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Abstract We study the excitation of fluting perturbations in a magnetic tube by an initially
imposed kink mode. We use the ideal magnetohydrodynamic (MHD) equations in the cold-
plasma approximation. We also use the thin-tube approximation and scale the dependent
and independent variables accordingly. Then we assume that the dimensionless amplitude
of the kink mode is small and use it as an expansion parameter in the regular perturbation
method. We obtain the expression for the tube boundary perturbation in the second-order
approximation. This perturbation is a superposition of sausage and fluting perturbations.
The amplitude of the fluting perturbation takes its maximum at the middle of the tube, and
it monotonically decreases with the distance from the middle of the tube.
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1. Introduction

After transverse oscillations of coronal magnetic loops were first observed by the Transition
Region and Coronal Explorer (TRACE) in 1998 and were reported by Aschwanden et al.
(1999) and Nakariakov et al. (1999), they attracted enhanced attention from theorists. These
oscillations were interpreted as fast kink standing waves in magnetic flux tubes. Initially the
simplest model of a straight homogeneous magnetic tube (e.g. Ryutov and Ryutova, 1976;
Edwin and Roberts, 1983) was used for the theoretical studies of coronal-loop transverse
oscillations. Later more sophisticated models taking into account such effects as the plasma
density variation along and across a tube, the presence of flows, and loop cooling were
developed. For a review of the theory of coronal-loop oscillations see, e.g., Ruderman and
Erdélyi (2009).
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The majority of studies on coronal-loop kink oscillations were carried out in the approx-
imation of linear magnetohydrodynamics (MHD). Studies of nonlinear coronal-loop kink
oscillations are sparse. Ruderman (1992) and Ruderman, Goossens, and Andries (2010) an-
alytically studied nonlinear propagating kink waves. Ruderman and Goossens (2014) also
analytically investigated the effect of nonlinearity on standing kink waves in magnetic tubes
with the density varying along the tube. There were also a few numerical studies of nonlin-
ear kink oscillations of magnetic tubes (e.g. Terradas et al., 2008; Magyar, Van Doorselaere,
and Marcu, 2015; Magyar and Van Doorselaere, 2016).

This study is motivated by the discussion in a meeting of an international group led by
G. Verth and R. Morton at the International Space Science Institute (ISSI). In this meeting
(Terradas, Magyar, and Van Doorsselaere, 2017) presented the results of the study of non-
linear kink oscillations of a magnetic tube. In particular, they reported the appearance of a
fluting perturbation of the tube boundary excited by an initially imposed kink oscillation.
The period of the fluting perturbation was equal to the half period of the kink oscillation,
and its amplitude took its maximum at the centre of the magnetic tube. Some of the meeting
participants insisted that the fluting perturbation must be the first harmonic of the first fluting
mode. The amplitude of this harmonic is zero at the tube centre.

Ruderman, Goossens, and Andries (2010) and Ruderman and Goossens (2014) predicted
the excitation of the fluting perturbation with the frequency equal to the double frequency of
the kink mode. They also predicted that the amplitude of the fluting perturbation is propor-
tional to the amplitude of the kink mode squared. However, their results cannot be directly
compared with those reported by Terradas, Magyar, and Van Doorsselaere (2017) because
Ruderman, Goossens, and Andries (2010) studied propagating waves, and Ruderman and
Goossens (2014) concentrated on the nonlinearity effect on the kink oscillations of a mag-
netic tube strongly stratified in the longitudinal direction.

This article aims to study analytically the excitation of a fluting perturbation by an ini-
tially imposed kink mode and compare the analytical results with the numerical results ob-
tained by Terradas, Magyar, and Van Doorsselaere (2017). The article is organised as fol-
lows. In the next section we formulate the problem and write down the governing equations
and boundary conditions. In Section 3 we use the regular perturbation method to study the
excitation of fluting perturbation. Section 4 contains the summary of the results obtained
and our conclusions.

2. Problem Formulation and Governing Equations

We use the cold-plasma and thin-tube approximations. In the unperturbed state B = Be,,
where e, is the unit vector in the z-direction of cylindrical coordinates r, ¢, z. The equilib-
rium density [p] is given by

_ Pi>» r<R7

where p; and p, are constant, and p, < p;. The perturbations are governed by the ideal MHD
equations,

ot 12

b
5=V><[vx(B+b)], 3)
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where p is the density, v the plasma velocity, b the magnetic-field perturbation, and p the
magnetic permeability of free space. The perturbations must satisfy the frozen-in conditions
at the tube footpoints,

v, =0 atz=2L/2, “4)

where L is the tube length and v; = v — e (v - e;). We also impose the boundary conditions
at the tube boundary,

an

Vo=

+v-Vy,  [26-B+b’] =0 atr=R+n(t¢.2), ®)
where 1 (¢, ¢, 7) is the tube boundary perturbation, e, is the unit vector in the radial direction,
and the double brackets indicate the jump of a quantity across the tube boundary. For an
arbitrary function [ f] this jump is defined as

[f]=tim [f(R+n+&) = f(R+n—e)].

Below we assume that the tube is thin: R/L = € < 1. In accordance with this assumption
we introduce the stretching variable Z = €z. The characteristic alfvénic time related to the
tube radius is R/V,, where V4 = B(uop)~'/? is the Alfvén speed. It can be the Alfvén
speed either inside or outside the tube because we assume that the density ratio [p;/p.] is
not large, implying that the two Alfvén speeds are of the same order. On the other hand,
the oscillation period is of the order of L/ V4 = e~' R/ V,. This inspires us to introduce the
“slow” time T = €t. Below we assume that the maximum tube axis displacement is of the
order of a R, where a < 1. The quantity a can be considered as the dimensionless amplitude
of the tube kink oscillation. Later we shall assume that, although a is small, a > €.

In accordance with the definition, /R = O(a). We now obtain similar estimates for other
variables. Although we use nonlinear equations, the nonlinear correction to the linear solu-
tion will be small. Then we can use the estimates for the order of magnitude of perturbation
of various quantities obtained using the linear theory. Then it follows that the ratios of the
radial and azimuthal components of the velocity to V, is of the order of €a, and the same is
true for the ratios of the radial and azimuthal components of the magnetic-field perturbation
to B. On the other hand, the ratio of the z-component of the velocity to V,, and the ratio
of the z-component of the magnetic field to B are both of the order of €2a. In accordance
with these estimates we introduce the scaled components of the velocity and magnetic-field
perturbation and write

V= (ev,., €vy, ezvz), b= (ebr, €by, ezbz). 6)

We now substitute these expressions in Equations 2 and 3 and write the equations obtained
in components keeping only the leading terms with respect to €. As a result we obtain

av, ov, vy OV,

vy

v3 19P 1 ab ab, by db, b3
b _ (3 r oy, 2 b ’——¢), %

or T a6 T par mp\az o T e x

ad a ad , 1 0P 1 ab ab by Ob, b.b
vy Bvs BV vup L P L (p0by by by by bibs)
aT ar r d¢ r pr 0¢  op 0z ar r d¢ r
(®)
ab, dv, 1 9
- B (Wb — vsb,). ©

aT az+?£
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8b¢ 8U¢ 0
—2 = B—2 _ —(v,by — v4b,), 10
or ~ Baz = 3, Wrbe = veb0) (10)
a(rv,) 0
(o) | Ove (11)
ar 0p
where
1
P=—(2Bb, +b*>+ b’ 12
2“0( :+ b, + ¢) (12)

is the scaled perturbation of the total pressure. The boundary conditions take the form

v, =v3=0 atZ==xR/2, (13)

an vy dn
y=—+ —=—, P]=0 atr=R , 14
v=art i ae  [PIS0 atr=Re 19

where we took into account that e L = R.

An important property of this system of equations is that it does not contain v,. What is
also worth nothing is that the z-component of the induction equation reduces to Equation 11
which shows that the motion is incompressible in the leading-order approximation with
respect to €.

The system of Equations 7—11 with the boundary conditions in Equations 13 and 14 is
used in the next section to study the generation of fluting perturbations by a kink mode.

3. Generation of Fluting Perturbations

We use the regular perturbation method and look for the solution to the system of Equa-
tions 7—11 in the form of expansions with respect to the small dimensionless wave ampli-
tude a. We use the power series expansion

f=afi+a’fr+..., (15)

where f is any of the dependent variables. We substitute the expansions of all dependent
variables in Equations 7—11 and the boundary conditions in Equations 13 and 14, and col-
lect the terms of the same order with respect to a.

3.1. The First Order Approximation

In the first-order approximation we collect the terms of the order of a. As a result we obtain

8v,| _ B 8b,~| 18P1 3U¢1 _ B 8b¢1 1 8P1

AT  wop 9Z p or AT pop 9Z  pr 3¢’ (16)

In this order approximation the boundary conditions in Equations 13 and 14 reduce to
v1=v51 =0 atZ==%R/2, (18)
v,lz%, [PA]=0 atr=R. (19)
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Eliminating the magnetic-field perturbation we transform Equation 16 to

0%v, 0%, 1 3%2P

e L (20)
aT? 922 0 3rdT
32U¢1 282U¢1 _ 1 82P1

= . 21
aT? A 972 pr 9¢dT @h

Then we use the last equation in Equation 17 to eliminate v,; and vy, from Equations 20
and 21. As a result, we obtain the equation for P;:

3 ( 8 aP, 0°P
—(r=r=—L+=L)=0. (22)
oT \  or or 02

Imposing the condition that the solution to this equation is periodic in time with zero average
over the period we reduce this equation to

d op 0P
F—r— 4+ —1=0. (23)
or or 02
We look for the solution to this equation describing the fundamental kink mode and take
P, proportional to cos ¢. Then the solution to this equation satisfying the second boundary
condition in Equation 19, regular at r = 0 and decaying as r — 00, is given by

P = i’](T, Z)(r/R)f(r)cosg, (24)

where

r <R,

1,
fr)= { (R/r)?, r>R, (25)

and, at present, ﬁl (T, Z) is an arbitrary function. Writing Equation 20 at the two sides of
the tube boundary and using Equation 24 and the first boundary condition in Equation 19
we obtain the system of equations for n; and P,

837)1 2 83771 181?1
B (AL v L L 26
p (8T3 AT 22 R T (29)
3%, 8%, 19P
(S 2 = cosg. 27
P (8T3 AeaTaz2> R T ¢ 7)

Adding these two equations and assuming that n; is a periodic function of 7" with a zero
average we obtain
32771 232)71 _ 2 2BZ
“ olpi+ o)

We take n; proportional to sin(27). It follows from Equations 18 and 19 that n; = 0 at
Z = +R/2. Then we obtain the Sturm-Liouville problem for 7,

T2 kazz —

’

(28)

92 Q2
am

X =0, m=0 atZ=+R/2. 29
572 C,%m mn a / (29)
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The solution to this problem corresponding to the fundamental mode is proportional to
cos(w Z/R). In accordance with Equations 26 and 27 we also take 1, proportional to cos ¢.
Then we obtain

n = Rsin(QT)cos¢pcos(mZ/R), QL=nC;/R, 30)

where we arbitrarily chose the proportionality coefficient equal to R. Now it is straightfor-
ward to obtain

Py = LR2Q%(p; — po)(r/R) f (r) sin(QT) cos ¢ cos( Z/R),
v, = RQf(r)cos(2T)cos¢pcos(mrZ/R),
vp1 = RQg(r) cos(QT)sin¢g cos(m Z/R), (31)
b,y = Bf(r)sin(2T) cos ¢ sin(r Z/R),
by = Bg(r) sin(2T) sin¢g sin(wr Z/R),
where the function g(r) is defined by

-1, r <R,

R/r)z, r>R. (32)

glr)= {

3.2. The Second-Order Approximation

Now we collect terms of the order of a in Equations 7—11 and the boundary conditions
Equations 13 and 14. This yields

dv,, 19P, B by 1( Ob, by by b§1>
rl - -

T ' p ar  pmop 9Z  mop ar | 9 1

e v U Vg
1 1 L, ﬂ, (33)
ar r 0¢ r

dvpy 1Py B dby 1( dbs by 8b¢1+b,.1b¢1)

— Uy

aT pr 3¢ uop 9Z  pop "or r d¢ r
0 0 .
v i DSl Tt (34)
ar r 0¢ r
8b,2 81),2 1 0
~B = ——(Vy1bp1 — Vg1br1), 35
3T 37 r8¢(v1 p1 — Vgl 1) (35)
8b¢2 8U¢2 ad
S0 BT (01bgr — vpib), 36
3T 57 8r(U1 #1 — Vg1br1) (36)
a(rv, 0
(rve) ﬂ:o, 37)
ar 00
Vo=05=0 atZ==%R/2, (38)
ony g1 Ony vy 0P
- — = — , P, — | =0 atr=R. 39
TET T 9 M ar 2 M, ar (39)

To solve this system of equations and boundary conditions we need to impose either the
initial or periodicity conditions with respect to time on the variables of the second-order
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approximation. There are five Equations 33 —37 for five variables. However, only the first
four of them contain temporal derivatives because we dropped the temporal derivative of
b, in the z-component of the induction equation. This implies that we can impose only
four conditions related to the time. In what follows we assume that v,7, vg2, b,2, and by, are
periodic functions of time with zero averages, while we do not impose any conditions on P;.
Now we use Equations 30 and 31 to calculate the right-hand sides of Equations 33 —36
and the nonlinear terms in the boundary conditions in Equation 39. As a result we obtain

dv, 10P B dby, TR f(r) +g(r)]

[CZ cos?(QT) cosz(rrZ/R)

aT  p ar  pop 9Z r3
— Visin*(QT)sin* (7 Z/R)], (40)
d 1 oP B b
Doz 22 2 Dy, (41)
aoT pr 0¢  op 0Z
ab, v, ab, a a(rv, a
2 _pl¥2 D2 _ g2 9(rvr) o2 _, (42)
oT 0Z oT 0Z or ¢
87]2 R . 2
Vo= o= T{f(r) + [ f(r) +2g(r)] cos2¢} sin2QT) cos*(x Z/R) atr =R,
(43)
P,, — Py = R*Q%(p; — p.) sin®(QT) cos> pcos’ (mZ/R) atr=R. (44)
When deriving Equation 40 we took into account that f(r) + g(r) =0 when r < R.
Using Equation 42 to eliminate b,, and by, from Equations 40 and 41 we obtain
3%y, v, 1 9*P 2R*Q
U2 2 v 1 2 __ T [f(r)+g@)] [C,fcosz(nZ/R)
aT? 0Z%  pordT r3
+ Visin®(rZ/R)]sin2QT), (45)
92 92 1 %P
Y2 _ 20 002 2 _. (46)

aT2 A 9zr U pragdT

Using Equation 37 to eliminate v,, and vy, from Equations 45 and 46 we obtain the equation
for P;:

9 3P 3P, AT pR2Q[f (r) + g(1)]
r—r =
or 0roT = 0¢20T r2

+ V;sin® (T Z/R)]sin2QT). (47)

[Cicos®(rZ/R)

Differentiating Equation 44 with respect to time yields

aPeZ 8P12 1 243 . 2
3T 3T = ER Q7 (pi — pe) sin(2QLT)(1 + cos2¢)cos*(wrZ/R) atr=R. (48)

We look for the solution to Equation 47 satisfying the boundary condition of Equation 48 in
the form

0P, ~ ~ .
57 = Q[Po(r, Z) + Ps(r, Z) cos 2¢ | sin2QT). (49)
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Substituting this expression in Equations 47 and 48 we obtain the equations and boundary
conditions

3 9P, _ 472 p R f(r) + g(r)]

—y—

[Cicos*(wZ/R) + Visin*(rZ/R)],  (50)

or or 73
9 9P 4~
—r—2 P, =0, 51
arr or r 2 b
“ o~~~ 1
Py — Pig=Pp— Pr= ERzﬂz(pi — pe)cos’(TZ/R) atr=R. (52)

The solutions to Equations 50 and 51 that are regular at » = 0, vanishing as » — oo, and
satisfy the boundary conditions in Equation 52 are given by

2
Py = %f(r){c,f[(p,— — pe)&(r) — (i = 3pe) f(r)] cos’( Z/R)
+20V} f(r)sin®(m Z/R)}, (53)

2
P, = %f(r)[ﬂz(,oi — P)g(r)cos* (W Z/R) + f(r) Q2(2)], (54)

where Q,(Z) is an arbitrary function. Now we use Equations 43, 49, 53, and 54 to write
Equation 45 as r — R from inside and outside. As a result we obtain

d [d? 92 1
pio= (i e "2) 1+ ZRQ0»(Z) sin2QT) cos 2¢

aT?> Mgz 2
Qc? . )
2 sin2QT)[pi + (pi — pe) cos2¢ cos’ (T Z/R) ], (55)
0 (m o Om ! RQ0,(2) sin2QT) cos 26
e— | —= — — | — = sin Ccos
Pear a1z ~ Taez2 ) T 2R
n*QCt . 5
= sm(ZQT)[,oe + (pi — pe) cOs2¢ cos (nZ/R)]. (56)

Now we impose the condition that 7, is a periodic function of time with the zero average.
Then, adding these two equations and integrating the obtained equation with respect to T
yields

8%, 232772 _ n'zC,f

aT? k972 7 4R

cos(2QT) (1 + PP o524 cosi(n Z /R)). (57)
Pi + Pe

We look for the solution to this equation in the form 1, = 7, cos(22T'). As a result we obtain

3y 4mih,  w? Pi — Pe
e T=ﬁ<2+ v code)[l—l—cos(2nZ/R)]>. (58)

In follows from Equations 38 and 43 that 7, must satisfy the boundary conditions
7, =0 atZ==%R/2. (59)

The general solution to Equation 58 with the boundary conditions in Equation 59 contains
the term C sin(2rw Z), where C is an arbitrary constant. To eliminate this term we impose a
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viable condition that the solution must be symmetric with respect to the Z = 0 plane. This
condition implies that C = 0. Then the solution is

R i — Pe 2nZ i — Pe TZ 2nZ
ﬁ2=—|:<2+p p 0052¢><1+cos il )—l—p p n—cos2¢cos " ] (60)
32 Pi + pe R pi +pe R R
Now, recalling the definition of 7, and returning to the initial non-scaled variables, we even-
tually obtain

R Tz P — b 2
N = T3 cos(2wt) |:20082 TZ + % cos2¢ (cos2 % + ﬁ sin %)] (61)

We see that 1, oscillates with a frequency equal to the double frequency of the kink oscilla-
tion. The second-order boundary perturbation is a superposition of the sausage perturbation
that is independent of ¢ and the fluting perturbation that is proportional to cos 2¢. It is easy
to show that the amplitude of the fluting perturbation takes its maximum at z = 0 and mono-
tonically decreasing when |z| increases from O to L /2. This result is in complete agreement
with the numerical results reported by Terradas, Magyar, and Van Doorsselaere (2017).

4. Summary and Conclusions

In this article we studied the excitation of a fluting perturbation of the boundary of a mag-
netic flux tube by an imposed kink oscillation. We used the MHD equations in the ap-
proximation of cold plasmas, i.e. we neglected the plasma pressure in comparison with the
magnetic pressure. We also used the thin-tube approximation and scaled the dependent and
independent variables accordingly. Using this approximation enables us to eliminate the
velocity component parallel to the background magnetic field and reduce the axial com-
ponent of the induction equation to the condition that the plasma motion is incompress-
ible.

To study the excitation of fluting perturbations by a kink oscillation we used the regular
perturbation method where the dimensionless amplitude of the kink oscillation is used as a
small parameter. The solution of the first-order approximation describes the kink oscillation.
To solve the equations of the second-order approximation we imposed the periodicity condi-
tions with respect to time on the dependent variables. The axial component of the induction
equation contains the time derivative of the axial component of the magnetic-field perturba-
tion. However, as we have already pointed out, in the thin-tube approximation this equation
reduces to the condition that the plasma motion is incompressible and, thus, the time deriva-
tive is eliminated. As a result, the order of the system of MHD equations with respect to
time reduces from five to four. This implies that we can impose only four periodicity condi-
tions with respect to time. Hence, we imposed the conditions that the radial and azimuthal
components of the velocity and magnetic-field perturbation are periodic functions of time
with the zero averages, while we did not impose any conditions on the magnetic pressure
perturbation.

We solved the equations of the second-order approximation and obtained the expres-
sion for the tube boundary perturbation. This perturbation is a superposition of sausage and
fluting perturbation. Both perturbations oscillate with the frequency equal to the double fre-
quency of the kink mode. The amplitude of the fluting perturbation takes its maximum at
the middle of the tube and monotonically decreases with the distance from the middle point.
The first overtone with respect to the axial variables of the first fluting mode is not excited.
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These results are in a complete agreement with the numerical results obtained by Terradas,
Magyar, and Van Doorsselaere (2017).
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