vertices and Q is
the set of arrows of Q. For vertices i, j € Qo, Q(i, j) is the set of arrows from i to j and |Q (i, j)| is the cardinality
of the set Q(i, j). Foreach arrow a : i — j, t(a) = i is the tail and h(a) = j is the head of a. An (oriented) path
from to j is a formal product of arrows a,a,—1 - - - aj suchthatt(ay) =i, h(a;) = t(az), ..., h(ay,—1) = t(a,) and
h(a,) = j. A non-oriented path fromi to j is a formal product of arrows a,a,—1 - - - a; such thati € {¢t(ay), h(ay)},
j € {t(ay), h(ay)}and {h(a;), t(@)} N {h(ai+1),t(ai+1)} #@fori =1,...,n — 1. A quiver is called connected
if every two distinct vertices can be connected by a non-oriented path. To be connected is an equivalence relation
on the set of vertices. The set of vertices is a disjoint union of its connected components, Qo = [ [..¢ Qo,c. Then
the quiver Q = [ [ Qc is a disjoint union of its connected components Q. = (Qo.c, Q1,c) where Q1 . is the set
of all arrows between vertices in Qg .

Each quiver Q determines the (quiver) category Q where Ob(Q) = Qg and the set of morphisms from i to j,
Q i, contains all oriented paths from i to j including the identity (the empty path) 1; from i — i providedi = j.
The quiver Q can be seen as a set of generators of its quiver category.

The double quiver 0= (@0, 61) of the quiver O = (Qg, Q1) is a quiver such that EO = Qg and for each
arrow a : i — j an opposite arrow @ : j — i is added. So, Q; = 0 ]_[51 where Q| = {@|a € Q1}, the set of
opposite arrows. Let o be a functor from the quiver category Q to the category of K -algebras. For simplicity reason
we assume that o (1;) = id, ;) for alli € Qo. So, for each objecti € Qp, D; := o (i) is a K -algebra and for each
arrow x : i — j,o0x : Di — Dj is a K-algebra homomorphism such that oy, = oy0y for all morphisms x and y
such that # (x) = h(y).

Definition The skew category algebra Q(o) is called the skew double quiver algebra. Suppose that for each
arrow x € (1, there is an element a; € D (y) such that

ox0x(ay) = ay, ayd = oxox(d)ay (for d € Dy(x)) and oy (ax)d = oyox(d)oy(ayx) (for d € Dp(y)). “4)
Then the factor algebra (where a := (ay)xeg,)

Q(0,a) := Q(0)/(Xx —ay, xX —ox(ax)|x € Q1) S

is called the quiver generalized Weyl algebra (QGWA)). So, as an abstract algebra, the QGWA Q (o, a) is generated
by the direct sum of rings D = ®;eo, D; subject to the defining relations:

xd = ox(d)x (ford € Dy()), xd =ox(d)x (ford € Dp(y)), Xx =a, and xX = oy(ay). (6)
The QGWA Q(o, a) is also denoted by Dl[x, X; oy, ox, a]. Let ax := oy (a,) for all elements x € 61. Then the
equalities in (4) and (6) take a more symmetrical form:

ox(ax) = ay, axd = oxoy(d)a, (for d € Dy(y)) and axd = oyox(d)ax (for d € Dy(y)). @)

xd = ox(d)x (ford € D;(y)), x¥d =ox(d)x (ford € Dy()), Xx =a, and xX = as. ®)

By the very definition, the ideal R = (Xx — a,, XX — oyx(ay)|x € Q1) in Q(o) of the defining relations of

the QGGWA A = Q(a, a) is an Ob(Q)-graded ideal R = @, jeon(@)Rij where R;j = RN Q(0);j- So, the QGWA
A = (0, a) is an Ob(Q)-graded algebra
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A= @ A;j where Aj; =§(U)ij/Rij ®
i,jeOb(Q)

and forall i, j, k,1 € Ob(Q), A;jAxs € 8,1 A1. Foreachi € Ob(Q), A;; is an algebra. For i, j € Ob(Q), A;; is an
(Aij, Ajj)-bimodule.

Definition Let O be a quiver with a single object, say 1, and a single loop x : 1 — 1. The functor o from the double
quiver Q to the category of K -algebras is uniquely determined by the ring D = o (1) and two of its K-algebra
endomorphisms o, and o5 (we assume that o (11) = idp). Then the QGWA A = a(o, a) is generated by the ring
D and the elements x, X subject to the defining relations: For all elements d € D,

xd = ox(d)x, xd =ox(d)x, Xx =a and xx = o,(a), (10)
provided
o5x0x(a) = a, ad = oxoy(d)a and oy(a)d = o,05(d)oy(a). (11

The algebra A is called the generalized Weyl algebra (GWA) of rank 1 and is denoted D[x, X; oy, o5, a] or
Dlx, y;0,t,a] where y = X, 0 = 0, and t = oy. This definition of the GWA 1is an extension of the (classical)
GWA, see Sect. 4 for details.

Definition The functor o is called of isomorphism type if o, is an isomorphism for all x € Q1 [ [ Q. The functor &
is called of invertible type if ox = O';l forall x € Q; (then necessarily o, = o~ ! ,ax € Z(Dy(vy) andax € Z(Dy(x))
for all x € Q1 where Z(R) is the centre of aring R). If o is of invertible type then it is of isomorphism type but
not vice versa, in general. We say that a QGWA Q (o, a) is of isomorphism/invertible type if the functor o is so.

Remark A QGWA Q(o, a) of invertible type is uniquely determined by the rings {Di}ic@,» the isomorphisms
{ox}reg, and the central elements {a, € Z(Dy))}xep, that can be chosen in an arbitrary fashion since the
relations (4) are automatically satisfied.

The (x, x)-symmetry of a QGWA Let A = @(a, a) = D[x,X; 0., or, a] be a QGWA. We define ay := a, :=
oy (ay). By applying the homomorphism o to the equality ooy (ax) = ay (i.e., ox(ax) = ay) we obtain the equality
oxox(ax) = ax. So, the equalities in (4) imply the equalities

oyox(ax) = ax, axd = oyox(d)ax (for d € Dy(x)) and ox(ax)d = oxox(d)ox(ax) (for d € Dyx)), (12)

where the last two equalities above coincide with the last two equalities in (4) but written in the opposite order. So,
we have the QGWA D|Xx, x; oy, 0y, a] where a := o, (a) := (oy(ay)) = (a,) and

D[xaf; O_Xyo'f’a]:D[xwx; Uj,O’x,a]. (13)

When we say the (x, x¥)-symmetry of a QGWA we mean the equality above.

The double quiver groupoid grading of a QGWA Let C be a category. An element a € C(i, j) is called a
locally invertible element or a local unit if there exists element alec J, i) such that ala=1;andaa ! =1 -
The element @~ is unique and is called a local inverse of a. By the uniqueness of the local inverse, (a~1)~! = a.
If the category C contains a single object, say i, then the concepts of local unit and local inverse coincide with the
concepts of unit and inverse in the monoid C(i, i). A category C is called a groupoid if all its morphisms are local
units.

Let Q be a quiver, Q be the double quiver of Q and Q be the double quiver category associated with Q. The
factor category
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G(Q) = Q/(Fx = 1), XX — lp) | x € Q1) (14)

is a groupoid which is called the double quiver groupoid, Ob(G(E)) = Ob(@) = Qo. Every morphisma : i — j
in G(@) is a unique product a,a,—1 - - - a; where each product a;1a; not of the type xx or xx for some x € Q7.
This product is called the canonical form of a and the number /(a) = n is called the length of A. So, on the level
of sets we have inclusion G(Q) € Q. For all elements f, g € G(Q) such that (f) = h(g), [(fg) <I(f) +1(g).

Example If the category Q = Q,, contains a single object and n loops x1, . . ., x, then G(Q,,) is a free group on n
generators xp, ..., X,. [f n = 1 then G(@l) = 7.

Let C be a category. An involution x on C is two bijections * : Ob(C) — Ob(C),i +> i* =i, and % : Mor(C) +>
Mor(C), x + x*, such that 17 = 1; for all i € Ob(C), C(i, j)* = C(j, i), (xy)* = y*x* and x*™* = x for all
x,y € Mor(C). So, an involution on a category is an anti-isomorphism of order 2 that reverses the arrows and acts
trivially on objects.

Let Q be a quiver. The double quiver category Q admits the involution *: x* = X and ¥* = x for all x € Q.
The involution respects the ideal of the defining relations of the groupoid G(Q). So, the groupoid G(Q) admits
the induced involution * which is, in fact, equal the operation of taking the local inverse, a* = a~!. The QGWA
A= a(a, a)isa G(a)—graded algebra
A=0(c,a)= @ Ay where Af = Dycp)f (15)

f€G(0)

is a free left Dy ()-module of rank 1 (Lemma 3.1) and Ay A, C Ay forall f, g € G(Q) such that r(f) = h(g).
Each element a of the algebra A is a unique finite suma =} . g, @ f Whereay € Dj(y) and the multiplication
in A is given by the rule

aoy(b)fg if1(f) = h(g). I(fg) =1(f) +1(g).
af -bg = yaop(b)(f. &) fg if1(f)=h(g), I(fg) <I(f)+1(g), 16)
0 if1(f) # h(g).

where fg is a product of elements in the groupoid g(Q) and the element (f, g) € Dy (rg) is defined as follows: if
t(f) =h(g)andI(fg) < I(f)+1(g) then there is a (unique) element 4 = hy - - - h, (Where h; € Q| = Q; ]_[al)
of longest length such that f = fih and g = h*g (recall that G(Q) € Q). The element & := o(f, g) is called the
(f, g)-overlap. Then

(f.8) =05 ((h, ™) and (h, h*) = on,.h,_; (@n,)Oh -y (@) + = Ony (@ny)an, a7)

where ax := oy (ay) for all x € Q. For all elements f € G(@),
f, [ =op((f* ) (18)

since (f*, f)f = ff*f = FU* 1) =0 (" 1)

Lemma 3.1 Let A = Q(o, a) be a QGWA. Then, for each element f € G(Q), Ay = Dy f is a free left
Dy, py-module of rank 1, see (15).

Proof Let A" = D cg) A’y Where A" = Dyy) f is a free left Dj(s)-module of rank 1. The direct sum A’ is a
left D-module (recall that D = ®;cq, D; is the direct sum of rings) where d; - d; f = 6;;d;d; f for all elements

di € Dy andd; € D; where j = h(f). Using the defining relations (6) of the algebra A it is easy to check that A’
is a left A-module where the action of generators are defined by the rule (where d € Dyp)):
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ox(d)xf if1(x) =h(f), Ixf)=1(f)+1, ox(d)x f ift(x) = h(f), I(xf)=1(f)+1,
x-df = Jox(d)(x,X%) f1 ift(x) =h(f), f=%f1, X-df = Jox(d)(x,x) o ift(xX) =h(f), f=xfa,

0 if1(x) # h(f), 0 if £(F) # h(f).
Then the lemma follows. O

Involutions on QGWAs An anti-isomorphism * of a ring R ((ab)* = b*a* for all elements a, b € R) is called
an involution if a** = a for all elements a € R. If R is a K -algebra and the involution * is a K -linear map then the
involution = is called an algebra involution or a K -algebra involution.

Proposition 3.2 Let A = Q(o, a) = D[x,X; 0y, ox, al be a QGWA. Suppose that o is a functor from the category
@ to the category of algebras with involution such that o, * ox = *, oy * 0x = *, a* = a and (a)* = a (ie,
ay = ay and ai = ax for all x € Qy, respectively). Then the involution * of the algebra D can be extended to an
involution * of the algebra A by the rule x* =X and x* = x forall x € Q.

Proof First we show that * respects the equalities (4):

(a) Forall x € Q1 and d € Dg((x)), axd = oxox(d)ay: (oxox(d)ay)* = af - xoxo,(d) = ay - *050,(d) =
ox(0x * 0x)ox(d)ay = o5 * ox(d)ay = d*a} = (ayd)*.

(b) Forall x € Q1 and d € Dg(n(x)), 0x(ax)d = ox0ox(d)oy(ay): (ox05(d)oy(a))* = ox(ay)* - xoy05(d) =
0x(ay) - ¥0,05(d) = 0y (05 * 0x)ox(d)oy(ay) = 0y * ox(d)oy(a) = d*ox(ax)* = (0x(ax)d)*.

Next, we show that * respects the defining relations (6) of the QGWA A:

(i) Forallx € Q1 andd € Dy(1(x)), xd = ox(d)x: (0x(d)x)* = X0y (d)* = ox * 0x(d)X = d*x* = (xd)*.
(if) Forall x € Q1 and d € Dg(x)), xd = ox(d)x: (ox(d)X)* = xox(d)* = 0y * ox(d)x = d*x = (xd)*.
(iil) xx = ay: (¥x)* =Xx = a, = af.
(iv) xx = o (ax): (xX)* = xx = o (ax) = o (ax)*. O
The simplex generalized Weyl algebras
Definition Let 7 be aset that contains at least 2 elements, let Z be a non-empty set of 2-elements subsets of 7, {D; };<;

be a set of rings with identity, 0 = {0;;, 0;; | {i, j} € I} be a set of ring homomorphisms where o;; : D; — D;
andoj; : D; — Dj,a ={ajj,aj; |{i, j} € I} be aset of elements where a;; € D; and aj; € D; such that

ajjdj = 0jioij(dj)a;j and ojj(a;j) =aj; forall d; € D;, {i, j} € I. (19)

The simplex generalized Weyl algebra (SGWA) A = DIx; o0, a] is a ring generated by the direct sum of rings,
D = ®;¢1 D;, and a set of (noncommutative) variables x = {x;;, xj; | {i, j} € Z} that satisfy the defining relations:
forall {i, j} € Z,d; € D; and dj € Dj,

xijdj =oij(dj)x,-j, XijXji = dji, Dkx,-j =0 (k ;é i) and x,-jDk =0 (k ;ﬁ ]) (20)

Clearly, a SGWA is a QGWA.

4 Generalized Weyl Algebras and Their Simplicity Criteria

At the beginning of the section we recall the definition of a (classical) generalized Weyl algebra and consider
examples. A (classical) generalized Weyl algebra is determined by a ring D, its automorphism o and a central
element a of D. The aim of the section is to introduce a generalization of this construction, the algebras that are
obtained are also called generalized Weyl algebras. Each such algebra is determined by a ring D, its two ring
endomorphisms o and t and an element @ of D which is not assumed to be a central element of D but a left normal
one. We show that each such ring A is a Z-graded ring which is a free left D-module (Theorem 4.1) but not a
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free right D-module, in general. The aim of this section is to give two simplicity criteria for GWAs (Theorem 4.2
and Theorem 4.3). The first one (Theorem 4.2) is a simplicity criterion fora GWA A = D[x, y; o, 7, a] where the
elements a and o (a) are normal in D. This is a mild restriction on the elements a and o (a) that often occurs in
applications. The second one (Theorem 4.3) is a simplicity criterion for GWAs in general case (no restrictions on
a and o (a)). Their proofs are quite different.

Left and right normal elements Let D be aring. Anelementa € D is called a left (resp., right) normal element
of D if aD C Da (resp., Da C aD). If a is a left normal element in D then the left ideal Da is an ideal of D.
Similarly, if a is a right normal element in D then the right ideal a D is an ideal of D. An element a € D is normal
if aD = Da, i.e., a is left and right normal. Let -a := -ap : D — D, d + da, and a := ker(-a). In particular,
aa = 0. Similarly, let a- := ap- : D — D, d + ad, and b := ker(a-). In particular, ab = 0. If the element
a is left normal then b is an ideal of the ring D: a - DbD C DabD = 0. If the element a is right normal then
a is an ideal of the ring D: DaD -a € DaaD = 0. The sets L, := {d € D|da = ad’ for some d’ € D} and
R, :={d € D|ad = d'a for some d’ € D} are subrings of D such that a € IL, and b € R,. Furthermore, a is an
ideal of L, (Lyall, -a € LyaaD =0, andsoL,all, € a)and b is an ideal of R, (a - R,bR, C DabR, = 0). If
a is a left (resp., right) normal element of D then L,a = aD (resp., Da = aRR,).

Suppose thata € D is a left normal element. Then, for each elementd € D, ad = dja for some elementd; € L,
which is unique up to adding a (d;a = (d; + a)a). Hence, the map

wg:D/b— Lg/a, d+b—d +a, (21)

is a ring isomorphism and we can write ad = w,(d)d for alld € D. A left normal element « is normal iff L, = D.
If a is a normal element then L, = D and the map w, : D/b — D/a,d 4+ b — d; + a, is a ring isomorphism.

Generalized Weyl algebras D(o, a) with central element a

Definition [1-8]. Let D be a ring, o be a ring automorphism of D, a is a central element of D. The (classical)
generalized Weyl algebra (GWA, for short) D(o, a) = D[x, y; 0, a] is a ring generated by the ring D and two
elements x and y that are subject to the defining relations:

xd =o(d)x and yd:ail(d)y forall d €e D, yx =a and xy =o(a).

The ring D is called the base ring of the GWA. The automorphism o and the element a are called the defining
automorphism and the defining element of the GWA, respectively.

It is an experimental fact that many popular algebras of small Gelfand—Kirillov dimension are GWAs (see below):
the first Weyl algebra A and its quantum analogue, the quantum plane, the quantum sphere, Usl(2), Uysl(2),
the Heizenberg algebra and its quantum analogues, the 2 x 2 quantum matrices, the Witten’s and Woronowic’s
deformations, Noetherian down-up algebras, etc., see [1-8,12].

Examples I 1. The (first) Weyl algebra A1 = K(x,0d|dx — xd = 1) over aring K is the GWA K[h][x,y =
d; 0,a = h] with base ring K [h] and its K -automorphism o defined by the rule o (h) = h — 1.

2. The quantum plane A = K (x, y|xy = gyx) where ¢ is a unit of K is the GWA K[h][x, y; 0, a = h] where
o(h) = qh.

3. Forgq, h = q — q’l € K = C, the algebra U, = U,s/(2) is generated by X, Y, H_ and H, subject to the

. . H?—H?
defining relations: Hy H- = H_Hy = 1, XH: = ¢*'HiX, YH: =q7'HyY, [X,Y] = —5—=. Tt

follows that the algebra U, is a GWA,

Uy~ KIC. H, H 0.a = C + (H2/(q* = ) = H%/(q ™2 = 1) /2h),
where 6 (H) = gH, o(C) =C.
Generalized Weyl algebras

Definition Let D be aring, o and 7 be ring endomorphisms of D, and an element a € D be such that
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to(a) =a, ad =to(d)a and o(a)d =ot(d)o(a) forall d € D. 22)

The generalized Weyl algebra (GWA) A = D(o, 7,a) = Dlx, y; o, T, a] is aring generated by D, x and y subject
to the defining relations:

xd =o0(d)x and yd =1(d)y forall d € D, yx =a and xy = o(a). 23)

The ring D is called the base ring of the GWA A. The endomorphisms o, T and the element a are called the defining
endomorphisms and the defining element of the GWA A, respectively. By (22), the elements a and o (a) are left
normal in D.

Example Let D = C[t1, ..., t,; V1, ..., V] be a skew polynomial ring in variables t1, ..., t, (t;t; = t;t;, tic =
vi(c)t; forallc € C)overaring C, vy, ..., v, are commuting automorphisms of the ring C. Suppose that an element
u € Cissuch that v;(u) = u;u for some unitu; of D fori =1,...,n(eg,u =u; = --- = u, = 1). Then for each
element ¢ = (ay, ..., a,) € N, the element a = ut® is a regular, normal element of D where t* = tf” gy
Then A = DI[x, y; o, wao Y, a] is a GWA.

A Z-grading of a GWA The next theorem proves existence of GWAs and introduces a Z-grading.

Theorem 4.1 The GWA A = Dlx, y; 0, t, a] exists. It is a Z-graded ring A = ®;cz,A; where A; = Dv; >~ pD,
vo =1, v; =x' and v_; = y' fori > 1. In particular, the module pA is free.

Simplicity criteria for generalized Weyl algebras Let D be a ring and ¢ be its ring endomorphism. An ideal
I of D is called o-stable if (1) = I. The ring D is called a o-simple ring iff 0 and D are the only o -stable ideals
of the ring D. An endomorphism o is inner if 0 = w,, for some unitu € D (o (d) = udu=' for all d € D). Then
necessarily o an automorphism of D. The next theorem is a simplicity criterion for GWAs with normal defining
elements a and o (a). It generalizes a simplicity criterion for (classical) GWAs [9, Theorem 4.2]. The idea of the
proofs of the next two theorems is to use localizations and graded/filtered techniques.

Theorem 4.2 [10] Let A = DIx, y; 0, T, a] be a GWA such that the elements a and o (a) are right normal in D
(they are normal, by (22)). Then the following statement are equivalent.

1. A is a simple ring.

2. (a) The elements a and o (a) are regular in D,
(b) D is a o-simple ring,
(¢) foralli > 1, o' is not an inner automorphism of the ring D, and
(d) foralli > 1, Da + Do'(a) = D.

3. (a) The elements a and o (a) are regular in D,
(d) D isa t-simple ring,
(c) foralli > 1, t' is not an inner automorphism of the ring D, and
(d) foralli > 1, Do(a) + Dt'o(a) = D.

If one of the equivalent conditions holds then o and t are automorphisms of D.

Example Let A = A[x,y;0 =048, T = wgo 1, a] be the GWA considered in Sect. 4. If a ¢ K* then oi(a) €
K*a for all i > 1, and so the condition (2d) of Theorem 4.2 does not hold and the algebra A is not simple.

For a ring D and its ring endomorphism o, the subring of D, D° = {d € D|o(d) = d}, is called the ring
of o-invariants, and each element of D’ is called a o-invariant. Every left normal, left regular element d of D,
determines a ring endomorphism of D:

wg:D— D, d+— wy(d), where dd' = wy(d")d. (24)

The next theorem is a simplicity criterion for GWAs.
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Theorem 4.3 [10] Let A = DIx, y; 0, t, a] be a GWA. Then the following statements are equivalent.
1. Ais a simple ring.
2. (a) The elements a and o (a) are regular in D,
(b) For all nonzero ideals I of D, I' = D where I' := 1 + ;- (Doi(l)(i, —i) + DT (1) (—i, i)).
(¢) None of the ring endomorphisms ¢ (n > 1) of D is equal to the ring endomorphism wy (see (24)) where

d is a o-invariant, regular, left normal element of D.
3. (a) The elements a and o (a) are regular in D,
(b) For all nonzero ideals I of D, I' = D where I' := 1 + 3 ;| (Dai(l)(i, —i) + DTi(I)(—i, i)).
(¢) None of the ring endomorphisms " (n > 1) of D is equal to the ring endomorphism wg (see (24)) where d

is a t-invariant, regular, left normal element of D.

If one of the equivalent conditions holds then o and t are monomorphisms of D.

5 Generalized Weyl Algebras of Rank n

The aim of this section is to introduce a new class of rings which is more general that the class of (classical)
generalized Weyl algebras. The rings of the new class are also called generalized Weyl algebras. In order to
distinguish these new rings from the old ones the latter are called classical GWAs.

Iterated generalized Weyl algebras The next corollary follows from Theorem 4.1 by induction on the rank 7.

Corollary 5.1 Let A = DIxy, y1; 01, T1, a1l ... [Xn, Yn; On, Tn, an] be an iterated GWA of rank n. Then A =

@aczn Dvg is adirect sum of the free left D-modules p Dvy, >~ D wherefora = (a1, ..., 0), Vg = Vg, (1) - - - Vg, (1)
i ifa; >0,

and vy, Gy = {71 V=

y;  ifa; <0
Classical generalized Weyl algebras, [1-8] Let D be aring, 0 = (o1, ..., 0,) an n-tuple of commuting automor-
phisms of D, a = (ai, ..., a,) an n-tuple of elements of the centre Z(D) of D such that o;(a;) = a; foralli # j.
The (classical) generalized Weyl algebra A = D(o, a) = Dl[x, y; 0, a] of rank n is aring generated by D and 2n
indeterminates x1, ..., X,, y1, . . . , ¥, subject to the defining relations:

yixi = aij, xiyi = 0i(a;), xid =o0i(d)x;, and y;d = crfl(d)yl- forall d € D,

[xi,x;] = [xi, yj] = [yi, y;1 =0, forall i # j,
where [x, y] = xy — yx. We say that a and o are the sets of defining elements and automorphisms of the GWA A,
respectively.
Generalized Weyl algebras Let A be aring and o its endomorphism. A subring B of A is called o-invariant if
o(B) C B.

Definition An iterated generalized Weyl algebra A = D[x1, y1; 01, 71, a1l - .. [Xn, Yu; On, Tn, an] is called a gen-
eralized Weyl algebra of rank n if ay, ..., a, € D, the ring D is 0;- and t;-invariant foralli = 1, ..., n; and for
all integers i, j = 1,...,n such thati > j:

i (xj) = Aijxj, 0i(yj) = Ai;yj. w(x;) = pijxj, w(y;) = ui;yj,

for some elements A;;, A;j, wij and I‘L;j of the ring D. The elements A = (;;), A’ = ()L;j), M = (u;j) and
M = (u ;) are called the defining coefficients of A. The n-tuples of endomorphisms o = (o1, ..., 0,) and
T = (11,...,T,) are called the defining endomorphisms of A, and the n-tuples of elements a = (ay, ..., ay) is
called the defining elements of A. The GWA A of rank n is denoted by A = DI[x, y; 0,7, A, A, M, M'] where
x=(x1,...,xpandy = (¥1, ..., Yn)-

We denote by o; and t; the restrictions o;|p and ;| p, respectively.
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An element A = (4;;) (where 1 < j < i < n)is called a lower triangular half-matrix with coefficients in D.
The set of all such elements is denoted by L, (D). The next proposition describes GWAs of rank n via generators
and defining relations.

Proposition 5.2 [10] Let D be aring, 0 = (0;) and t = (1;) n-tuples of ring endomorphisms of D, a = (a;) € D",
and A = (1), AN = ()\;j), M = (uij). M’ = (,ugj) € L, (D) such that the following conditions hold: For all
i=1,...,nandd € D,

t;0i(a;) = a;, a;d = t;0i(d)a; and o;(a;)d = 0;7;(d)o;(a;); (25)
foralli > j,

ai = i (hij)pijoj(ai) = T pi;Tj(ar), (26)
0i(a;) = 0j(1ij)hijojoi(a;) = 01 (wi;)r;;Tjoi(a;); 27)

foralli > jandd € D,

Aijojoi(d) = oi0j(d)A;; and wijo;Ti(d) = 1707 (d) pij, (28)

)»;j‘tjo'i(d) = O',"Ej(d))»;j and M;j‘l,'jz’i(d) = ‘[l"[j(d)ll/;j7 (29)

oi(aj) = A;;Ti(hij)a; and i (aj) = pi;Tj(1ija;, (30)

0i0j(a;) = xijoj(A;))oj(a;) and tioj(a;) = wijo;(1i;)oj(a;). (3D

fori > j>k: Xjoj(hit)Ajx = 0i(Ajp)Aikox(Xij) and )‘ijaj()‘;k))‘/jk = Cfl‘()n/jk))\,;k‘fk()\ij), (32)

A;jfj(kik)ﬂjk = Ui(ﬂjk))\iko'k()\;j) and k;,-rj(kék)u’jk = O'i(ﬂ/]'k))‘-;kfk()‘;j)a (33)

140 (i)d ji = T O jrOpikok (i) and ;o (WA = Qi) i e (i), (34)

Wi T (i jre = T (o) pikor (g;) and oy (i) e = o ) i (i) - (35)

The GWA of rank n, A = Dl[x, y;0,7,a, A, A, M, M'], is a ring generated by D, x|, ...,x, and yi, ..., ¥,
subject to the defining relations: Foralli = 1,...,nandd € D,

xid = oi(d)xi, yid =7 (d)yi, yixi =a; and x;y; = 0i(a;); (36)

foralli > j,
XiXj = NjXjXi, Xiyj = A;YjXi, ViXj = pijX;yi and y;y; = pi;y;yi. (37)
Example 1If o = (01, ...,0,) € Aut(D)" is an n-tuple of commuting automorphisms of the ring D, t := ol =

(0'1_1, o, a= (a1, ..., ay) € Z(D) and 0;(a;) = a; foralli # j;and A;; = A;j = Wjj = u;j = 1 for all
i > j, then the GWA A of rank # is a classical GWA of rank n, thatis A = D[x, y; o, al.

Recall that each normal, regular element o of a ring D determines the automorphism wy of D by the rule
ad = wy(d)a for all d € D. The next proposition gives plenty of examples of GWAs of rank 7.

Proposition 5.3 Let D be a ring, 01, ..., 0, commuting automorphisms of the ring D, a1, ..., Bi,..., Bn
regular, normal elements of D. Then A = D[x, y; o0, t,a, A, A, M, M'] be a GWA of rank n where

oi = bOiwg;, T = a)a,.ei‘l, a; = a;Bi,
hij = 0;(B0:0; (BB 0 (BT, rij = 6i(Biaj) - 07 0: (B e},
Wij = Olieflej(ﬁj)ej(aiilﬁjil), 'U“;j = aigiil(aj)ejil(a,‘il)ajil’

provided X, )ng, Wij> Mij € D.
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A 7" -grading of a GWA of rank n By Theorem 4.1, every GWA of rankn, A = D[x, y; 0, t,a, A, A', M, M'],
is a Z"-graded algebra A = ®gezn Dvy (DvgDvg € Dugip for all elements o, B € Z") where for @ =
o .
@1 ) € T v = vy (1)0y 2) -+ v, (1) and vy (1) = {0, 1= 0
y; ifo; <O
product for v, is important and, in general, cannot be changed. Moreover, the left D-module Dv,, is free of rank 1.
For all elements «, 8 € Z",

" Notice that the order in the

i

Vevg = (o, B)Vaqp
for some (explicit) elements («, §) € D. For all elements « € Z" and d € D, vyd = 0%(d)v, where 0% :=

) o ifa; >0,
o(l,ay)---o(m,ay)ando(i,a;) =3 ~, .
T, ' ifo; <.

6 Diskew Polynomial Rings

The aim of this section is to introduce a new class of rings - the diskew polynomial rings - to show that they are
GWAs under a mild restriction (Theorem 6.2). To give a simplicity criterion, Theorem 6.4, for diskew polynomial
rings that are GWAs satisfying the conditions of Theorem 4.2. It is a corollary of Theorem 4.2. The proofs can be
found in [10].

Diskew polynomial rings

Definition Let D be aring, o and t be its ring endomorphisms, p and b be elements of D such that, foralld € D,
ot(d)p = pto(d) and ot(d)b = bd, (38)

The diskew polynomial ring (DPR) E := D(o, 1, b, p) := D[x, y; 0, 1, b, p] is a ring generated by D, x and y
subject to the defining relations:

xd =o(d)x and yd = t(d)y forall d € D, xy — pyx =b. 39)

Example The quantum plane A = K(p,q | pq = Agp) (over a field K where . € K*) is a skew polynomial
ring A = K[ql[p; v] where v(g) = Ag. Then E = Alx, y; v¥, VB, nt“+/3, p] is a diskew polynomial ring where
n,p € K* and o, B € N (see the previous example).

Theorem 6.1 The diskew polynomial ring E = D|x,y;o,t,b,p]l exists. It is a free left D-module E =
@i,jeNDyix-/ and the element x is a left regular element.

Diskew rings are GWAs when p is a unit

Theorem 6.2 Let E = D[x, y; 0, T, b, p] be a diskew polynomial ring. Suppose that p is a unit in D. Then x and y
are left regular elements of E and the ring E = D|x, y; 0, T, a = h]isa GWA with base ring D := D[h; to] which
is a skew polynomial ring, o and Tt are ring endomorphisms of D that are extensions of the ring endomorphisms o
and t of D, respectively, defined by the rule o (h) = ph+b and t(h) = t(p~)(h—t(b)). In particular, to (h) = h
and ot(h) = w,(h) = pto(p~Yh. Furthermore, 6t = wpto inD.

Corollary 6.3 Let E = Dlx, y; 0, t,b, p] be a diskew polynomial ring. Suppose that p is a unit in D. Then
E =Dly,x;1,0,h := o (h) = ph + b] is a GWA with base ring D := D[h; to] = D[h', ot] which is a skew
polynomial ring, o and t are ring endomorphism of D that are extensions of the ring endomorphisms o and t of D,
respectively, defined in Theorem 6.2; t(h') = p~ (' — b) and o (') = o (p)h’ + o (b). In particular, ot (h') = I’
andto(h') = w,1(h") = p lot(p)h'.
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By Theorem 6.2, if p € D is a unit then the ring endomorphisms ¢ and t of D can be extended to the ring
D = Dlh; to] by the rule o (h) = ph + b and t(h) = r(,o_l)(h — t(b)). By induction on i > 1, we have the
equalities where

o'(h) = aih+bi, ai=0""'(p)---o(p)p and bi= Y o’(ai-j)o’ " (b) +0"(B). (40)
I<j<i—1
t'(h) = ajh+b, af =7t ("), b ==Y t/(a]_pTI(p™'b) — ' (p7'b). (41)
Jj=1
In particular, for all i > 1,
aiy1 =o(a)p and by =o(a;)b+ o(b;), (42)
al =t@)tp "y and bl = —t(@)t(p~"b) + T(b)). (43)

For example, (42) follows from a; 11 + bi 11 = o (¢ (h)) = o (a;h + b;) = o (a;)(ph + b) + o (b;) = o (a;) ph +
o(aj)b+ o(b;).

Suppose that p is a unit. Then 07 = w,v where v = 70, or, equivalently, w,-10t = v. Let B := o~ 'b. It
follows that for all d € D,

Bd =v(d)p and (h+ B)d =v(d)(h+ B) (44)

(Bd = p~'bd (3:8) p lot(d)b = w,-10T(d)f = v(d)p). If, in addition, we assume that the element b is a left
regular element D. Then 07 = w,v = wp and the element B8 € D is also left regular in D. By (44), 8 = v(B)B
and (h + B)B = v(B)(h + B). Hence,

V() =B. hB=ph, o(h’)=p/ > Pijh! (i = 1) where p} :=pv(p)---v'"'(p), Bij = (;)E‘j. 45)

j=0

In more detail, o (h") = (p(h + B))' = p!(h + ) = p! >_o Bijh?.

Theorem 6.4 is a simplicity criterion for a diskew polynomial ring £ = DIx, y; o, 7, b, p] where p is a unit
and to is an epimorphism. By Theorem 6.2, the ring E is a GWA that satisfies the assumptions of Theorem 4.2, a
simplicity criterion for GWAS, and Theorem 6.4 is rather a straightforward corollary of Theorem 4.2 and (45).

Theorem 6.4 Let E = Dlx, y; 0, t, b, p] be a diskew polynomial ring such that p is a unit in D and v := to is
an epimorphism. The following statements are equivalent.

1. The ring E is a simple ring.
2. (a) The endomorphisms o and t of D are automorphisms,
(b) the ring D is a o-simple ring,
(¢) for each natural number n > 1 there is no element p = h" + Z?:_ol dih' € D, where d; € D, such that
(1) for all elements d € D, pd = Vv"'(d)p, i.e., did = v”‘i(d)di fori=0,1,....,n—1,
(ii) o(p) = py p where p) = pv(p)--- V"~ (p), and
(i) [k, p] =0, ie, v(d;) =d; fori =0,1,...,n—1, and
(d) the elements b; € D (see (40)), where i > 1, are units in D. In particular, b € D is a unit.
3. (a) The endomorphisms o and t of D are automorphisms,
(b) the ring D is a T-simple ring,
(¢) for each number n > 1 there is no element p’ = h" + Z:’:—(} dl./h’i € D= DI[h', u:=ot], whered € D
and h' = o (h), such that
() for all elements d € D, p'd = " (d)p’, i.e., d/d = /L”_i(d)dl.’fori =0,1,....,n—1,
(i) T(p") = (p~ ") p where (™1 i= p~ u(p™) - 1" (p™"), and
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(i) [A", p'1 =0, i.e, u(d)) =d; fori =0,1,...,n—1, and
(d) the elements blf € D (see (41)), where i > 1, are units in D. In particular, b € D is a unit.

We keep the notation and assumptions of Theorem 6.4. Let p = h" + Z"il d;h' € D. Since p is a unit, then,
by (45), the condition that o (p) = p; p is equivalent to the equalities (since o (p) = p h" 4 ---)

o d, a(d)_<>b"/+ > ()a(d)bljforJ—Ol n—1. (46)
j<i<n—1
In particular, for j = n — 1 and j = 0 we have, respectively, the equalities
pdn—1 — 0 (dp—1) = nb, (47)
pydo —o(do) =b"+ Y o(d)b'. (48)
l<i<n—1

Let p = h" + er'l:_ol d;h' € D be as in Theorem 6.4. Notice that the element § is a unit, v = w,-1, = wp and
pB = Bp. Then, p = wg(p) = v(p) = to(p) = t(p, p), and so
t(p)=t(o)'p (49)

The next theorems shed light on the elements p and p’ in Theorem 6.4. Theorem 6.5 describes the element p in
Theorem 6.4 where n = 1; (46)—(48) are used in the proof.

Theorem 6.5 Let E = Dlx, y; o, T, b, p] be a diskew polynomial ring such that p is a unitand D = D[h; v = t0]
where h = yx. The following statements are equivalent.

1. There exists an element C = h + o € D, where o € D, such that Cd = v(d)C for all elements d € D and
o(C) = pC.

2. There is an element o € D such that pa — o (@) = b and ad = v(d)« for all elements d € D.
If one of the equivalent conditions holds then [h, C] = (v(a) — «)C and

(@) C=p txy+o@)), xC = pCx and yC = 1(p~)(C + v(a) — a)y.
(b) E ~ D[C;v][x,y;0,7,a := C —«a] isa GWA where 6 (C) = pC and t1(C) = r(pfl)(C +v(a) — o).
Furthermore, T0(C) = C +v(e) —aand ot(C) = ot(p‘l)(pC +o(v(a) —a)).

The canonical left normal element C of a diskew polynomial ring. Theorem 6.6 is a criterion for an element
C = h + « (where @ € D) to be a left normal element in E.

Theorem 6.6 Let E = Dlx, y; o, t, b, p] be a diskew polynomial ring such that p is a unit, D = D[h; v = t0]
and C = h + a where h = yx and o € D. The following statements are equivalent.

1. The element C is left normal in E.
2. pa —o(a) =b, v(a) = @ and ad = v(d)a for all elements d € D.
If one of the equivalent conditions holds then [h, C] = 0 and

(@ C=ptxy+o@)), xC = pCx and yC = t(p~HCy.

() E~D[C;V][x,y;0,t,a :=C —a]isa GWA where 6 (C) = pC and t(C) = t(,o_l)C.

(c) The element C is a left normal, left regular element of E and E/(C) >~ D[x, y; o, T, —a] is a GWA.
(d) The element C is a normal element in E iff im(v) =

(e) The element C is regular iff C is right regular iff ker(v) = 0.

(f) The element C is a normal, regular element iff v is an automorphism of D.

The canonical central element C of a diskew polynomial ring (under certain conditions) The next corollary
is a criterion for an element C + o (where @ € D) to be a central element in E. It follows straightaway from

Theorem 6.6.
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Corollary 6.7 Let E = D|x, y; o, t, b, p] be a diskew polynomial ring such that p is a unit, D = D[h; v = t0]
and C = h + o where h = yx and a € D. The following statements are equivalent.

1. The element C is a central element of E.
2. p=1Lv=1a—oc(x) =b, and the element a belongs to the centre of D.
If one of the equivalent conditions holds then

(a) C =xy+ o).
(b) E ~ D[C][x,y;0,t,a :=C —a]isa GWA where 0 (C) = C and t(C) = C.
(c) The element C is a regular element of E.

Every simple ring is, in fact, an algebra either over the field of rational numbers Q or over the finite prime field IF,
that contains p elements (p is a prime number).

Simplicity criterion for DPRs in characteristic zero If the ring D is a QQ-algebra the condition (c) in Theorem
6.4 can be replaced by condition 4 of Theorem 6.6.

Theorem 6.8 Let E = D[x, y; 0,1, b, p] be a diskew polynomial ring such that p is a unit in D, v := to is an
epimorphism and D is a Q-algebra. The following statements are equivalent.

1. The ring E is a simple ring.

2. (a) The endomorphisms o and t of D are automorphisms,
(b) the ring D is a o-simple ring,
(c) there is no element o € D such that pa — o () = b and ad = v(d)« for all elements d € D, and
(d) the elements b; € D (see (40)), where i > 1, are units in D. In particular, b € D is a unit.

Simplicity criterion for DPRs in prime characteristic p If the ring D is aIF ,-algebra the condition (¢) in Theorem
6.4 can be replaced by more explicit conditions (where IF, = Z/ pZ).

Theorem 6.9 Let E = Dlx, y; 0, T, b, p] be a diskew polynomial ring such that p is a unit in D, v = to is an
epimorphism and D is a F ,-algebra. The following statements are equivalent.

1. The ring E is a simple ring.
2. (a) The endomorphisms o and t of D are automorphisms,
(b) the ring D is a o-simple ring, ,
(¢) for each natural number n > 0 there is no element p’ = h" + Z:l:_ol a,-hpl + o, where a, o; € D, such
that _
(1) foralld € D, pd = " (d)p, ie ad = v (d)a and ajd = vP" P (d)aj fori =0,1,...,n—1,
(ii) o(p') = ppup’,
(iii) [k, p'1=0, ie. v(a) = a and v(a;) = a; fori =0,1,...,n— 1.
(d) the elements b; € D (see (40)), where i > 1, are units in D. In particular, b € D is a unit.
3. (a) The endomorphisms o and t of D are automorphisms,
(b) the ring D is a o-simple ring,
(c) there is no element o € D such that poo — o (o) = b, v(«) = «a and ad = v(d)« for all elements d € D,
and for each natural number n > 1 there are no elements «, ay, . . ., o, such that
(1) foralld € D, ad = v (d)e and ajd = vP" P (d)e fori=0,1,...,n—1, _
(i) o(o;) = p;n_p,-aifori =0,1,...,n—1,and p;na —o(@)=b" + Z?:_ol o (a;)b?",
(i) v(e) =aandv(a;) = o fori =0,1,...,n— 1.
(d) the elements b; € D (see (40)), where i > 1, are units in D. In particular, b € D is a unit.
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