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1 Introduction

In this paper, K is a commutative ring with 1, algebra means a K -algebra. In general, it is not assumed that a
K -algebra has an identity element. Module means a left module. Missing definitions can be found in [11]. The
aim of the paper is to introduce new large classes of algebras—quiver generalized Weyl algebras, skew category
algebras, diskew polynomial rings, skew semi-Laurent polynomial rings and the simplex generalizedWeyl algebras.

2 Skew Category Algebras

The aim of this section is to introduce skew category algebras; to consider new interesting examples (skew tree rings,
skew semi-Laurent polynomial rings, etc); to give criteria for a skew category algebra to be a left/right Noetherian
algebra (Theorem 2.2, Proposition 2.3). In Sect. 3, skew category algebras are used to define the quiver generalized
Weyl algebras.

Skew category algebras Let C be a category, Ob(C) be the set of its objects and Mor(C) be the set of its
morphisms. For objects i, j ∈ Ob(C), C(i, j) = C j i is the set of morphisms f : i → j , the objects i = t ( f ) and
j = h( f ) are called the tail and head of the morphism f , respectively. For each object i ∈ Ob(C), 1i = ei is the
identity morphism i → i . A ring R is called a C-graded ring if R = ⊕

a∈Mor(C) Ra and for all a, b ∈ Mor(C),
Ra Rb ⊆ Rab if t (a) = h(b) and Ra Rb = 0, otherwise.
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Definition Let C be a category and σ be a functor from the category C to the category of K -algebras over a
commutative ring K (eg, K = Z or K is a field). So, for each object i ∈ Ob(C), Di := σ(i) is a K -algebra and for
each morphism f : i �→ j , σ f : Di → Dj is a K -algebra homomorphism, and σ f g = σ f σg for all morphisms f
and g such that t ( f ) = h(g). The direct sum of left K -modules C(σ ) = ⊕ f ∈Mor(C)Dh( f ) f , where Dh( f ) f is a free
left Dh( f )-module of rank 1, is a K -algebra with multiplication given by the rule: For all f, g ∈ Mor(C), a ∈ Dh( f )

and b ∈ Dh(g),

a f · bg =
{
aσ f (b) f g if t ( f ) = h(g),

0 otherwise.

The K -algebra C(σ ) is called a skew category K -algebra. If K = Z, the Z-algebra C(σ ) is called a skew category
ring.

By the very definition, the algebra C(σ ) is a C-graded algebra, that is Dh( f ) f · Dh(g)g ⊆ Dh( f g) f g for all
f, g ∈ Mor(C). The algebra C(σ ) is also an Ob(C)-graded algebra, i.e., C(σ ) is a direct sum

C(σ ) =
⊕

i, j∈Ob(C)

C(σ )i j where C(σ )i j =
⊕

f ∈C( j,i)

Di f (1)

and for all i, j, k, l ∈ Ob(C),

C(σ )i jC(σ )kl ⊆ δ jkC(σ )il (2)

where δ jk is the Kronecker delta. In particular, for each i ∈ Ob(C), C(σ )i i is a K -algebra without 1, in general. For
each i, j ∈ Ob(C), C(σ )i j is a (C(σ )i i , C(σ ) j j )-bimodule.

Example Let C be a category that contains a single object, say 1, and Mor(C) = 〈x1, . . . , xn〉 is a free semigroup
on n elements. Then the skew category algebra C(σ ) denoted by Fn(σ ) = D〈x1, . . . , xn; σx1 , . . . , σxn , σe〉 is called
the skew free algebra. As an abstract ring, it is generated by a ring D = σ(1) and elements x1, . . . , xn subject to
the defining relations: For all d ∈ D and i = 1, . . . , n,

xi d = σxi (d)xi , ed = σe(d)e.

Notice that σeσxi = σxi σe = σxi . If n = 1 and σe = idD then C(σ ) = D[x; σx ] is a skew polynomial ring. If
σe 	= idD then C(σ ) is not a skew polynomial ring since ed = σe(d)e and, in general, σe(d)e 	= de for all d ∈ D
(since σe 	= idD). For example, let D = D1 × D2 × D3 and σe and σx are the projections onto D1 × D2 and D1,
respectively. Then eD3 = 0.

Example Let C be a category that contains a single object, say 1, andMor(C) = 〈x±1
1 , . . . , x±1

n 〉 is a free group on n
elements. Then the skewcategory algebraC(σ )denotedbyGn(σ ) = D〈x±1

1 , . . . , x±1
n ; σx1 , σx−1

1
, . . . , σxn , σx−1

n
, σe〉

is called the skew free group algebra. As an abstract ring, it is generated by a ring D = σ(1) and elements
x1, x

−1
1 , . . . , xn, x−1

n , subject to the defining relations: For all d ∈ D and i = 1, . . . , n,

xi d = σxi (d)xi , x−1
i d = σx−1

i
(d)xi , ed = σe(d)e.

Notice that σeσxi = σxi σe = σxi and σxi σx−1
i

= σx−1
i

σxi = σe. If n = 1 and σe = idD then C(σ ) =
D[x, x−1; σx , σ

−1
x ] is a skew polynomial ring. If σe 	= idD then C(σ ) = D[x, x−1; σx , σx−1 , σe] is not a skew

polynomial ring since ed = σe(d)e and, in general, σe(d)e 	= de for all d ∈ D (since σe 	= idD). For example, let
D = D1 × D2 × D3 and σe and σx are the projections onto D1 × D2 and D1, respectively. Then eD3 = 0.

Definition Let � = (�0, �1) be a tree, i.e., a connected, non-oriented graph without cycles, where �0 is the set
of vertices and �1 is the set of edges. Let � be the groupoid associated with �: Ob(�) = �0, for each i ∈ Ob(�),
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�(i, i) = {eii }, for distinct i, j ∈ Ob(�) such that (i, j) ∈ �1, �(i, j) = {e ji } and �( j, i) = {ei j }, ei j e ji = eii and
e ji ei j = e j j . Let σ be a functor from � to the category of rings. Then �(σ ) is called the skew tree ring. We say
that the functor σ is of isomorphism type if σ(ei j ) : σ(i) → σ( j) are ring isomorphism for all (i, j) ∈ �1.

Example Let C be a category that contains a single object, say 1, and the monoid C(1, 1) is generated by elements
x and y subject to the defining relation yx = 1. The functor σ is determine by the algebra D = σ(1) and its three
algebra endomorphisms σx , σy and σe such that σyσx = σe. The skew category algebra C(σ ) is called the skew
semi-Laurent polynomial ring. It is a new class of rings. Suppose, for simplicity, that σe = idD . Then the ring
C(σ ) is generated by a ring D and elements x and y subject to the defining relations:

yx = 1, xd = σx (d)x and yd = σy(d)y for all d ∈ D.

We denote this ring by D[x, y; σx , σy]. In particular, D[x, y; τ, τ−1] where τ is an automorphism of D.

The ideal a and the algebra C(σ ) By (1), the formal sum e = ∑
i∈Ob(C) ei determines two well-defined maps

e· : C(σ ) → C(σ ), a �→ ea, and ·e : C(σ ) → C(σ ), a �→ ae. Clearly, the map ·e is the identity map id on C(σ ) but
the kernel a of the map e· is equal to a = ⊕ f ∈Mor(C)ah( f ) f where ai := ker(σei ) and σei : Di → Di is a K -algebra
endomorphism.

Lemma 2.1 The set a is an ideal of the algebra C(σ ) such that C(σ )a = 0, a C(σ ) = a and a2 = 0.

Proof C(σ )a = C(σ ) · e · a = 0, the rest is obvious. 
�
The ideal a is a C-graded ideal of the algebra C(σ ). Furthermore, a = ⊕i, j∈Ob(C)ai j where ai j = ⊕ f ∈C( j,i)ai f ⊆

C(σ )i j , ai jakl ⊆ δ jkail for all i, j, k, l ∈ Ob(C). The factor algebra C(σ ) = C(σ )/a = ⊕
f ∈Mor(C) Dh( f ) f is a

C-graded algebra where Di = Di/ai � im(σi ). Furthermore,

C(σ ) =
⊕

i, j∈Ob(C)

C(σ )i j where C(σ )i j = C(σ )i j/ai j (3)

and C(σ )i jC(σ )kl ⊆ δ jkC(σ )il for all i, j, k, l ∈ Ob(C). The maps e· and ·e are the identity map on C(σ ). In
particular, the image ei of the element ei in C(σ )i i is the identity of the ring C(σ )i i . If a = 0 then ei the identity of
the algebra C(σ )i i . The next two results are corollaries of (3).

Theorem 2.2 (Criterion for C(σ ) to be a left Noetherian algebra) The algebra C(σ ) is a left Noetherian algebra iff

1. The set Ob(C) is a finite set,
2. The ideal a is a finitely generated abelian group,
3. For every object i ∈ Ob(C), the K -algebra C(σ )i i is a left Noetherian algebra, and
4. For all objects i, j ∈ Ob(C) such that i 	= j , the left C(σ )i i -module C(σ )i j is finitely generated.

Proposition 2.3 (Criterion for C(σ ) to be a right Noetherian algebra) The algebra C(σ ) is a right Noetherian
algebra iff

1. The set Ob(C) is a finite set,
2. For every object i ∈ Ob(C), the K -algebra C(σ )i i is a right Noetherian algebra, and
3. For all objects i, j ∈ Ob(C) such that i 	= j , the right C(σ ) j j -module C(σ )i j is finitely generated.

Example Let C: 1 f→ 2 and the functor σ is as follows: σ(1) = K1 and σ(2) = K2 are fields such that K1 ⊆ K2

and dimK1(K2) = ∞, σe1 = idK1 , σe2 = idK2 and σ f : K1 → K2, k �→ k. Then the algebra C(σ ) is isomorphic

to the lower triangular matrix algebra

(
K1 0
K2 K2

)

. By Theorem 2.2, the algebra C(σ ) is left Noetherian but not right

Noetherian, by Proposition 2.3 (since K2 is not a finitely generated right K1-module).
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3 Quiver Generalized Weyl Algebras

In this section, the quiver generalized Weyl algebras (QGWAs) are introduced. Each QGWA admits two natural
gradings, the object grading (see 9) and the double quiver groupoid grading (see 15). Natural classes of involutions
are introduced (Proposition 3.2). An interesting subclass of QGWAs, the class of simplex generalizedWeyl algebras,
is introduced.

The quiver generalizedWeyl algebras Let Q = (Q0, Q1) be a quiverwhere Q0 is the set of vertices and Q1 is
the set of arrows of Q. For vertices i, j ∈ Q0, Q(i, j) is the set of arrows from i to j and |Q(i, j)| is the cardinality
of the set Q(i, j). For each arrow a : i → j , t (a) = i is the tail and h(a) = j is the head of a. An (oriented) path
from i to j is a formal product of arrows anan−1 · · · a1 such that t (a1) = i , h(a1) = t (a2), . . . , h(an−1) = t (an) and
h(an) = j . A non-oriented path from i to j is a formal product of arrows anan−1 · · · a1 such that i ∈ {t (a1), h(a1)},
j ∈ {t (an), h(an)} and {h(ai ), t (ai )} ∩ {h(ai+1), t (ai+1)} 	= ∅ for i = 1, . . . , n − 1. A quiver is called connected
if every two distinct vertices can be connected by a non-oriented path. To be connected is an equivalence relation
on the set of vertices. The set of vertices is a disjoint union of its connected components, Q0 = ∐

c∈C Q0,c. Then
the quiver Q = ∐

c∈C Qc is a disjoint union of its connected components Qc = (Q0,c, Q1,c) where Q1,c is the set
of all arrows between vertices in Q0,c.

Each quiver Q determines the (quiver) category Q where Ob(Q) = Q0 and the set of morphisms from i to j ,
Q ji , contains all oriented paths from i to j including the identity (the empty path) 1i from i → i provided i = j .
The quiver Q can be seen as a set of generators of its quiver category.

The double quiver Q = (Q0, Q1) of the quiver Q = (Q0, Q1) is a quiver such that Q0 = Q0 and for each
arrow a : i → j an opposite arrow a : j → i is added. So, Q1 = Q1

∐
Q1 where Q1 = {a | a ∈ Q1}, the set of

opposite arrows. Let σ be a functor from the quiver category Q to the category of K -algebras. For simplicity reason
we assume that σ(1i ) = idσ(i) for all i ∈ Q0. So, for each object i ∈ Q0, Di := σ(i) is a K -algebra and for each
arrow x : i → j , σx : Di → Dj is a K -algebra homomorphism such that σxy = σxσy for all morphisms x and y
such that t (x) = h(y).

Definition The skew category algebra Q(σ ) is called the skew double quiver algebra. Suppose that for each
arrow x ∈ Q1, there is an element ax ∈ Dt (x) such that

σxσx (ax ) = ax , axd = σxσx (d)ax (for d ∈ Dt (x)) and σx (ax )d = σxσx (d)σx (ax ) (for d ∈ Dh(x)). (4)

Then the factor algebra (where a := (ax )x∈Q0 )

Q(σ, a) := Q(σ )/(xx − ax , xx − σx (ax ) | x ∈ Q1) (5)

is called the quiver generalizedWeyl algebra (QGWA). So, as an abstract algebra, the QGWA Q(σ, a) is generated
by the direct sum of rings D = ⊕i∈Q0Di subject to the defining relations:

xd = σx (d)x (for d ∈ Dt (x)), xd = σx (d)x (for d ∈ Dh(x)), xx = ax and xx = σx (ax ). (6)

The QGWA Q(σ, a) is also denoted by D[x, x; σx , σx , a]. Let ax := σx (ax ) for all elements x ∈ Q1. Then the
equalities in (4) and (6) take a more symmetrical form:

σx (ax ) = ax , axd = σxσx (d)ax (for d ∈ Dt (x)) and axd = σxσx (d)ax (for d ∈ Dh(x)). (7)

xd = σx (d)x (for d ∈ Dt (x)), xd = σx (d)x (for d ∈ Dh(x)), xx = ax and xx = ax . (8)

By the very definition, the ideal R = (xx − ax , xx − σx (ax ) | x ∈ Q1) in Q(σ ) of the defining relations of
the QGWA A = Q(σ, a) is an Ob(Q)-graded idealR = ⊕i, j∈Ob(Q)Ri j whereRi j = R∩ Q(σ )i j . So, the QGWA

A = Q(σ, a) is an Ob(Q)-graded algebra
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A =
⊕

i, j∈Ob(Q)

Ai j where Ai j = Q(σ )i j/Ri j (9)

and for all i, j, k, l ∈ Ob(Q), Ai j Akl ⊆ δ jk Ail . For each i ∈ Ob(Q), Aii is an algebra. For i, j ∈ Ob(Q), Ai j is an
(Aii , A j j )-bimodule.

Definition Let Q be a quiver with a single object, say 1, and a single loop x : 1 → 1. The functor σ from the double
quiver Q to the category of K -algebras is uniquely determined by the ring D = σ(1) and two of its K -algebra
endomorphisms σx and σx (we assume that σ(11) = idD). Then the QGWA A = Q(σ, a) is generated by the ring
D and the elements x , x subject to the defining relations: For all elements d ∈ D,

xd = σx (d)x, xd = σx (d)x, xx = a and xx = σx (a), (10)

provided

σxσx (a) = a, ad = σxσx (d)a and σx (a)d = σxσx (d)σx (a). (11)

The algebra A is called the generalized Weyl algebra (GWA) of rank 1 and is denoted D[x, x; σx , σx , a] or
D[x, y; σ, τ, a] where y = x , σ = σx and τ = σx . This definition of the GWA is an extension of the (classical)
GWA, see Sect. 4 for details.

Definition The functor σ is called of isomorphism type if σx is an isomorphism for all x ∈ Q1
∐

Q1. The functor σ
is called of invertible type if σx = σ−1

x for all x ∈ Q1 (then necessarily σx = σ−1
x , ax ∈ Z(Dt (x)) and ax ∈ Z(Dt (x))

for all x ∈ Q1 where Z(R) is the centre of a ring R). If σ is of invertible type then it is of isomorphism type but
not vice versa, in general. We say that a QGWA Q(σ, a) is of isomorphism/invertible type if the functor σ is so.

Remark A QGWA Q(σ, a) of invertible type is uniquely determined by the rings {Di }i∈Q0 , the isomorphisms
{σx }x∈Q1 and the central elements {ax ∈ Z(Dt (x))}x∈Q1 that can be chosen in an arbitrary fashion since the
relations (4) are automatically satisfied.

The (x, x)-symmetry of a QGWA Let A = Q(σ, a) = D[x, x; σx , σx , a] be a QGWA. We define ax := ax :=
σx (ax ). By applying the homomorphism σx to the equality σxσx (ax ) = ax (i.e., σx (ax ) = ax ) we obtain the equality
σxσx (ax ) = ax . So, the equalities in (4) imply the equalities

σxσx (ax ) = ax , axd = σxσx (d)ax (for d ∈ Dt (x)) and σx (ax )d = σxσx (d)σx (ax ) (for d ∈ Dh(x)), (12)

where the last two equalities above coincide with the last two equalities in (4) but written in the opposite order. So,
we have the QGWA D[x, x; σx , σx , a] where a := σx (a) := (σx (ax )) = (ax ) and

D[x, x; σx , σx , a] = D[x, x; σx , σx , a]. (13)

When we say the (x, x)-symmetry of a QGWA we mean the equality above.
The double quiver groupoid grading of a QGWA Let C be a category. An element a ∈ C(i, j) is called a

locally invertible element or a local unit if there exists element a−1 ∈ C( j, i) such that a−1a = 1i and aa−1 = 1 j .
The element a−1 is unique and is called a local inverse of a. By the uniqueness of the local inverse, (a−1)−1 = a.
If the category C contains a single object, say i , then the concepts of local unit and local inverse coincide with the
concepts of unit and inverse in the monoid C(i, i). A category C is called a groupoid if all its morphisms are local
units.

Let Q be a quiver, Q be the double quiver of Q and Q be the double quiver category associated with Q. The
factor category
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G(Q) = Q/(xx − 1t (x), xx − 1h(x) | x ∈ Q1) (14)

is a groupoid which is called the double quiver groupoid, Ob(G(Q)) = Ob(Q) = Q0. Every morphism a : i → j
in G(Q) is a unique product anan−1 · · · a1 where each product ai+1ai not of the type xx or xx for some x ∈ Q1.
This product is called the canonical form of a and the number l(a) = n is called the length of A. So, on the level
of sets we have inclusion G(Q) ⊆ Q. For all elements f, g ∈ G(Q) such that t ( f ) = h(g), l( f g) ≤ l( f ) + l(g).

Example If the category Q = Qn contains a single object and n loops x1, . . . , xn then G(Qn) is a free group on n
generators x1, . . . , xn . If n = 1 then G(Q1) = Z.

Let C be a category. An involution ∗ on C is two bijections ∗ : Ob(C) → Ob(C), i �→ i∗ = i , and ∗ : Mor(C) �→
Mor(C), x �→ x∗, such that 1∗

i = 1i for all i ∈ Ob(C), C(i, j)∗ = C( j, i), (xy)∗ = y∗x∗ and x∗∗ = x for all
x, y ∈ Mor(C). So, an involution on a category is an anti-isomorphism of order 2 that reverses the arrows and acts
trivially on objects.

Let Q be a quiver. The double quiver category Q admits the involution ∗: x∗ = x and x∗ = x for all x ∈ Q1.
The involution respects the ideal of the defining relations of the groupoid G(Q). So, the groupoid G(Q) admits
the induced involution ∗ which is, in fact, equal the operation of taking the local inverse, a∗ = a−1. The QGWA
A = Q(σ, a) is a G(Q)-graded algebra

A = Q(σ, a) =
⊕

f ∈G(Q)

A f where A f = Dh( f ) f (15)

is a free left Dh( f )-module of rank 1 (Lemma 3.1) and A f Ag ⊆ A f g for all f, g ∈ G(Q) such that t ( f ) = h(g).
Each element a of the algebra A is a unique finite sum a = ∑

f ∈G(Q) a f f where a f ∈ Dh( f ) and the multiplication
in A is given by the rule

a f · bg =

⎧
⎪⎨

⎪⎩

aσ f (b) f g if t ( f ) = h(g), l( f g) = l( f ) + l(g),

aσ f (b)( f, g) f g if t ( f ) = h(g), l( f g) < l( f ) + l(g),

0 if t ( f ) 	= h(g).

(16)

where f g is a product of elements in the groupoid g(Q) and the element ( f, g) ∈ Dh( f g) is defined as follows: if
t ( f ) = h(g) and l( f g) < l( f ) + l(g) then there is a (unique) element h = h1 · · · hn (where hi ∈ Q1 = Q1

∐
Q1)

of longest length such that f = f1h and g = h∗g (recall that G(Q) ⊆ Q). The element h := o( f, g) is called the
( f, g)-overlap. Then

( f, g) = σ f1((h, h∗)) and (h, h∗) = σh1···hn−1(ahn )σh1···hn−2(ahn−1) · · · σh1(ah2)ah1 (17)

where ax := σx (ax ) for all x ∈ Q1. For all elements f ∈ G(Q),

( f, f ∗) = σ f (( f
∗, f )) (18)

since ( f ∗, f ) f = f f ∗ f = f ( f ∗, f ) = σ f (( f ∗, f )).

Lemma 3.1 Let A = Q(σ, a) be a QGWA. Then, for each element f ∈ G(Q), A f = Dh( f ) f is a free left
Dh( f )-module of rank 1, see (15).

Proof Let A′ = ⊕
f ∈G(Q) A

′
f where A′

f = Dh( f ) f is a free left Dh( f )-module of rank 1. The direct sum A′ is a
left D-module (recall that D = ⊕i∈Q0Di is the direct sum of rings) where di · d j f = δi j di d j f for all elements
di ∈ Di and d j ∈ Dj where j = h( f ). Using the defining relations (6) of the algebra A it is easy to check that A′
is a left A-module where the action of generators are defined by the rule (where d ∈ Dh( f )):
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x · d f =

⎧
⎪⎨

⎪⎩

σx (d)x f if t (x) = h( f ), l(x f ) = l( f ) + 1,

σx (d)(x, x) f1 if t (x) = h( f ), f = x f1,

0 if t (x) 	= h( f ),

x · d f =

⎧
⎪⎨

⎪⎩

σx (d)x f if t (x) = h( f ), l(x f ) = l( f ) + 1,

σx (d)(x, x) f2 if t (x) = h( f ), f = x f2,

0 if t (x) 	= h( f ).

Then the lemma follows. 
�
Involutions on QGWAs An anti-isomorphism ∗ of a ring R ((ab)∗ = b∗a∗ for all elements a, b ∈ R) is called

an involution if a∗∗ = a for all elements a ∈ R. If R is a K -algebra and the involution ∗ is a K -linear map then the
involution ∗ is called an algebra involution or a K -algebra involution.

Proposition 3.2 Let A = Q(σ, a) = D[x, x; σx , σx , a] be a QGWA. Suppose that σ is a functor from the category
Q to the category of algebras with involution such that σx ∗ σx = ∗, σx ∗ σx = ∗, a∗ = a and (a)∗ = a (i.e.,
a∗
x = ax and a∗

x = ax for all x ∈ Q1, respectively). Then the involution ∗ of the algebra D can be extended to an
involution ∗ of the algebra A by the rule x∗ = x and x∗ = x for all x ∈ Q1.

Proof First we show that ∗ respects the equalities (4):

(a) For all x ∈ Q1 and d ∈ Dσ(t (x)), axd = σxσx (d)ax : (σxσx (d)ax )∗ = a∗
x · ∗σxσx (d) = ax · ∗σxσx (d) =

σx (σx ∗ σx )σx (d)ax = σx ∗ σx (d)ax = d∗a∗
x = (axd)∗.

(b) For all x ∈ Q1 and d ∈ Dσ(h(x)), σx (ax )d = σxσx (d)σx (ax ): (σxσx (d)σx (a))∗ = σx (ax )∗ · ∗σxσx (d) =
σx (ax ) · ∗σxσx (d) = σx (σx ∗ σx )σx (d)σx (ax ) = σx ∗ σx (d)σx (a) = d∗σx (ax )∗ = (σx (ax )d)∗.

Next, we show that ∗ respects the defining relations (6) of the QGWA A:

(i) For all x ∈ Q1 and d ∈ Dσ(t (x)), xd = σx (d)x : (σx (d)x)∗ = xσx (d)∗ = σx ∗ σx (d)x = d∗x∗ = (xd)∗.
(ii) For all x ∈ Q1 and d ∈ Dσ(h(x)), xd = σx (d)x : (σx (d)x)∗ = xσx (d)∗ = σx ∗ σx (d)x = d∗x = (xd)∗.
(iii) xx = ax : (xx)∗ = xx = ax = a∗

x .
(iv) xx = σ(ax ): (xx)∗ = xx = σ(ax ) = σ(ax )∗. 
�
The simplex generalized Weyl algebras

Definition Let I be a set that contains at least 2 elements, letI be a non-empty set of 2-elements subsets of I , {Di }i∈I
be a set of rings with identity, σ = {σi j , σ j i | {i, j} ∈ I} be a set of ring homomorphisms where σi j : Dj → Di

and σ j i : Di → Dj , a = {ai j , a ji | {i, j} ∈ I} be a set of elements where ai j ∈ Dj and a ji ∈ Di such that

ai j d j = σ j iσi j (d j )ai j and σi j (ai j ) = a ji for all d j ∈ Dj , {i, j} ∈ I. (19)

The simplex generalized Weyl algebra (SGWA) A = D[x; σ, a] is a ring generated by the direct sum of rings,
D = ⊕i∈I Di , and a set of (noncommutative) variables x = {xi j , x ji | {i, j} ∈ I} that satisfy the defining relations:
for all {i, j} ∈ I, di ∈ Di and d j ∈ Dj ,

xi j d j = σi j (d j )xi j , xi j x ji = a ji , Dkxi j = 0 (k 	= i) and xi j Dk = 0 (k 	= j). (20)

Clearly, a SGWA is a QGWA.

4 Generalized Weyl Algebras and Their Simplicity Criteria

At the beginning of the section we recall the definition of a (classical) generalized Weyl algebra and consider
examples. A (classical) generalized Weyl algebra is determined by a ring D, its automorphism σ and a central
element a of D. The aim of the section is to introduce a generalization of this construction, the algebras that are
obtained are also called generalized Weyl algebras. Each such algebra is determined by a ring D, its two ring
endomorphisms σ and τ and an element a of D which is not assumed to be a central element of D but a left normal
one. We show that each such ring A is a Z-graded ring which is a free left D-module (Theorem 4.1) but not a
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free right D-module, in general. The aim of this section is to give two simplicity criteria for GWAs (Theorem 4.2
and Theorem 4.3). The first one (Theorem 4.2) is a simplicity criterion for a GWA A = D[x, y; σ, τ, a] where the
elements a and σ(a) are normal in D. This is a mild restriction on the elements a and σ(a) that often occurs in
applications. The second one (Theorem 4.3) is a simplicity criterion for GWAs in general case (no restrictions on
a and σ(a)). Their proofs are quite different.

Left and right normal elements Let D be a ring. An element a ∈ D is called a left (resp., right) normal element
of D if aD ⊆ Da (resp., Da ⊆ aD). If a is a left normal element in D then the left ideal Da is an ideal of D.
Similarly, if a is a right normal element in D then the right ideal aD is an ideal of D. An element a ∈ D is normal
if aD = Da, i.e., a is left and right normal. Let ·a := ·aD : D → D, d �→ da, and a := ker(·a). In particular,
aa = 0. Similarly, let a· := aD· : D → D, d �→ ad, and b := ker(a·). In particular, ab = 0. If the element
a is left normal then b is an ideal of the ring D: a · DbD ⊆ DabD = 0. If the element a is right normal then
a is an ideal of the ring D: DaD · a ⊆ DaaD = 0. The sets La := {d ∈ D | da = ad ′ for some d ′ ∈ D} and
Ra := {d ∈ D | ad = d ′a for some d ′ ∈ D} are subrings of D such that a ⊆ La and b ⊆ Ra . Furthermore, a is an
ideal of La (LaaLa · a ⊆ Laa aD = 0, and so LaaLa ⊆ a) and b is an ideal of Ra (a ·RabRa ⊆ DabRa = 0). If
a is a left (resp., right) normal element of D then Laa = aD (resp., Da = aRa).

Suppose that a ∈ D is a left normal element. Then, for each element d ∈ D, ad = dla for some element dl ∈ La

which is unique up to adding a (dla = (dl + a)a). Hence, the map

ωa : D/b → La/a, d + b �→ dl + a, (21)

is a ring isomorphism and we can write ad = ωa(d)d for all d ∈ D. A left normal element a is normal iff La = D.
If a is a normal element then La = D and the map ωa : D/b → D/a, d + b �→ dl + a, is a ring isomorphism.

Generalized Weyl algebras D(σ, a) with central element a

Definition [1–8]. Let D be a ring, σ be a ring automorphism of D, a is a central element of D. The (classical)
generalized Weyl algebra (GWA, for short) D(σ, a) = D[x, y; σ, a] is a ring generated by the ring D and two
elements x and y that are subject to the defining relations:

xd = σ(d)x and yd = σ−1(d)y for all d ∈ D, yx = a and xy = σ(a).

The ring D is called the base ring of the GWA. The automorphism σ and the element a are called the defining
automorphism and the defining element of the GWA, respectively.

It is an experimental fact that many popular algebras of small Gelfand–Kirillov dimension are GWAs (see below):
the first Weyl algebra A1 and its quantum analogue, the quantum plane, the quantum sphere, Usl(2), Uqsl(2),
the Heizenberg algebra and its quantum analogues, the 2 × 2 quantum matrices, the Witten’s and Woronowic’s
deformations, Noetherian down-up algebras, etc., see [1–8,12].

Examples 1 1. The (first) Weyl algebra A1 = K 〈x, ∂ | ∂x − x∂ = 1〉 over a ring K is the GWA K [h][x, y :=
∂; σ, a = h] with base ring K [h] and its K -automorphism σ defined by the rule σ(h) = h − 1.

2. The quantum plane � = K 〈x, y | xy = qyx〉 where q is a unit of K is the GWA K [h][x, y; σ, a = h] where
σ(h) = qh.

3. For q, h = q − q−1 ∈ K = C, the algebra Uq = Uqsl(2) is generated by X,Y, H− and H+ subject to the

defining relations: H+H− = H−H+ = 1, XH± = q±1H±X, Y H± = q∓1H±Y, [X,Y ] = H2+−H2−
h . It

follows that the algebra Uq is a GWA,

Uq � K [C, H, H−1](σ, a = C +
(
H2/(q2 − 1) − H−2/(q−2 − 1)

)
/2h),

where σ(H) = qH, σ (C) = C .

Generalized Weyl algebras

Definition Let D be a ring, σ and τ be ring endomorphisms of D, and an element a ∈ D be such that
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τσ (a) = a, ad = τσ (d)a and σ(a)d = στ(d)σ (a) for all d ∈ D. (22)

The generalizedWeyl algebra (GWA) A = D(σ, τ, a) = D[x, y; σ, τ, a] is a ring generated by D, x and y subject
to the defining relations:

xd = σ(d)x and yd = τ(d)y for all d ∈ D, yx = a and xy = σ(a). (23)

The ring D is called the base ring of the GWA A. The endomorphisms σ , τ and the element a are called the defining
endomorphisms and the defining element of the GWA A, respectively. By (22), the elements a and σ(a) are left
normal in D.

Example Let D = C[t1, . . . , tn; ν1, . . . , νn] be a skew polynomial ring in variables t1, . . . , tn (ti t j = t j ti , ti c =
νi (c)ti for all c ∈ C) over a ringC , ν1, . . . , νn are commuting automorphisms of the ringC . Suppose that an element
u ∈ C is such that νi (u) = uiu for some unit ui of D for i = 1, . . . , n (eg, u = u1 = · · · = un = 1). Then for each
element α = (α1, . . . , αn) ∈ N

n , the element a = utα is a regular, normal element of D where tα = tα11 · · · tαnn .
Then A = D[x, y; σ, ωaσ

−1, a] is a GWA.
A Z-grading of a GWA The next theorem proves existence of GWAs and introduces a Z-grading.

Theorem 4.1 The GWA A = D[x, y; σ, τ, a] exists. It is a Z-graded ring A = ⊕i∈ZAi where Ai = Dvi � DD,
v0 = 1, vi = xi and v−i = yi for i ≥ 1. In particular, the module D A is free.

Simplicity criteria for generalized Weyl algebras Let D be a ring and σ be its ring endomorphism. An ideal
I of D is called σ -stable if σ(I ) = I . The ring D is called a σ -simple ring iff 0 and D are the only σ -stable ideals
of the ring D. An endomorphism σ is inner if σ = ωu for some unit u ∈ D (σ(d) = udu−1 for all d ∈ D). Then
necessarily σ an automorphism of D. The next theorem is a simplicity criterion for GWAs with normal defining
elements a and σ(a). It generalizes a simplicity criterion for (classical) GWAs [9, Theorem 4.2]. The idea of the
proofs of the next two theorems is to use localizations and graded/filtered techniques.

Theorem 4.2 [10] Let A = D[x, y; σ, τ, a] be a GWA such that the elements a and σ(a) are right normal in D
(they are normal, by (22)). Then the following statement are equivalent.

1. A is a simple ring.
2. (a) The elements a and σ(a) are regular in D,

(b) D is a σ -simple ring,
(c) for all i ≥ 1, σ i is not an inner automorphism of the ring D, and
(d) for all i ≥ 1, Da + Dσ i (a) = D.

3. (a) The elements a and σ(a) are regular in D,
(b) D is a τ -simple ring,
(c) for all i ≥ 1, τ i is not an inner automorphism of the ring D, and
(d) for all i ≥ 1, Dσ(a) + Dτ iσ(a) = D.

If one of the equivalent conditions holds then σ and τ are automorphisms of D.

Example Let A = �[x, y; σ = σα,β, τ = ωaσ
−1, a] be the GWA considered in Sect. 4. If a /∈ K ∗ then σ i (a) ∈

K ∗a for all i ≥ 1, and so the condition (2d) of Theorem 4.2 does not hold and the algebra A is not simple.
For a ring D and its ring endomorphism σ , the subring of D, Dσ = {d ∈ D | σ(d) = d}, is called the ring

of σ -invariants, and each element of Dσ is called a σ -invariant. Every left normal, left regular element d of D,
determines a ring endomorphism of D:

ωd : D → D, d ′ �→ ωd(d
′), where dd ′ = ωd(d

′)d. (24)

The next theorem is a simplicity criterion for GWAs.
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Theorem 4.3 [10] Let A = D[x, y; σ, τ, a] be a GWA. Then the following statements are equivalent.

1. A is a simple ring.
2. (a) The elements a and σ(a) are regular in D,

(b) For all nonzero ideals I of D, I ′ = D where I ′ := I + ∑
i≥1

(
Dσ i (I )(i,−i) + Dτ i (I )(−i, i)

)
.

(c) None of the ring endomorphisms σ n (n ≥ 1) of D is equal to the ring endomorphism ωd (see (24)) where
d is a σ -invariant, regular, left normal element of D.

3. (a) The elements a and σ(a) are regular in D,

(b) For all nonzero ideals I of D, I ′ = D where I ′ := I + ∑
i≥1

(
Dσ i (I )(i,−i) + Dτ i (I )(−i, i)

)
.

(c) None of the ring endomorphisms τ n (n ≥ 1) of D is equal to the ring endomorphism ωd (see (24)) where d
is a τ -invariant, regular, left normal element of D.

If one of the equivalent conditions holds then σ and τ are monomorphisms of D.

5 Generalized Weyl Algebras of Rank n

The aim of this section is to introduce a new class of rings which is more general that the class of (classical)
generalized Weyl algebras. The rings of the new class are also called generalized Weyl algebras. In order to
distinguish these new rings from the old ones the latter are called classical GWAs.

Iterated generalized Weyl algebras The next corollary follows from Theorem 4.1 by induction on the rank n.

Corollary 5.1 Let A = D[x1, y1; σ1, τ1, a1] . . . [xn, yn; σn, τn, an] be an iterated GWA of rank n. Then A =
⊕α∈Zn Dvα is a direct sumof the free left D-modules DDvα � Dwhere forα = (α1, . . . , αn),vα = vα1(1) · · · vαn (n)

and vαi (i) =
{
xαi
i if αi ≥ 0,

y−αi
i if αi < 0.

Classical generalized Weyl algebras, [1–8] Let D be a ring, σ = (σ1, . . . , σn) an n-tuple of commuting automor-
phisms of D, a = (a1, . . . , an) an n-tuple of elements of the centre Z(D) of D such that σi (a j ) = a j for all i 	= j .
The (classical) generalized Weyl algebra A = D(σ, a) = D[x, y; σ, a] of rank n is a ring generated by D and 2n
indeterminates x1, . . . , xn, y1, . . . , yn subject to the defining relations:

yi xi = ai , xi yi = σi (ai ), xi d = σi (d)xi , and yid = σ−1
i (d)yi for all d ∈ D,

[xi , x j ] = [xi , y j ] = [yi , y j ] = 0, for all i 	= j,

where [x, y] = xy − yx . We say that a and σ are the sets of defining elements and automorphisms of the GWA A,
respectively.

Generalized Weyl algebras Let A be a ring and σ its endomorphism. A subring B of A is called σ -invariant if
σ(B) ⊆ B.

Definition An iterated generalized Weyl algebra A = D[x1, y1; σ1, τ1, a1] . . . [xn, yn; σn, τn, an] is called a gen-
eralized Weyl algebra of rank n if a1, . . . , an ∈ D, the ring D is σi - and τi -invariant for all i = 1, . . . , n; and for
all integers i, j = 1, . . . , n such that i > j :

σi (x j ) = λi j x j , σi (y j ) = λ′
i j y j , τi (x j ) = μi j x j , τi (y j ) = μ′

i j y j ,

for some elements λi j , λ
′
i j , μi j and μ′

i j of the ring D. The elements � = (λi j ), �′ = (λ′
i j ), M = (μi j ) and

M ′ = (μ′
i j ) are called the defining coefficients of A. The n-tuples of endomorphisms σ = (σ1, . . . , σn) and

τ = (τ1, . . . , τn) are called the defining endomorphisms of A, and the n-tuples of elements a = (a1, . . . , an) is
called the defining elements of A. The GWA A of rank n is denoted by A = D[x, y; σ, τ,�,�′, M, M ′] where
x = (x1, . . . , xn) and y = (y1, . . . , yn).

We denote by σi and τi the restrictions σi |D and τi |D , respectively.
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An element � = (λi j ) (where 1 ≤ j < i ≤ n) is called a lower triangular half-matrix with coefficients in D.
The set of all such elements is denoted by Ln(D). The next proposition describes GWAs of rank n via generators
and defining relations.

Proposition 5.2 [10] Let D be a ring, σ = (σi ) and τ = (τi ) n-tuples of ring endomorphisms of D, a = (ai ) ∈ Dn,
and � = (λi j ),�

′ = (λ′
i j ), M = (μi j ), M ′ = (μ′

i j ) ∈ Ln(D) such that the following conditions hold: For all
i = 1, . . . , n and d ∈ D,

τiσi (ai ) = ai , aid = τiσi (d)ai and σi (ai )d = σiτi (d)σi (ai ); (25)

for all i > j ,

ai = τi (λi j )μi jσ j (ai ) = τi (λ
′
i j )μ

′
i jτ j (ai ), (26)

σi (ai ) = σi (μi j )λi jσ jσi (ai ) = σi (μ
′
i j )λ

′
i jτ jσi (ai ); (27)

for all i > j and d ∈ D,

λi jσ jσi (d) = σiσ j (d)λi j and μi jσ jτi (d) = τiσ j (d)μi j , (28)

λ′
i jτ jσi (d) = σiτ j (d)λ′

i j and μ′
i jτ jτi (d) = τiτ j (d)μ′

i j , (29)

σi (a j ) = λ′
i jτ j (λi j )a j and τi (a j ) = μ′

i jτ j (μi j )a j , (30)

σiσ j (a j ) = λi jσ j (λ
′
i j )σ j (a j ) and τiσ j (a j ) = μi jσ j (μ

′
i j )σ j (a j ). (31)

for i > j > k : λi jσ j (λik)λ jk = σi (λ jk)λikσk(λi j ) and λi jσ j (λ
′
ik)λ

′
jk = σi (λ

′
jk)λ

′
ikτk(λi j ), (32)

λ′
i jτ j (λik)μ jk = σi (μ jk)λikσk(λ

′
i j ) and λ′

i jτ j (λ
′
ik)μ

′
jk = σi (μ

′
jk)λ

′
ikτk(λ

′
i j ), (33)

μi jσ j (μik)λ jk = τi (λ jk)μikσk(μi j ) and μi jσ j (μ
′
ik)λ

′
jk = τi (λ jk)μ

′
ikτk(μi j ), (34)

μ′
i jτ j (μik)μ jk = τi (μ jk)μikσk(μ

′
i j ) and μ′

i jτ j (μ
′
ik)μ

′
jk = τi (μ

′
jk)μ

′
ikτk(μ

′
i j ). (35)

The GWA of rank n, A = D[x, y; σ, τ, a,�,�′, M, M ′], is a ring generated by D, x1, . . . , xn and y1, . . . , yn
subject to the defining relations: For all i = 1, . . . , n and d ∈ D,

xid = σi (d)xi , yi d = τi (d)yi , yi xi = ai and xi yi = σi (ai ); (36)

for all i > j ,

xi x j = λi j x j xi , xi y j = λ′
i j y j xi , yi x j = μi j x j yi and yi y j = μ′

i j y j yi . (37)

Example If σ = (σ1, . . . , σn) ∈ Aut(D)n is an n-tuple of commuting automorphisms of the ring D, τ := σ−1 =
(σ−1

1 , . . . , σ−1
n ), a = (a1, . . . , an) ∈ Z(D) and σi (a j ) = a j for all i 	= j ; and λi j = λ′

i j = μi j = μ′
i j = 1 for all

i > j , then the GWA A of rank n is a classical GWA of rank n, that is A = D[x, y; σ, a].
Recall that each normal, regular element α of a ring D determines the automorphism ωα of D by the rule

αd = ωα(d)α for all d ∈ D. The next proposition gives plenty of examples of GWAs of rank n.

Proposition 5.3 Let D be a ring, θ1, . . . , θn commuting automorphisms of the ring D, α1, . . . , αn, β1, . . . , βn

regular, normal elements of D. Then A = D[x, y; σ, τ, a,�,�′, M, M ′] be a GWA of rank n where

σi = θiωβi , τi = ωαi θ
−1
i , ai = αiβi ,

λi j = θi (βi )θiθ j (β jβ
−1
i )θ j (β

−1
j ), λ′

i j = θi (βiα j ) · θ−1
j θi (β

−1
i )α−1

j ,

μi j = αiθ
−1
i θ j (β j )θ j (α

−1
i β−1

j ), μ′
i j = αiθ

−1
i (α j )θ

−1
j (α−1

i )α−1
j ,

provided λi j , λ
′
i j , μi j , μi j ∈ D.
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AZ
n-grading of a GWAof rank n By Theorem 4.1, every GWA of rank n, A = D[x, y; σ, τ, a,�,�′, M, M ′],

is a Z
n-graded algebra A = ⊕α∈Zn Dvα (DvαDvβ ⊆ Dvα+β for all elements α, β ∈ Z

n) where for α =
(α1, . . . , αn) ∈ Z

n , vα = vα1(1)vα2(2) · · · vαn (n) and vαi (i) :=
{
xαi
i if αi ≥ 0,

y−αi
i if αi < 0.

Notice that the order in the

product for vα is important and, in general, cannot be changed. Moreover, the left D-module Dvα is free of rank 1.
For all elements α, β ∈ Z

n ,

vαvβ = (α, β)vα+β

for some (explicit) elements (α, β) ∈ D. For all elements α ∈ Z
n and d ∈ D, vαd = σα(d)vα where σα :=

σ(1, α1) · · · σ(n, αn) and σ(i, αi ) :=
{

σ
αi
i if αi ≥ 0,

τ
−αi
i if αi < 0.

6 Diskew Polynomial Rings

The aim of this section is to introduce a new class of rings - the diskew polynomial rings - to show that they are
GWAs under a mild restriction (Theorem 6.2). To give a simplicity criterion, Theorem 6.4, for diskew polynomial
rings that are GWAs satisfying the conditions of Theorem 4.2. It is a corollary of Theorem 4.2. The proofs can be
found in [10].

Diskew polynomial rings

Definition Let D be a ring, σ and τ be its ring endomorphisms, ρ and b be elements of D such that, for all d ∈ D,

στ(d)ρ = ρτσ(d) and στ(d)b = bd, (38)

The diskew polynomial ring (DPR) E := D(σ, τ, b, ρ) := D[x, y; σ, τ, b, ρ] is a ring generated by D, x and y
subject to the defining relations:

xd = σ(d)x and yd = τ(d)y for all d ∈ D, xy − ρyx = b. (39)

Example The quantum plane � = K 〈p, q | pq = λqp〉 (over a field K where λ ∈ K ∗) is a skew polynomial
ring � = K [q][p; ν] where ν(q) = λq. Then E = �[x, y; να, νβ, ηtα+β, ρ] is a diskew polynomial ring where
η, ρ ∈ K ∗ and α, β ∈ N (see the previous example).

Theorem 6.1 The diskew polynomial ring E = D[x, y; σ, τ, b, ρ] exists. It is a free left D-module E =
⊕i, j∈NDyi x j and the element x is a left regular element.

Diskew rings are GWAs when ρ is a unit

Theorem 6.2 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring. Suppose that ρ is a unit in D. Then x and y
are left regular elements of E and the ring E = D[x, y; σ, τ, a = h] is a GWAwith base ringD := D[h; τσ ]which
is a skew polynomial ring, σ and τ are ring endomorphisms of D that are extensions of the ring endomorphisms σ

and τ of D, respectively, defined by the rule σ(h) = ρh+b and τ(h) = τ(ρ−1)(h−τ(b)). In particular, τσ (h) = h
and στ(h) = ωρ(h) = ρτσ(ρ−1)h. Furthermore, στ = ωρτσ in D.

Corollary 6.3 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring. Suppose that ρ is a unit in D. Then
E = D[y, x; τ, σ, h′ := σ(h) = ρh + b] is a GWA with base ring D := D[h; τσ ] = D[h′, σ τ ] which is a skew
polynomial ring, σ and τ are ring endomorphism ofD that are extensions of the ring endomorphisms σ and τ of D,
respectively, defined in Theorem 6.2; τ(h′) = ρ−1(h′ − b) and σ(h′) = σ(ρ)h′ + σ(b). In particular, στ(h′) = h′
and τσ (h′) = ωρ−1(h′) = ρ−1στ(ρ)h′.
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By Theorem 6.2, if ρ ∈ D is a unit then the ring endomorphisms σ and τ of D can be extended to the ring
D = D[h; τσ ] by the rule σ(h) = ρh + b and τ(h) = τ(ρ−1)(h − τ(b)). By induction on i ≥ 1, we have the
equalities where
σ i (h) = ai h + bi , ai = σ i−1(ρ) · · · σ(ρ)ρ and bi =

∑

1≤ j≤i−1

σ j (ai− j )σ
j−1(b) + σ i−1(b), (40)

τ i (h) = a′
i h + b′

i , a′
i = τ i−1(ρ−1) · · · τ 2(ρ−1)τ (ρ−1), b′

i = −
i−1∑

j=1

τ j (a′
i− j )τ

j (ρ−1b) − τ i (ρ−1b). (41)

In particular, for all i ≥ 1,

ai+1 = σ(ai )ρ and bi+1 = σ(ai )b + σ(bi ), (42)

a′
i+1 = τ(a′

i )τ (ρ−1) and b′
i+1 = −τ(a′

i )τ (ρ−1b) + τ(b′
i ). (43)

For example, (42) follows from ai+1h + bi+1 = σ(σ i (h)) = σ(ai h + bi ) = σ(ai )(ρh + b) + σ(bi ) = σ(ai )ρh +
σ(ai )b + σ(bi ).

Suppose that ρ is a unit. Then στ = ωρν where ν = τσ , or, equivalently, ωρ−1στ = ν. Let β := ρ−1b. It
follows that for all d ∈ D,

βd = ν(d)β and (h + β)d = ν(d)(h + β) (44)

(βd = ρ−1bd
(38)= ρ−1στ(d)b = ωρ−1στ(d)β = ν(d)β). If, in addition, we assume that the element b is a left

regular element D. Then στ = ωρν = ωb and the element β ∈ D is also left regular in D. By (44), ββ = ν(β)β

and (h + β)β = ν(β)(h + β). Hence,

ν(β) = β, hβ = βh, σ (hi ) = ρν
i

i∑

j=0

βi j h
j (i ≥ 1) where ρν

i := ρν(ρ) · · · νi−1(ρ), βi j =
(
i

j

)

β i− j . (45)

In more detail, σ(hi ) = (ρ(h + β))i = ρν
i (h + β)i = ρν

i

∑i
j=0 βi j h j .

Theorem 6.4 is a simplicity criterion for a diskew polynomial ring E = D[x, y; σ, τ, b, ρ] where ρ is a unit
and τσ is an epimorphism. By Theorem 6.2, the ring E is a GWA that satisfies the assumptions of Theorem 4.2, a
simplicity criterion for GWAs, and Theorem 6.4 is rather a straightforward corollary of Theorem 4.2 and (45).

Theorem 6.4 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D and ν := τσ is
an epimorphism. The following statements are equivalent.

1. The ring E is a simple ring.
2. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ -simple ring,
(c) for each natural number n ≥ 1 there is no element p = hn + ∑n−1

i=0 di hi ∈ D, where di ∈ D, such that
(i) for all elements d ∈ D, pd = νn(d)p, i.e., di d = νn−i (d)di for i = 0, 1, . . . , n − 1,
(ii) σ(p) = ρν

n p where ρν
n = ρν(ρ) · · · νn−1(ρ), and

(iii) [h, p] = 0, i.e, ν(di ) = di for i = 0, 1, . . . , n − 1, and
(d) the elements bi ∈ D (see (40)), where i ≥ 1, are units in D. In particular, b ∈ D is a unit.

3. (a) The endomorphisms σ and τ of D are automorphisms,
(b) the ring D is a τ -simple ring,
(c) for each number n ≥ 1 there is no element p′ = h′n + ∑n−1

i=0 d ′
i h

′i ∈ D = D[h′, μ := στ ], where d ′
i ∈ D

and h′ = σ(h), such that
(i) for all elements d ∈ D, p′d = μn(d)p′, i.e., d ′

i d = μn−i (d)d ′
i for i = 0, 1, . . . , n − 1,

(ii) τ(p′) = (ρ−1)
μ
n p where (ρ−1)

μ
n := ρ−1μ(ρ−1) · · · μn−1(ρ−1), and
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(iii) [h′, p′] = 0, i.e, μ(d ′
i ) = di for i = 0, 1, . . . , n − 1, and

(d) the elements b′
i ∈ D (see (41)), where i ≥ 1, are units in D. In particular, b ∈ D is a unit.

We keep the notation and assumptions of Theorem 6.4. Let p = hn + ∑n−1
i=0 di hi ∈ D. Since ρ is a unit, then,

by (45), the condition that σ(p) = ρν
n p is equivalent to the equalities (since σ(p) = ρν

n h
n + · · · )

ρν
n− j d j − σ(d j ) =

(
n

j

)

bn− j +
∑

j<i≤n−1

(
i

j

)

σ(di )b
i− j for j = 0, 1, . . . , n − 1. (46)

In particular, for j = n − 1 and j = 0 we have, respectively, the equalities

ρdn−1 − σ(dn−1) = nb, (47)

ρν
n d0 − σ(d0) = bn +

∑

1≤i≤n−1

σ(di )b
i . (48)

Let p = hn + ∑n−1
i=0 di hi ∈ D be as in Theorem 6.4. Notice that the element β is a unit, ν = ωρ−1b = ωβ and

pβ = βp. Then, p = ωβ(p) = ν(p) = τσ (p) = τ(ρν
n p), and so

τ(p) = τ(ρν
n )−1 p. (49)

The next theorems shed light on the elements p and p′ in Theorem 6.4. Theorem 6.5 describes the element p in
Theorem 6.4 where n = 1; (46)–(48) are used in the proof.

Theorem 6.5 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit andD = D[h; ν = τσ ]
where h = yx. The following statements are equivalent.

1. There exists an element C = h + α ∈ D, where α ∈ D, such that Cd = ν(d)C for all elements d ∈ D and
σ(C) = ρC.

2. There is an element α ∈ D such that ρα − σ(α) = b and αd = ν(d)α for all elements d ∈ D.
If one of the equivalent conditions holds then [h,C] = (ν(α) − α)C and

(a) C = ρ−1(xy + σ(α)), xC = ρCx and yC = τ(ρ−1)(C + ν(α) − α)y.
(b) E � D[C; ν][x, y; σ, τ, a := C − α] is a GWA where σ(C) = ρC and τ(C) = τ(ρ−1)(C + ν(α) − α).

Furthermore, τσ (C) = C + ν(α) − α and στ(C) = στ(ρ−1)(ρC + σ(ν(α) − α)).

The canonical left normal element C of a diskew polynomial ring. Theorem 6.6 is a criterion for an element
C = h + α (where α ∈ D) to be a left normal element in E .

Theorem 6.6 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit, D = D[h; ν = τσ ]
and C = h + α where h = yx and α ∈ D. The following statements are equivalent.

1. The element C is left normal in E.
2. ρα − σ(α) = b, ν(α) = α and αd = ν(d)α for all elements d ∈ D.

If one of the equivalent conditions holds then [h,C] = 0 and

(a) C = ρ−1(xy + σ(α)), xC = ρCx and yC = τ(ρ−1)Cy.
(b) E � D[C; ν][x, y; σ, τ, a := C − α] is a GWA where σ(C) = ρC and τ(C) = τ(ρ−1)C.
(c) The element C is a left normal, left regular element of E and E/(C) � D[x, y; σ, τ,−α] is a GWA.
(d) The element C is a normal element in E iff im(ν) = D.
(e) The element C is regular iff C is right regular iff ker(ν) = 0.
(f) The element C is a normal, regular element iff ν is an automorphism of D.

The canonical central element C of a diskew polynomial ring (under certain conditions) The next corollary
is a criterion for an element C + α (where α ∈ D) to be a central element in E . It follows straightaway from
Theorem 6.6.



Quiver Generalized Weyl Algebras 267

Corollary 6.7 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit, D = D[h; ν = τσ ]
and C = h + α where h = yx and α ∈ D. The following statements are equivalent.

1. The element C is a central element of E.
2. ρ = 1, ν = 1, α − σ(α) = b, and the element α belongs to the centre of D.

If one of the equivalent conditions holds then

(a) C = xy + σ(α).
(b) E � D[C][x, y; σ, τ, a := C − α] is a GWA where σ(C) = C and τ(C) = C.
(c) The element C is a regular element of E.

Every simple ring is, in fact, an algebra either over the field of rational numbers Q or over the finite prime field Fp

that contains p elements (p is a prime number).
Simplicity criterion for DPRs in characteristic zero If the ring D is aQ-algebra the condition (c) in Theorem

6.4 can be replaced by condition 4 of Theorem 6.6.

Theorem 6.8 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D, ν := τσ is an
epimorphism and D is a Q-algebra. The following statements are equivalent.

1. The ring E is a simple ring.
2. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ -simple ring,
(c) there is no element α ∈ D such that ρα − σ(α) = b and αd = ν(d)α for all elements d ∈ D, and
(d) the elements bi ∈ D (see (40)), where i ≥ 1, are units in D. In particular, b ∈ D is a unit.

Simplicity criterion for DPRs in prime characteristic p If the ring D is a Fp-algebra the condition (c) in Theorem
6.4 can be replaced by more explicit conditions (where Fp = Z/pZ).

Theorem 6.9 Let E = D[x, y; σ, τ, b, ρ] be a diskew polynomial ring such that ρ is a unit in D, ν = τσ is an
epimorphism and D is a Fp-algebra. The following statements are equivalent.

1. The ring E is a simple ring.
2. (a) The endomorphisms σ and τ of D are automorphisms,

(b) the ring D is a σ -simple ring,
(c) for each natural number n ≥ 0 there is no element p′ = h pn + ∑n−1

i=0 αi h pi + α, where α, αi ∈ D, such
that
(i) for all d ∈ D, pd = ν pn (d)p, i.e. αd = ν pn (d)α and αi d = ν pn−pi (d)αi for i = 0, 1, . . . , n − 1,
(ii) σ(p′) = ρν

pn p
′,

(iii) [h, p′] = 0, i.e. ν(α) = α and ν(αi ) = αi for i = 0, 1, . . . , n − 1.
(d) the elements bi ∈ D (see (40)), where i ≥ 1, are units in D. In particular, b ∈ D is a unit.

3. (a) The endomorphisms σ and τ of D are automorphisms,
(b) the ring D is a σ -simple ring,
(c) there is no element α ∈ D such that ρα − σ(α) = b, ν(α) = α and αd = ν(d)α for all elements d ∈ D,

and for each natural number n ≥ 1 there are no elements α, α0, . . . , αn such that
(i) for all d ∈ D, αd = ν pn (d)α and αi d = ν pn−pi (d)αi for i = 0, 1, . . . , n − 1,
(ii) σ(αi ) = ρν

pn−pi
αi for i = 0, 1, . . . , n − 1, and ρν

pnα − σ(α) = bpn + ∑n−1
i=0 σ(αi )bpi ,

(iii) ν(α) = α and ν(αi ) = αi for i = 0, 1, . . . , n − 1.
(d) the elements bi ∈ D (see (40)), where i ≥ 1, are units in D. In particular, b ∈ D is a unit.
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