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Abstract. Software transactional memory (STM) provides programmers with a high-level programming abstrac-
tion for synchronization of parallel processes, allowing blocks of codes that execute in an interleaved manner to
be treated as atomic blocks. This atomicity property is captured by a correctness criterion called opacity, which
relates the behaviour of an STM implementation to those of a sequential atomic specification. In this paper, we
prove opacity of a recently proposed STM implementation: the Transactional Mutex Lock (TML) by Dalessan-
dro et al. For this, we employ two different methods: the first method directly shows all histories of TML to be
opaque (proof by induction), using a linearizability proof of TML as an assistance; the second method shows
TML to be a refinement of an existing intermediate specification called TMS2 which is known to be opaque
(proof by simulation). Both proofs are carried out within interactive provers, the first with KIV and the second
with both Isabelle and KIV. This allows to compare not only the proof techniques in principle, but also their
complexity in mechanization. It turns out that the secondmethod, already leveraging an existing proof of opacity
of TMS2, allows the proof to be decomposed into two independent proofs in the way that the linearizability proof
does not.
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1. Introduction

Software transactional memory (STM) is a mechanism that provides an illusion of atomicity in concurrent pro-
grams and thus aims to reduce the burden of implementing synchronization mechanisms on a programmer. The
analogy of STM is with database transactions, which perform a series of accesses/updates to data (via read and
write operations) atomically in an all-or-nothing manner. Similarly with an STM, if a transaction succeeds, all
its operations succeed, and otherwise, all its operations fail. Intuitively, an STM should behave like a lock mech-
anism for critical sections: transactions appear to be executed sequentially, but—unlike conventional locking
mechanisms—STMs should (and do) allow for concurrency between transactions. STM implementations are
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increasingly finding their way into standard programming languages, e.g., the new class StampedLock of the Java
8 release (which uses STM-like features), the ScalaSTM library, a new language feature in Clojure that uses an
STM implementation internally for all data manipulation, the G++ 4.7 compiler (which supports STM features
directly in the compiler) etc.

STM algorithms can be categorized in terms of their update mechanism. The first variant is eager. These
implementations try to maximize throughput by allowing the read and write operations of a transaction to
take effect immediately (direct updates). Concurrent read and write operation may conflict with each other and
therefore, the variables accessed need to be protected, e.g., by locks. Some of the eager implementations also allow
the shared data to become temporarily inconsistent when a conflict occurs. To restore consistency, at least one of
the involved transactions is aborted and all of its effects (updates) are undone using rollback mechanisms. The
second variant uses deferred updates. These implementations avoid conflicting changes by deferring single updates
to one big compound update at the end of transaction, i.e., the commit operation. Read and write operations are
collected throughout a transaction’s execution without modifying the shared memory. At the commit operation,
the collected reads andwrites are validated for conflictswith other transactions. If a conflict occurs, the transaction
aborts and no roll back is necessary. If no conflict occurs, memory updates become globally visible during the
commit. The STM algorithm Transactional Mutex Lock (TML) [DDS+10], which we study in this paper uses
eager updates.

An STM implementation always needs a careful fine-tuning between the objective of allowing concurrency
(thereby gaining high performance) and that of guaranteeing atomicity (which potentially limits performance). To
achieve a large degree of concurrency,most STM implementations employ fine-grained operations, not employing
global locks.Hence, subtle errors arisingonly in specific interleavingsof transactions are likely tooccurbutdifficult
to detect via, e.g., testing. This makes formal verification an indispensable ingredient of STM design.

The meaning of “correctness” of an STM implementation is open to interpretation. A correctness criterion
for STMs broadly has to state the following property: every concurrent execution of transactions should behave
like a sequential one. Formally, such executions are described as histories, i.e., sequences of events of invocations
and responses of operations. One of the earliest correctness notions is strict serializability [Pap79], which stems
from the database community. While it captures most of the desirable properties of an STM, like real-time order
preservation and serialization of transactions, strict serializability does not define the behaviour of aborting
transactions. Therefore, several new correctness conditions emerged to fill the gap, e.g., opacity1[GK10], TMS1
andTMS2 [DGLM13], and virtual world consistency [IR12]. Opacity requires all transactions (including aborting
transactions) to agree on a single history of committed transactions, whereas TMS1 and virtual world consistency
are weaker in that they allow different aborting transactions to observe different committed histories.

Attiya et al. [AGHR13] have shown that opacity is equivalent to a condition known as observational refine-
ment, which guarantees refinement of clients when using an opaque STM implementation in place of an atomic
specification.2 Furthermore, opacity is known to imply TMS1 [LLM12b], i.e., any STM opaque implementation
also satisfies TMS1. Therefore, the notion of correctness that we use in this paper is opacity [GK10], following the
nomenclature of Attiya et al. [AGHR13] (under the assumption that our given set of histories is prefix closed).

Having decided on a notion of correctness, the next question is about the verification technique to be used.
Our interest is in showing opacity for every possible usage of the STM, i.e., any number of processes executing all
possible transactions. Intricate interplays between transactions in STMs easily lead to errors in manual proofs.
For instance, Lesani and Palsberg showed that theDSTMandMcRTalgorithms (whichwere supposedly opaque)
are actually not opaque [LP13]. Therefore, we aim for mechanized formal verification.

In this paper, we present two formal, mechanized proofs of correctness of the Transactional Mutex Lock
(TML).As correctness criterionwe employ the recently given definition of opacity of [GK10]. As described above,
it provides strong guarantees to programmers in the form of observational refinement allowing programmers to
reason about programs using opaque STMs in terms of atomic transactions.

Our first proof technique is fullymechanizedwithin the interactive proverKIV [EPS+14] and leverages existing
proof techniques [DSW11] for linearizability [HW90]. More specifically, the approach consists of two steps: we
(1) show that all histories of TML are linearizable to histories in which first of all just reads and writes to memory

1 There are numerous variations in the definition of opacity. The original definition [GK08] is not prefix closed, i.e., a history can be opaque,
but one of its prefixes may not. This potentially allows unwanted anomalies, in this case the “early-read” anomaly, where a transaction is
able to read and return a value prior to it being written by a committing transaction. This issue has been addressed in an updated version of
opacity [GK10] by additionally requiring the original definition of opacity to hold for all prefixes of a history.
2 Equivalence of TMS1 and observational refinement has also been proved [AGHR14], but this requires additional assumptions on STM
implementations.
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occur atomically, and (2) establish an invariant about such histories stating that they all have “matching” histories
in which whole transactions are executed atomically. These two steps are necessary for covering the two sorts of
non-atomicity in STMs: STMs decompose (atomic) transactions into several operations (begin, read, write etc.),
but also further decompose these operations into several steps (accessing and manipulating so-called meta-data)
as to allow for a maximum of concurrency. The former decomposition is accounted for in step (2), the latter
in step (1). A preliminary version of this method was outlined in [DDS+15]. The present paper gives a more
complete description of the proof and describes our mechanization.

Our second proof technique is also a fully mechanized method, in this case the proof has been done indepen-
dently with with the interactive prover Isabelle [NPW02] and with KIV.We focus on the Isabelle proof, with some
comparison in Sect. 5. In particular, we show that the TML implementation satisfies TMS2 [DGLM13]. TMS2
has in turn been shown to implement opacity [LLM12b] using the PVS interactive theorem prover. Following
Doherty et al., each correctness condition is defined as an Input/Output Automaton (IOA) [LV95] that only gener-
ates histories accepted by the condition in question. This readily gives us a formal specification, which can be used
as the abstract level in a proof of refinement. Furthermore, the IOA framework is part of the standard Isabelle
distribution. Our proof therefore proceeds by encoding TMS2 and TML as IOA within Isabelle, then proving
the existence of a forward simulation, which in turn has been shown to ensure trace refinement of IOA [LV95].
Our second proof technique is closely related to that of Lesani et al. [LLM12a], who verify the NOrec algorithm
[DSS10] using the PVS proof assistant [ORS92]. Both techniques have evolved from the same set of earlier work
on linearizability verification [DGLM04]. Although the algorithms verified are different, it is possible to draw
some comparisons between the Isabelle and PVS encodings of IOA and simulation proofs (see Sect. 6 for details).

In the last section of the paper, we compare and evaluate the two proof methods. We argue that the second
proof method is simpler: it leverages the fact that traces of TMS2 are opaque, and does not require that we
explicitly maintain a “matching” history in which entire transactions are executed atomically. We also identify
various differences between the formalizations employed in each proof, and discuss the trade-offs involved.

Related work A comprehensive survey of STM verification methods can be found in [Les14, COC+15]; here we
give a short overview.Model checking (e.g., [COP+07]) is generally not suitable for our aims of rigorously verifying
algorithms against all possible executions. One promising approach is by Guerraoui et al. [GHS08, GHS10], who
present a method for model checking opacity using a reduction theorem that lifts opacity (for two threads and
two variables) to opacity (for an arbitrary number of processes and variables). However, their specifications do
not consider the values that are read/written, and hence, the link to the definition of opacity in [GK10], which
requires a memory semantics is unclear. Moreover, as far as we are aware, the proof of their reduction theorem
itself has not been mechanized.

Li et al. [LZCF10] have verified STM algorithms, however they show correctness against their own abstract
specification. Lesani [Les14] developed a formal proof method for opacity by splitting opacity into a number of
other conditions (markability). In spirit, this technique is similar to linearization proofs which rely on finding
statements in the code which represent linearization points. Very recent work includes [ASP16], which proved the
CaPR+ algorithm correct with respect to a notion called conflict opacity, which is a subset of opacity. CaPR+ is
an STM algorithm with a rollback feature for aborting transactions. Emmi et al. [EMM10] describe a method
for infering invariants in order to prove strict serializability of TM algorithms. This simplifies a crucial task in
mechanized proofs; similar techniques could be used for other correctness conditions, including opacity.

Overview The paper is structured as follows: Section 2 gives an introduction to STM, presents our TML case
study and defines the correctness criterion of opacity. In Sect. 3, we describe our first proof approach including a
descriptionof its application toTML.The secondproof approach, again including its application toTML, is given
in Sect. 4. We compare and discuss both approaches in Sect. 5. Section 6 concludes and discusses related work.

2. Software transactional memory and opacity

Software transactional memory (STM) provides programmers with an easy-to-use synchronisation mechanism
for concurrent access to shared data. The basic mechanism is a programming construct that allows one to specify
blocks of code as transactions, with properties of database transactions (e.g., atomicity, consistency and isola-
tion) [HLR10]. All statements inside a transaction execute as though they were atomic. However—like database
transactions—software transactions need not successfully terminate, i.e., might abort.
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Fig. 1. The Transactional Mutex Lock (TML)

To support the concept of software transactions, STMs usually provide a number of operations to program-
mers: operations to start (TMBegin) or to end a transaction (TMEnd), and operations to read or write shared
data (TMRead, TMWrite).3 These operations can be called (invoked) from within a program (possibly with some
arguments, e.g., the variable to be read) and then will return with a response. Except for operations that start
transactions, all other operations might potentially respond with abort, thereby aborting the whole transaction.
STMs expect the programmer to always start with TMBegin, then a number of reads and writes can follow, and
eventually the transaction is ended by calling TMEnd unless one of the other operations has already aborted.

Wepresent theTMLalgorithm in Sect. 2.1, formalise the concept of histories in Sect. 2.2, and give the informal
and formal definitions of opacity in Sect. 2.3.

2.1. Example: Transactional Mutex Lock

In this paper, we will study a particular implementation of STMs, namely the Transactional Mutex Lock (TML)
of Dalessandro et al. [DDS+10], which is given in Fig. 1. It provides exactly the four types of operations, but
operation TMEnd in this algorithm will never respond with abort. Line numbers are denoted B1 etc, and the
references in the comments to LP are explained later.

TML adopts a very strict policy for synchronisation among transactions: as soon as one transaction has
successfully written to a variable, all other transactions running concurrently will be aborted when they invoke
another read or write operation. To this end, TML uses a global counter glb (initially 0) and local variable
loc, which is used to store a copy of glb. Variable glb records whether there is a live writing transaction, i.e.,
a transaction which has been started, has not yet ended nor aborted, and has executed (or is executing) a write
operation. More precisely, glb is odd if there is a live writing transaction, and even otherwise. Initially, we have
no live writing transaction and thus glb is 0 (and hence even).

Operation TMBegin copies the value of glb into its local variable loc and checks whether glb is even. If
so, the transaction is started, and otherwise, the process attempts to start again by rereading glb. A TMRead
operation succeeds as long as glb equals loc (meaning no writes have occurred since the transaction began),
otherwise it aborts the current transaction. The first execution of TMWrite attempts to increment glb using a cas
(compare-and-swap), which atomically compares the first and second parameters, and sets the first parameter to
the third if the comparison succeeds. If the cas attempt fails, a write by another transaction must have occured,
and hence, the current transaction aborts. Otherwise loc is incremented (making its value odd) and the write
is performed. Note that because loc becomes odd after the first successful write, all successive writes that are
part of the same transaction will perform the write directly after testing loc at line W 1. Further note that if
the cas succeeds, glb becomes odd, which prevents other transactions from starting, and causes all concurrent
live transactions still wanting to read or write to abort. Thus a writing transaction that successfully updates glb
effectively locks shared memory. Operation TMEnd checks to see if a write has occurred by testing whether loc is
odd. If the test succeeds, glb is set to loc+1. At line E2, loc is guaranteed to be equal to glb, and therefore this
update has the effect of incrementing glb to an even value, allowing other transactions to begin.

3 In general, arbitrary operations can be used here; for simplicity we use reads and writes to variables.
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Table 1. Events appearing in the histories of TML
invocations possible matching responses

invp (TMBegin) resp (TMBegin(ok))
invp (TMEnd) resp (TMEnd(commit)), resp (TMEnd(abort))
invp (TMRead(x )) resp (TMRead(v )), resp (TMRead(abort))
invp (TMWrite(x , v )) resp (TMWrite(ok)), resp (TMWrite(abort))

The key question we want to answer in this paper is: “Does TML correctly implement an STM?”. That is,
does TML guarantee that transactions look as though they were executed atomically, even when a large number
of transactions are running concurrently. Concurrently here means that the individual lines in the operations (i.e.,
B1, B2, etc) can be interleaved by different calling processes. We start by first fixing the meaning of “correctness”
for an STM implementation as opacity [GK08], and this is defined in terms of histories. We thus begin by
introducing some notation and definitions concerning histories in the next subsection, before defining opacity in
Sect. 2.3.

2.2. Histories

As standard in the literature, opacity is defined on the histories of an implementation. Histories are sequences
of events that record all interactions between the implementation and its clients. Histories form an abstraction
of the actual interleaving of individual lines of code, and thus an event is either an invocation (inv) or a response
(res). For the TML implementation, possible invocation andmatching response events are given in Table 1. In the
table, p is a process identifier from a set of processes P (and is given as a subscript to an invocation or response),
x is an address of a variable and v a value.

To define the semantics of a (sequential) historywemodel sharedmemory by a setL of addresses (or locations)
mapped to values denoted by a set V . We will use the terms addresses and locations interchangeably. Hence the
type Mem �̂ L → V describes the possible states of the shared memory. We assume that initially all addresses
hold the value O ∈ V .

Example 2.1 In each of our examples we assume V � Z and that O � 0. The following history h1 is a possible
execution of the TML. It accesses the address x by two processes 2 and 3 running concurrently.

h1 �̂ 〈inv3(TMBegin), inv2(TMBegin), res3(TMBegin(ok)), res2(TMBegin(ok)), inv3(TMWrite(x , 4)),
inv2(TMRead(x )), res2(TMRead(0)), res3(TMWrite(ok)), inv3(TMEnd), res3(TMEnd(commit))〉

which is visualised as follows

�

Notation We use the following notation on histories: for a history h, h � p is the projection onto the events of
process p only and h[i ..j ] the subsequence of h from h(i ) to h(j ) inclusive. For a response event e, we let rval (e)
denote the value returned by e; for instance rval (TMBegin(ok)) � ok. If e is not a response event, then we let
rval (e) � ⊥. �

We are interested in three different types of histories. At the concrete level the TML implementation produces
histories where the events are interleaved. h1 above is an example of such a history. At the abstract level we
are interested in sequential histories, which are ones where there is no interleaving at any level-transactions are
atomic: completed transactions end before the next transaction starts. As part of the proof of opacity we use an
intermediate specification which has alternating histories, in which transactionsmay be interleaved but operations
(e.g., reads, writes) are non-interleaved.

A history h is alternating if h � 〈 〉 or h is an alternating sequence of invocation andmatching response events
starting with an invocation. For the rest of this paper, we assume each process invokes at most one operation
at a time and hence assume that h � p is alternating for any history h and process p. Note that this does not
necessarilymean h is alternating itself. Opacity is defined for well-formed histories, which formalises the allowable
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interaction between an STM implementation and its clients. Given a projection h �p of a history h onto a process
p, a consecutive subsequence t � 〈s0, . . . , sm 〉 of h � p is a transaction of process p if s0 � invp(TMBegin) and

• either rval (sm ) ∈ {commit, abort} or sm is the last event of process p in h � p, and
• for all 0 < i < m, event si is not a transaction invocation, i.e., si �� invp(TMBegin) and not a transaction
completion, i.e., rval (si ) �∈ {commit, abort}.

Furthermore, t is committing whenever rval (sm ) � commit and aborting whenever rval (sm ) � abort. In these
cases, the transaction t is completed, otherwise t is live. A history is well-formed if it consists of transactions only
and there is at most one live transaction per process.

Example 2.2 The history h1 given above is well-formed, and contains a committing transaction of process 3 and
a live transaction of process 2. �

2.3. Opacity

The basic principle behind the definition of opacity (and similar definitions) is the comparison of a given concur-
rent history against a sequential one. Within the concurrent history in question, we distinguish between live and
completed transactions; completed transactions are in turn split into committed (those that end by successfully
committing) and aborted transactions (those that end by aborting). Opacity imposes a number of constraints,
that can be categorised into three main types as follows:

1. There are two ordering constraints, which describe how events occuring in a concurrent history may be
sequentialised, i.e., reordered to form a sequential history (with no interleaving of transactions).

(a) Transactions must preserve program order [Lam79], i.e., the order of operations within a process must be
maintained when sequentialising a concurrent history.

(b) Like linearizability [HW90], transactions must obey a real-time ordering constraint, i.e., only transactions
that overlapmay be reorderedwhen sequentialising a concurrent history. The real-time ordering constraint
for opacity is weaker than linearizability in that operations that do not overlap may be reordered (in a
different order to their real-time order) provided the transactions they belong to overlap.

2. There are four semantic constraints that describe validity of a sequential history hs obtained from a concurrent
history (in a manner satisfying the ordering constraints above). A transaction may write to a location, then
subsequently read from the same location; we refer to such a read as a self-referencing read.

(a) Committing transactions in hs must be serialised, i.e., each write must modify memory in an appropriate
manner, and each non self-referencing read must be consistent with all previous committed writes in hs .

(b) Aborting transactions in hs must not modify memory (i.e., their writes must not take effect), and further-
more each non self-referencing read must be consistent with all previous committed writes in hs .

(c) Live transactions in hsmust behave as aborting transactions because it is not possible to determinewhether
or not a transaction will commit successfuly.

(d) For all transactions (including live and aborting transactions) all self-referencing reads must be internally
consistent, i.e., each self-referencing read to a location l must be consistent with the last previous write to
location l by the same transaction.

3. There is a prefix-closure constraint, which requires that each prefixof a concurrent history canbe sequentialised
so that the ordering and semantic constraints above are satisfied.

There are numerous formalisations of opacity in the literature. Our presentation mainly follows Attiya et al.
[AGHR13], but we explicitly include the prefix-closure constraint to ensure consistency with other accepted
definitions [LLM12b, GK10, HLR10]. Without this prefix-closure constraint it is possible for a history to suffer
from an “early read” anomaly, where a transaction may appear to see a committing write from a different
transaction before the write physically takes place (see [GK10] for details).4

4 Our original paper [DDS+15] presents the definition by Attiya et al. [AGHR13], without the prefix-closure property. However, the set
of histories that we consider [DDS+15] are inductively generated by TML, and hence, ensures prefix-closure. Moreover, the two versions
coincide whenever a prefix-closed set of histories is considered.
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The most important difference between our formulation of opacity and the standard formulations to be
found in [LLM12b, GK10, HLR10] is that in our setting, events are indexed by processes rather than transaction
identifiers. This difference is motivated by a desire to be faithful to an STM interface that one would expect to
find in a multithreaded library or programming language, where each process can execute several transactions.
We discuss the consequences of this decision in Sect. 5.

We now formalise opacity via a series of definitions leading up to the definition of an opaque history (Defi-
nition 2.5). As we mentioned above, the basic principle is the comparison of a given concurrent history against a
sequential one. Thematching sequential history has to (a) consist of the same events, and (b) preserve the real-time
order of transactions, and (c) events within processes need to have the same ordering. To help formalise this we
introduce the following notation.We say a history h is equivalent to a history h ′ (capturing conditions (a) and (c)),
denoted h ≡ h ′, if for all processes p ∈ P , h � p � h ′ � p. Further, the real-time order on transactions t1 and t2 in
a history h is defined as t1 ≺h t2 if t1 is a completed transaction and the last event of t1 in h occurs before the first
event of t2. However, we do not consider arbitrary sequential histories as candidates for this matching. Rather,
these need to satisfy the semantics constraints explained above. We detail one after the other in the following.

Sequential history semantics We now define formally the notion of sequentiality, noting that sequentiality refers
to transactions: a sequential history is alternating and does not interleave events of different transactions. We
first define non-interleaved histories.

Definition 2.1 (Non-interleaved history) A well-formed history h is non-interleaved if transactions of different
processes donotoverlap.That is, for anyprocessesp and q andhistoriesh1, h2 andh3, ifh � h1�〈invp(TMBegin)〉�
h2 � 〈invq (TMBegin)〉� h3 (where � concatenates sequences) and h2 contains no TMBegin operations, then either
h2 contains a response event e such that rval (e) ∈ {abort, ok}, or h3 contains no operations of process p. �

In addition to being non-interleaved, a sequential history has to ensure that the behaviour is meaningful with
respect to the reads and writes of the transactions. For this, we look at each address in isolation and define what
a valid sequential behaviour on a single address is.

Definition 2.2 (Valid history) Let h � 〈ev0, . . . , ev2n−1〉 be a sequence of alternating invocation and matching
response events (cf. Table 1) starting with an invocation and ending with a response.

We say h is valid if there exists a sequence of states σ0, . . . , σn such that σ0(l ) � 0 for all l ∈ L, and for all i
such that 0 ≤ i < n and p ∈ P :

1. if ev2i � invp(TMWrite(l , v )) and ev2i+1 � resp(TMWrite(ok)) then σi+1 � σi [l :� v ]
2. if ev2i � invp(TMRead(l )) and ev2i+1 � resp(TMRead(v )) then σi (l ) � v and σi+1 � σi .
3. for all other pairs of events (reads and writes with an abort response, as well as begins and ends) σi+1 � σi .

We write �h�(σ ) if σ is a sequence of states that makes h valid (since the sequence is unique, if it exists, it can be
viewed as the semantics of h). �

The point of STMs is that the effect of the writes only takes place if the transaction commits. Writes in a
transaction that abort do not affect thememory. However, all readsmust be consistent with previously committed
writes. Therefore, only some histories of an object reflect ones that could be produced by an STM. We call these
the legal histories, and they are defined as follows.

Definition 2.3 (Legal histories) Let hs be a non-interleaved history and i an index of hs . Let hs ′ be the projection
of hs [0..(i−1)] onto all events of committed transactions plus the events of the transaction towhich hs(i ) belongs.
Then we say hs is legal at i whenever hs ′ is valid. We say hs is legal iff it is legal at each index i . �

This allows us to define sequentiality for a single history, which we lift to the level of specifications.

Definition 2.4 (Sequential history) A well-formed history hs is sequential if it is non-interleaved and legal. We
denote by S the set of all possible well-formed sequential histories. �

Opaque histories A given history may be incomplete, i.e., it may contain pending operations, represented by invo-
cations that do not have matching responses. Some of these pending operations may be commit operations, and
some of these commit operations may have taken effect: that is, the write operations of a committing transaction
may be visible to other transactions. To account for this possibility, we define a set complete(h) that contains all
histories constructed by adding to h, TMEnd(commit) responses for any subset of the pending commit operations,
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and adding TMEnd(abort) responses for all other pending operations. The sequential history must then have the
same events as those of one of the histories in complete(h). The successfully completed transactionsmay be visible
to other transactions, and the aborted transactions must be invisible.5

Definition 2.5 (Opaque history) A history h is end-to-end opaque iff for some hc ∈ complete(h), there exists a
sequential history hs ∈ S such that hc ≡ hs and ≺hc⊆≺hs . A history h is opaque iff each prefix h ′ of h is end-to-
end opaque; a set of historiesH is opaque iff each h ∈ H is opaque; and an STM implementation is opaque iff its
set of histories is opaque. �

In Definition 2.5, conditions hc ≡ hs and ≺hc⊆≺hs establish the ordering constraints and the requirement that
hs ∈ S ensures the memory semantics constraints. Finally, the prefix-closure constraints are ensured because
end-to-end opacity is checked for each prefix of h.

Example 2.3 The history h1 in Example 2.1 is opaque; the corresponding sequential history is

hs �̂ 〈inv2(TMBegin), res2(TMBegin(ok)), inv2(TMRead(x ), res2(TMRead(0)), inv3(TMBegin), res3(TMBegin(ok)),
inv3(TMWrite(x , 4)), res3(TMWrite(ok)), inv3(TMEnd), res3(TMEnd(commit))〉

The mapping from h1 to hs is visualised as follows.

Reordering of TMRead(x , 0) and TMBegin(ok) in h1 is allowed because their corresponding transactions overlap
(even though the operations themselves do not). �

It is also instructive to consider histories that are not opaque. For simplicity, we only consider examples in
which interleaving occurs at the level of transactions. More complex examples of histories that do not satisfy
opacity where interleaving additionally occurs at the level of operations can also be constructed.

Example 2.4 A very simple example is h2, which violates memory semantics, since it reads a value 4, that has not
been written:

h2 �̂ 〈inv1(TMBegin), res1(TMBegin(ok)), inv1(TMRead(x )), res1(TMRead(4))〉
A second more complex example is h3 below

h3 �̂ 〈inv1(TMBegin), res1(TMBegin(ok)), inv2(TMBegin), res2(TMBegin(ok)),
inv1(TMWrite(x , 3)), res1(TMWrite(ok)), inv2(TMRead(x )), res2(TMRead(3))〉

which is visualised as follows

Transaction 2 reads value 3 written by transaction 1, which is still live. This is disallowed by opacity, since all
values read must be from a state where only the effects of transactions that have already committed are visible.

5 This process of completing transactions is similar to the completion of operations in the formalisation of linearizability [HW90].
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Now consider a third example:

h4 �̂ 〈inv1(TMBegin), res1(TMBegin(ok)), inv1(TMRead(x )), res1(TMRead(0)),
inv2(TMBegin), res2(TMBegin(ok)), inv2(TMWrite(x , 4)), res2(TMWrite(ok)),
inv2(TMWrite(y, 4)), res2(TMWrite(ok)), inv2(TMEnd), res2(TMEnd(commit)),
inv1(TMRead(y)), res1(TMRead(4))〉

which is visualised as follows:

In h4 transaction 1 reads x � 0 from initial memory, then transaction 2 runs, which writes x � y � 4 and
commits. Finally transaction 1 reads y � 4 . This also violates opacity, since it is not possible to order the trans-
actions sequentially: either transaction 1 is ordered first (and reads x � y � 0), or transaction 2 is ordered first
(in which case transaction 1 should read x � y � 4). In general, however, an implementation could allow process
1 to read y � 0, i.e., if we replace the last event in h4 by res2(TMRead(0)), the modified history satisfies opacity.�

Our TML example cannot generate histories h2, h3, or h4. History h2 is avoided because all successful reads
and writes take place directly in memory. For both h3 and h4, the final read is not possible—in both histories,
these reads will abort because they will detect that the write in a different process has incremented glb.

This example also illustrates the relationship with strict serializability. For example, neither h3 nor h4 violate
strict serializability [Pap79]. To satisfy strict serializability, for h3 we must guarantee that transaction 1 always
commits, while for h4 we require that transaction 1 detects the inconsistent reads when attempting a commit, and
to abort.

Strict serializability is too weak, and histories such as h4 are problematic for implementations in which reads
and writes to transaction variables are alternated with computations that use these values. To see this, suppose all
committing transactions are required to preserve the invariant x � y (the transactions in h4 satisfy this invariant).
Then, assuming all transactions act as if they are atomic, transaction 1 could rely on reading equal values for x
and y . Even though transaction 1will not be able to successfully commit, it could attempt to compute x/(y+4−x )
after reading x and y , which would give an unexpected division by zero.

Returning to our question of implementation correctness of the TML, this can now be rephrased as: Are
all the well-formed histories generated by TML opaque? Having provided the necessary formalism to pose this
question, we now explain our first proof method for showing opacity of TML.

3. Proving opacity: method 1—using linearizability

Proving opacity of an STM object is difficult, as it determines a relationship between a fine-grained imple-
mentation in which individual statements (and hence, operations) may be interleaved, in terms of a sequential
specification in which sequences of transactional memory operations are considered atomic.

To bridge the large gap between the implementation level in which there are interleavings on both the level
of operations and transactions, and the sequential specification in which neither operations nor transactions are
interleaved, we split the proof into two steps. We first show that in TML all operations (i.e., write, read, start,
begin) act as though they occur atomically at one point in between its invocation and response: we show TML to
be linearizable [HW90]. This allows us to carry out the proof of opacity of TML in a simpler setting: we only prove
opacity for the alternating histories of TML, i.e., the ones in which every invocation is directly followed by the
response. Proving opacity for an alternating history is simplified by the fact that it is easy to define the semantics
of read and write operations over these alternating histories (Sect. 3.4). Specifying these semantics directly over
histories with interleaved operations would be much more difficult. Figure 2 visualises the overall approach.

Our proofs have been automated inKIV [EPS+14], the resulting developmentmay be viewed online [TML16].
The link also contains additional notes on our KIV proof.

This section is organised as follows. Section 3.1 formalises linearizability and describes how it can be used
to prove opacity. Section 3.2 presents the KIV model, and the two proof steps in the KIV proof are given in
Sects. 3.3 and 3.4.



J. Derrick et al.

TML history

S history

TML alternating
history

opaque (using Theorem 3.2)

linearizable
Theorem 3.1

⇒

TML history

S history

opaque

Fig. 2.Method 1: proof steps

3.1. Linearizability and opacity

The first part of the correctness proof of the TML implementation proceeds by showing it to be linearizable
[HW90], which is the standard correctness criterion for concurrent objects. Linearizability provides the illusion
that each operation applied by concurrent processes takes effect instantaneously at some point between its
invocation and its return. This point is known as the linearization point. In other words, if two operations overlap,
then their output agrees with the sequential execution determined by the order of linearization points.

As with opacity, the formal definition of linearizability is given in terms of histories (of invocation/response
events); for every concurrent history an equivalent alternating (invocations immediately followed by thematching
response) history must exist that preserves real time order of operations. The real-time order on operation calls6

o1 and o2 in a history h is defined as o1 ≺≺h o2 if the return of o1 precedes the invocation of o2 in h.
Linearizability differs from opacity in that it does not deal with transactions; thus transactions may still be

interleaved in a matched alternating history. As with opacity, the given concurrent history may be incomplete.
Thus the definition of linearizability uses a function complete that adds matching returns to some of the pending
invocations to a history h, and then removes any remaining pending invocations.

Definition 3.1 (Linearizability) A history h is linearized by alternating history ha, if there exists a history hc ∈
complete(h) such that hc ≡ ha and ≺≺hc⊆≺≺ha . A concurrent object is linearizable with respect to a specification
A (a set of alternating histories) if for each concurrent history h, there is an alternating history ha ∈ A that
linearizes it. �

With linearizability formalised, we now present the main theorem for our proof method, which enables opacity
to be proved via histories of the atomic specification of an STM.

Theorem 3.1 A concrete history h is opaque if there exists an alternating history ha such that h is linearizable
with respect to ha and ha is opaque.

Proof Suppose (a) h is linearizable with respect to ha and (b) ha is opaque with respect to hs . Then, by (a),
there exists a history hc ∈ complete(h) such that hc ≡ ha and ≺≺hc⊆≺≺ha and by (b), there exists a well-formed
sequential history hs such that ha ≡ hs and ≺ha⊆≺hs . We must show that hc ≡ hs and ≺hc⊆≺hs holds. Clearly,
hc ≡ hs because ≡ is transitive, and if≺≺hc⊆≺≺ha and ≺ha⊆≺hs , then ≺hc⊆≺hs because preserving the real-time
order of operations also preserves the real-time order of transactions. �

Linearizability proofs often use a setA of alternating histories which is generated by abstract operations that
use a different state space than the concrete algorithms, e.g. the abstract operations may work on a queue, while
the concrete algorithms manipulate pointer structures. In applying our result to TML, we do not change the
state space, since the final set S of sequential histories we have to use in the opacity proof are histories of the
same algorithm. Therefore we prove that every concurrent history h will be linearized by an alternating history
ha ∈ A, where A is the set of alternating histories that the original algorithm may produce by sequentially
executing operations.

The alternating histories ha considered in linearizability are all complete, i.e. each invocation is immediately
followedby a corresponding return. Therefore reasoning over alternating histories can be simplified by abstracting
each invocation/response pairs into a single run event as summarised in Table 2. Run event Begin(p) denotes a
TMBegin operation by process p; run events Read (p, l , v ) and Write(p,l,v) denote successful read and write
operations by process p on address l with value v ; run event Commit(p) denotes a successful TMEnd operation
by process p; and Abort(p) denotes an operation invocation that aborts.
6 Note: this is different from the real time order on transactions defined in Sect. 2.3
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Table 2. Run events abstracting matching invocation/return pairs
run events possible sequential invocation/response pairs

Begin(p) 〈invp (TMBegin), resp (TMBegin(ok))〉
Read(p, l, v ) 〈invp (TMRead(l)), resp (TMRead(v ))〉
Write(p, l, v ) 〈invp (TMWrite(l, v )), resp (TMWrite(ok))〉
Commit(p) 〈invp (TMEnd), resp (TMEnd(commit))〉
Abort(p) 〈invp (TMRead(l)), resp (TMRead(abort))〉,

〈invp (TMWrite(l, v )), resp (TMWrite(abort))〉,
〈invp (TMEnd), resp (TMEnd(abort))〉

A run is a sequence of run events. Thus we specifically show that the run r corresponding to ha is opaque.

Example 3.1 The run corresponding to the history

ha �̂ 〈inv2(TMBegin), res2(TMBegin(ok)), inv2(TMRead(l ), res2(TMRead(0)), inv3(TMBegin), res3(TMBegin(ok)),
inv3(TMWrite(l , 4)), res3(TMWrite(ok)), inv3(TMEnd), res3(TMEnd(commit)),
inv2(TMRead(l ), res2(TMRead(abort))〉

is 〈Begin(2),Read (2, l , 0),Begin(3),Write(3, l , 4),Commit(3),Abort(2)〉. �

Because Abort(p) relates to several possible pairs of events, a run ismore abstract than a complete alternating
history. However from the view of opacity, the pairs that Abort(p) represents are indistinguishable, so in effect
the encoding just simplifies the mechanized proof.

3.2. Modelling TML in KIV

Before we discuss the proof steps, we first describe how the different specifications are modelled in KIV.

The concrete specification: To model the concrete state of the TML, we use KIV’s record type, which is used to
define a constructor mkcs (make concrete state cs) containing a list of fields of some type. Field glb represents
the global variable glb, and mem represents the memory state and hence maps addresses to values (in this case
integers). Local variables are mappings from processes (of type Proc) to values; for the TML, we have local
variable pc for the program counter, loc for the local copy of glb, as well as variables l (representing addr in
the pseudocode) and v (representing val in the pseudocode). We thus use the following state.

CState =
mkcs(. .glb : nat, . .mem : L → V, . .pc : Proc → PC,

. .loc : Proc → nat, . .l : Proc → L, . .v : Proc → V)

Modelling atomic statements: Modelling one step of a TML algorithm as a KIV state transition is done in two
stages. We first model the step of one process working on global variables glb and mem and its local variables
pc, loc, l and v. As an example, consider the statement labelled W2, which is modelled by write2-def below.
Here, COP is used to denote that the step is internal (i.e., neither an invocation nor a response; such steps have an
additional input resp. output parameter) and write2 is the index of the operation. Modifications to glb and pc
are conditional, denoted by ⊃, on the test loc = glb. Thus, if loc = glb, then pc’ is set to W3, otherwise pc’
is set to W6. The transitions alter the concrete state, the after state is denoted by dashed variables.

write2-def:
� COP(write2)(glb, mem, pc, loc, l, v, glb’, mem’, pc’, loc’, l’, v’)
↔
( pc = W2 ∧ loc’ = loc ∧ mem’ = mem ∧ l’ = l ∧ v’ = v

∧ glb’ = (loc = glb ⊃ loc + 1;glb) ∧ pc’ = (loc = glb ⊃ W3;W6) );

Two special pc values N and T are used to enforce well-formed executions of transactions: pc = N is the inital
value, indicating that the process is currently not executing a transaction. Only the invoking step of TMBegin is
enabled in this case. The aborting steps (starting at pc = R4, W3) of TMRead and TMWrite as well as the returning
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step of TMEnd set pc’ = N. When pc = T, the process is within a transaction, but currently not executing an
operation. Successful return steps of reads and writes (starting with pc = R3, W6) set pc’ = N. The invokung
steps of TMRead, TMWrite and TMEnd are enabled when pc = T.

Promotion to system wide steps The process-local specification of a step is then promoted to a step COp(cj,p)
done by process p on the full state cs. The promotion uses function update, where f [p :� d ] is function f with p
overwritten to return d .

The interesting part of this promotion is that we add an auxiliary variable r that records run events, which
describes the intermediate level of our proof. The variable r is updated exactly at the linearization points of each
of the operations TMBegin, TMRead, TMEnd, and TMWrite.

The linearization points of each operation are annotated in comments in the code in Fig. 1. The expression
on the right of “r’ =” below is an if-then-else expression describing r’, i.e. the value of r in the post state. Thus,
for example, the first line states that r’ is set to r + Begin(p), which concatenates Begin(p) to r, whenever the
instruction at B1 is executed and an even value of glb is loaded into loc. In this case, the operation will definitely
go on to start a transaction as the outcome of the next test at B2 is determined locally.

Operation TMRead linearizes at R2 to a non-aborting Read if the value of glb is the same as the stored value
in loc, and linearizes to an aborting Read if the value of glb changes. Operation TMWrite linearizes successfully
when the memory is updated at W5, and linearizes to Abort if the cas at W2 fails. Finally, operation TMEnd never
aborts, yet there are two linearization points depending on whether the transaction has successfully executed a
TMWrite. If no writes were performed, then loc must be even; in such a transaction TMEnd must linearize at E1.
Otherwise if the transaction had performed a successful write, then loc must have been set to an odd value at
W4, therefore, the linearization point for TMEnd for such a transaction is E2. The last line of the formula covers all
remaining cases, where no LP is executed, and r ′ is kept equal to r .

COp(cj, p)(cs, r, cs’, r’)
↔ ∃ pc’, loc’, l’, v’.

COP(cj)(cs.glb, cs.mem, cs.pc(p), cs.loc(p),cs.l(p), cs.v(p),
cs’.glb, cs’.mem, pc’, loc’, l’, v’)

∧ cs’.pc = cs.pc[p := pc’] ∧ cs’.loc = cs.loc[p := loc’]
∧ cs’.l = cs.l[p := l’] ∧ cs’.v = cs.v[p := v’]
∧ r’ = (pc = B1 ∧ even(glb) ⊃ r + Begin(p) ;

(pc = R2 ∧ loc = glb ⊃ r + Read(p, l, v) ;
(pc = R2 ∧ loc �� glb ⊃ r + Abort(p) ;
(pc = W2 ∧ glb �� loc ⊃ r + Abort(p) ;
(pc = W5 ⊃ r + Write(p, l, v) ;
(pc = E1 ∧ even(loc) ⊃ r + Commit(p) ;
(pc = E2 ⊃ r + Commit(p) ;
r ))))))));

3.3. Step 1: proving linearizability with respect to the intermediate specification

Having described how we model the TML implementation in KIV, including the embedding of the linearization
points in the promoted operations, the next step is to show that every history h of this TML implementation is
linearizedbyanalternatinghistoryof the intermediate specification.To simplify theproof, the alternatinghistories
have been represented by runs and the run we want to use is already included as an auxiliary variable in the code.

Proving that each history h created by interleaved run is linearized to an alternating history represented by
run r is done by proving two lemmas in KIV for each of the four operations (TMWrite etc).

The first lemma states: When executed by process p, no operation ever passes more than one linearization
point (LP) in any execution (regardless whether other processes executing instructions interleaved with the steps
of p) before executing a return (so in particular, even if TMBegins gets stuck in its loop it never executes more
than one LP).

The second lemma states: If an operation reaches a return and terminates, then the operation has executed
exactly one LP, i.e. exactly one run event of process p has been added to the run r . The arguments of this run event
agree with the actual input/output of the invoking/response transition. As an example, the write operation adds
Write(p, l , v ) to r when executing the instruction at W5 (and therefore actually writes v tomem(l )), and we prove
that this is possible only when the input to the invoking instruction of TMWrite is l , v and the output is empty.
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That these two lemmas are sufficient for proving linearizability, i.e. that any interleaved history h will linearize
to r can be argued as follows. The second lemma implies that for any finished operation, where h contains a
matching pair, the run r will contain a unique run event that represents this matching pair. For any operation
that is still executing, h will have an invoke event, and there are two cases for r : either it will contain a run
event that represents this invoke event and some (yet to be executed) return event, or no event (according to
the first lemma). Thus in the definition of linearization, complete(h) can be chosen to add the return events for
all operations, where the first case applies, i.e., where the operation has passed its LP, and drop the pending
invoke otherwise. This results in a history complete(h) with the same matching pairs as those represented by r
with a one-to-one mapping between them. The mapping preserves real-time order (as required by linearizability)
since if one operation finishes before another one starts, the former will definitely execute its LP earlier, so the
corresponding run event in r will be earlier in the sequence than the one of the second operation.

The proofs for linearizability with this encoding are rather simple. We exploit here that in our example the
LPs of an operation executed by process p can be placed at the execution of an instruction by this process, and
do not depend on future executions (more intricate examples where linearization points are executed by other
threads or depend on the future run require more complex techniques [SDW14, DD15]). The method used here
is akin to the technique used by Vafeiadis [Vaf07], where concrete states are augmented with auxiliary variables
representing the abstract state together with additional modifications of the auxiliary state at the linearization
points. Since we have chosen the LP of TMWRite to be the actual write to memory, abstract and concrete memory
never differ, so we can even avoid an auxiliary variable for abstract memory.

3.4. Step 2: proving opacity of alternating histories using runs

In this subsection we prove an alternating history which linearizes a concurrent TML history is itself opaque.
Together with the results defined above this will be sufficient to show opacity of the TML.

Firstly, we define opacity for runs, and show that proving opacity of runs is equivalent to proving opacity of
alternating histories. Secondly, we discuss the KIV proof of opacity for TML runs. (Note that the descriptions
below differ slightly from the actual KIV proof online; as we use modified function names here to keep this paper
self-contained, i.e., the proof can be understood without having to refer to the KIV specification online.)
Defining opacity for runs Many of the definitions follow over from the definitions for histories in Sect. 2. We also
need to define the semantics of a valid run on a sequence of states. To define opacity of a run, we first define the
semantics of each run event from Table 2 on the memory state mem ∈ Mem to produce the next state mem ′.
Notation mem[l :� v ] denotes functional override, where mem(l ) is updated to v .

�Begin(p)�(mem,mem ′) �̂ mem ′ � mem
�Read (p, l , v )�(mem,mem ′) �̂ mem ′ � mem ∧ mem(l ) � v

�Write(p, l , v )�(mem,mem ′) �̂ mem ′ � mem[l :� v ]
�Commit(p)�(mem,mem ′) �̂ mem ′ � mem

�Abort(p)�(mem,mem ′) �̂ mem ′ � mem

Since TML is an eager algorithm, we do not need to distinguish the semantics of run events used in defining
the setA of legal alternating histories in Definition. 3.1 from the semantics of run events viewed as abbreviations
of two events needed for opacity. (cf. Definition 2.2 of a valid history). The latter definition is always as above,
the former definition has to specify the effect of sequentially executing the operations of TML on memory. Here,
both are the same. For a lazy algorithm that collects a write-set in its write operation, the semantics of Write(p)
would be identity, while the semantics of Commit(p) would apply the write-set to get from mem to mem ′.

The semantics of individual run events are lifted to the level of runs as follows. Below, σ is a sequence of
memory states and #σ defines the length of σ , which by the first conjunct is one more than the length of r. By the
second conjunct, for each n, the transition from σ (n) to σ (n + 1) is generated using r (n). Because the memory
state has been made explicit, �r�(σ ) only holds for valid and legal runs.

�r�(σ ) �̂#σ � #r + 1 ∧ ∀n • n < #r ⇒ �r (n)�(σ (n), σ (n + 1));

Finally, we define opaque runs as follows, where run r is mapped to sequential run rs . Predicate r ≡ rs ensures
equivalence between r and rs , predicate ≺r⊆≺rs ensures real-time ordering is preserved, and ¬interleaved (rs)
states that transactions in rs may not overlap. The final conjuct ensures rs is both valid and legal as defined
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in Definitions 2.2 and 2.3, respectively, where committed restricts a given run to the run events of committed
transactions plus the (live) transaction to which r (n) belongs as defined in Definition 2.3.

ee opaque(r , rs) �̂ (r ≡ rs) ∧ (≺r⊆≺rs ) ∧ ¬interleaved (rs) ∧
∀n • n < #rs ⇒ ∃σ • σ (0) � (λ x • 0) ∧ �committed (rs [0..n])�(σ )

We must now ensure that proving opacity of runs is sufficient for proving opacity of complete alternating
histories. This is established via the following theorem. We say a run r corresponds to an alternating history ha
iff r can be obtained from ha by replacing each pair of matching events in ha by the corresponding run event
from Table 2.

Theorem 3.2 An alternating history ha is end-to-end opaque if there exists a run r that corresponds to ha and
there is an rs such that ee opaque(r , rs) holds.

Proof The proof of this theorem is straightforward as the definition of opacity of a run is built on the opacity of
an alternating history. �

The invariants for opacity The rest of the proof is now about proving that for each state (cs, r ) of the TML
augmented with runs, it is possible to find a sequential run rs such that opaque(r , rs) holds.

As with our work on linearizability [SDW14], we prove this via construction of an appropriate invariant. The
main proof then shows that all augmented states (cs, r ) satisfy the predicate ∃ rs • INV (cs, r , rs). The formula
INV (cs, r , rs) defines a number of invariants that, in particular, imply opaque(r , rs).

Informally, formula INV (cs, r , rs) encodes the observation that the (legal) transaction sequences rs generated
by the TML implementation always consist of three parts.
1. A first part that alternates finished transactions and live transactions with an even value for loc(p) that is

already smaller than the current value of glb. The processes p executing such live transactions have only done
reads. They are still able to successfully commit, but they are no longer able to successfully read or write.

2. A second part that consists of transactions of processes p that have loc(p) = glb (or loc(p)+1 = glb, in case a
writing transaction exists). These are the live readers, that still are able to do more reads if there is no writer.

3. Finally, anoptional livewriting transaction.Theprocessp executing this transactioneither satisfiesodd (loc(p)) ∧
loc(p) � glb or pc(p) � W 4 ∧ odd (glb) ∧ glb � loc(p) + 1.

That the partitioning is an invariant is established by proving some additional simpler properties of the TML
implementation with respect to the corresponding sequential run rs . The most important ones are as follows,
where p is assumed to be the process generating the transaction.

INV1 Transactions for which loc(p) is even have not performed any writes.
INV2 Any live transaction with an odd value of loc(p) is the last transaction in rs , and loc(p) � glb in this case.

As a direct consequence there is at most one live transaction with an odd value for loc(p).
INV3 If the sequential run rs contains a live transaction t by process p with loc(p) � glb or pc(p) � W 4, any

finished transaction must occur before t . This ensures that when a live transaction becomes a writer, it
must not be reordered with a finished one, but only with live readers.

INV4 Live transactions are ordered (non-strictly) by their local values of loc. This property is crucial for pre-
serving real-time order, since a larger loc implies that the transaction has started later.

INV5 Strengthening opaque(r , rs), the state sequence σ that is needed to ensure that the last event of rs is
valid (cf. Definition 2.3) always ends with current memory. Formally, for any augmented state cs, r the
sequential history rs is such, that for its projection rs ′ to events of committed transactions plus the events
of the last transaction a (unique) state sequence σ with �rs ′�σ exists where the last element of σ is equal
to cs.mem.

INV6 Aborted transactions contain no write operations.

Opacity proof in KIV The proof proceeds by assuming INV (cs, r , rs) holds for some rs , and shows that the
invariant holds after any step of the TML specification. If the step generates cs ′, r ′ it must be possible to construct
a new sequence rs ′ such that INV (cs ′, r ′, rs ′) holds. For all steps that do not linearize (i.e. do not modify r ) this
is easy, we simply choose rs ′ � rs . Therefore, each of these proofs except for the operation at W4 (that increments
loc and therefore could violate one of the invariants defined above) is trivial.
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To explain the proofs, note that by construction rs is always a sequence of transactions, i.e. it has the form
ts(0)�ts(1)�· · ·�ts(#ts−1) concatenating the events of individual transactions, each executed by some process.
We therefore can assume a function tseq(rs), which generates this sequence of transactions from rs in order.7

This sequence satisfies the invariants above, so as already discussed, it consists of three parts: (1) Completed
transactions and “old” live readers, (2) live readers, and (3) possibly one writer at the end. Each linearization step
of a TML operation executed by process p adds a corresponding run event re to r , i.e. r ′ � r � 〈re〉, and we have
to show that we can find an appropriate rs ′. With the exception of starting a new transaction with re � Begin(p)
(which simply adds the same event at the end of rs) the new rs ′ then must add re to the end of the appropriate
live transaction, say ts(j ), leaving all others unchanged. The sequence ts ′ then may reorder the transactions ts(i )
such that opacity (and in particular the memory semantics of rs) is preserved. In most cases there is no need to
reorder, i.e. the choice for ts ′ is ts [j :� ts(j ) � 〈re〉].

Because opacity holds for the transaction sequence rs before the LP step, we know fromDefinition 2.5 that for
each transaction ts(k ) a memory sequence σk exists, that fits the run events of the committed transactions before
k together with the run events in ts(k ). In the following, we refer to σk as the memory sequence validating ts [0..k ].
The task then is to find for each k a new memory sequence σ ′

k that validates ts ′[0..k ]. There are three cases.

1. For k � j , we choose σ ′ :� σ � 〈mem ′〉, where mem ′ is computed from the last element mem :� last(σ ) by
applying the semantics of the added event re on last(σ ). Note that this preserves property INV5, since in the
case of a write operation property INV2 guarantees (since loc is odd at W5) that rs [k ] in this case is the last
transaction, and the memory update of the algorithm agrees with the one done by the operation.

2. For k < j , we choose σ ′
k � σk , since the extended transaction is not present.

3. For j < k , we choose σ ′
k � σk when re is not a commit. The difficult case remaining is the one where ts ′(j ) is

committing. However, because ts ′(j ) is not the last transaction in the sequence, it cannot have an odd loc due
to INV2, and by INV1, the transaction has not performed any writes. Therefore, the memory sequence σ ′

j that

validates ts ′[0..j ] is of the form σ0
� 〈mem〉n , where 〈mem〉n is a sequence ofmems of length n. The memory

sequence σk that validates ts [0..k ] has prefix σ0
� 〈mem〉n , since j < k . Therefore, σk � σ0

� 〈mem〉n � σ ′

and the new memory sequence that validates ts ′(k ) can be set to σ0
� 〈mem〉n+1 � σ ′.

This proves the main invariant that rs ′ is legal. However, there is an additional problem when (a) run event re
is a Commit or Abort or (b) loc(p) is incremented at W4. Case (a) may violate INV3, which is necessary to ensure
that real-time order in r is preserved, (b) may violate INV4.

The simplest example is a run r � 〈Begin(1),Begin(2)〉. A possible transaction sequence is simply ts � 〈t1, t2〉
where t1 � 〈Begin(1)〉 and t2 � 〈Begin(2)〉. For scenario (a), process 2 may linearize a TMEnd resulting in
r ′ � r � 〈Commit(2)〉. The new transaction sequence ts ′ must now have the completed transaction 2 before the
live transaction 1 due to INV3, i.e. ts ′ � 〈t ′

2, t1〉 where t ′
2 � 〈Begin(2),Commit(2)〉. For scenario (b), process

1 may linearize a TMWrite, i.e. r ′ � r � 〈Commit(1)〉. Transaction 1 must now be moved to the end of the
transaction sequence to preserve INV4. This results in ts ′ � 〈t2, t ′

1〉 where t ′
1 � 〈Begin(1),Write(1, l , v )〉. Note

that swapping t1 and t2 is possible in both cases, since both transactions have done reads only, implying that the
memory sequence needed to validate both transaction sequences 〈t1, t2〉 and 〈t2, t1〉 repeats a constant memory.

In general, for both scenarios, a transaction with current loc(p) value must be moved. Case (a) must move the
committing reader to the start among thosewhose value of loc equals loc(p). In terms of the split of the transaction
sequence into threeparts, the transactionwasoneof the transactionsofpart 2, andmustnowbecome the last trans-
actionofpart 1.Case (b)mustmove the transaction that executesW4 to the endof ts (itmoves frompart 2 tobecome
the single writer of part 3). Both cases can be reduced to a lemma, that says that adjacent transactions ts(n), ts(n+
1) executed by processes p and q , respectively, can be reordered whenever loc(p) � loc(q). This is because by
property INV2, both loc(p) and loc(q) must be even and by INV1 neither may have performed any writes.

7 Technically, a transaction sequence ts is represented in KIV as a sequence of ranges mi ..ni , such that mi and ni mark the first and last
event of a transaction in r . Assuming r [mi ] � Begin(pi ), the events of transaction ts(i) then are specified as ts(i) � r [mi ..ni ] � pi . The
opacity predicate is therefore defined directly in terms of the range sequence instead of using rs.
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Fig. 3.Method 2: proof steps

Mechanization The entirety of Method 1 has been mechanized in KIV, excepting elements of the development
that directly involve the notion of histories from Sect. 2. The definition of opacity over histories presented in Sect.
2.3 has not been mechanized. However, a definition of opacity over runs has been mechanized along with all the
definitions on which it depends, and the definition of ee opaque. Theorems 3.1 and 3.2 (which connect runs to
histories) have not been mechanized. The definitions and proofs in the remainder of the development have been
fully mechanized. In particular: the TMLmodel; the linearizability proof outlined in Sect. 3.3; and the semantics
and invariant proofs described in Sect. 3.4.

Specifying and proving opacity using KIV required four weeks of work. In particular, half the time was
invested to develop an elegant formalisation of transactions that does not have to refer to auxiliary data like
transaction identifiers and does not have to explicitly specify permutations. The most difficult part of the proof
was figuring out a good lemma that gives criteria for preserving the semantics. This proof and the proofs of the
main goals for each of the 7 linearization points and pc(p) � W 4 are rather complex. They each have between 50
and 100 interactions. Our first guess for defining the invariant left out the two properties INV4 and INV6, they
were added during the proof, which also took ca. two person weeks. Streamlining these techniques in the context
of a larger example (e.g., the TL2 algorithm [DSS06]) is a topic of future work.

4. Proving opacity: method 2—using a simulation with TMS2

The method in Sect. 3 achieves some level of decomposition for opacity proofs by linearizing TML histories to
alternating histories. However, the proof method can be improved in two key areas: (1) The alternating history
that we obtain must be coupled with the execution of the TML to prove opacity, i.e., the proof of opacity for the
alternating histories relies on additional properties of the TML algorithm. (2) Using the alternating histories of
the concrete algorithm represents a design choice, which gives a simple characterization of the effect on memory
for eager algorithms only.

In this section, we address both issues and present an alternative proof of correctness of the TML algorithm,
following a structure that is conventional for simulation proofs. This new proof leverages two existing results
from the literature: the TMS2 specification by Doherty et al. [DGLM13], and the mechanized proof by Lesani et
al. [LLM12b], which shows that the TMS2 specification implements an opaque specification (that generates all
possible opaque histories). The specifications in [DGLM13, LLM12b] are formalised as Input/Ouput automata
(IOA) [LT87], and hence, for the sake of continuity we also model the TML algorithm using IOA. An overview of
this proof method is given in Fig. 3. All proofs between the TML and TMS2 specifications are fully mechanized
using the Isabelle [NPW02] theorem prover.

This section is organised as follows. First we present some background (Sect. 4.1), in particular, the IOA
formalism and its forward simulation proof rule. In Sects. 4.2 and 4.3 we present the TMS2 automaton (originally
defined in [DGLM13]) and the TML automaton, respectively. The simulation proof as well as the invariants that
we use are described in Sect. 4.4.

4.1. Input/output automata and forward simulation

We use Input/Output Automata (IOA) [LT87] to model both the specification and implementation.
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Definition 4.1 An Input/Output Automaton (IOA) is a labeled transition system A with

• a set of states states(A),
• a set of actions acts(A),
• a set of start states start(A) ⊆ states(A), and
• a transition relation trans(A) ⊆ states(A) × acts(A) × states(A) (so that the actions label the transitions).

The setacts(A) is partitioned into input actions input(A), output actionsoutput(A) and internal actions internal (A).
The internal actions represent events of the system that are not visible to the external environment. The input and
output actions are externally visible, representing the automaton’s interactions with its environment. Thus, we
define the set of external actions, external (A) � input(A)∪output(A). In the standard IOA setting, the distinction
between input and output actions is important for composing automata, and reasoning about such compositions.
However, the present work does not employ composition so we ignore this input/output distinction.8

An execution of an IOAA is a sequence σ of alternating states and actions, beginning with a state in start(A),
such that for all states σi except the last, (σi , σi+1, σi+2) ∈ trans(A). A reachable state of A is a state appearing
in an execution of A. An invariant of A is any superset of the reachable states of A (equivalently, any predicate
satisfied by all reachable states of A). A trace of A is any sequence of (external) actions obtained by projecting
the external actions of any execution of A. The set of traces of A represents A’s externally visible behaviour. If
every trace of an automaton C is also a trace of an automaton A, then we say that C implements A.

As highlighted in Fig. 3, we show that TML is correct by showing that the IOA specifying TML is a refinement
of the IOA that specifies TMS2 [DGLM13]. One way of doing this is to prove the existence of a forward simulation
from an implementation to the specification. The definition of forward simulation we use is adapted from that of
Lynch and Vaandrager [LV95].

Definition 4.2 A forward simulation from a concrete IOA C to an abstract IOA A is a relation R ⊆ states(C ) ×
states(A) such that each of the following holds.
Initialisation.

For each cs ∈ start(C ) there is some as ∈ start(A) such that R(cs, as).
External step correspondence.

For each cs ∈ reach(C ), as ∈ reach(A), a ∈ external (C ) and cs ′ ∈ states(C ),
if R(cs, as) and (cs, a, cs ′) ∈ trans(C ) then
there is some as ′ ∈ states(A) such that R(cs ′, as ′) and (as, a, as ′) ∈ trans(A).

Internal step correspondence.
For each cs ∈ reach(C ), as ∈ reach(A), a ∈ internal (C ) and cs ′ ∈ states(C ),
if R(cs, as) and (cs, a, cs ′) ∈ trans(C ) then
either R(cs ′, as) or
there is some as ′ ∈ states(A) and a ′ ∈ internal (A) such that R(cs ′, as ′) and (as, a ′, as ′) ∈ trans(A).

Forward simulation is sound in the sense that if there is a forward simulation between A and C , then C is a
refinement of A [LV95, Mül98]. The notion of refinement here is trace inclusion, and hence, if there is a forward
simulation between A and C , then every trace of C is also a trace of A.

Definition 4.2 is stronger (and less general) than the definition given by Lynch and Vaandrager [LV95] in two
different ways, however, neither strengthening presents a problem for our mechanization.

1. In [LV95], an internal step of the concrete automaton can be simulated by several internal steps of the abstract
automaton, whereas in Definition 4.2, each internal step corresponds to at most one abstract internal step.
The level of generality in [LV95] is rarely required in practice, and it is simpler to work with the stronger step
correspondence rule.

2. In [LV95] in both the internal and external step correspondence rules, reachability is only assumed of the
concrete state, whereas Definition 4.2 assumes that both the abstract and concrete states are reachable. We
occasionally use reachability of the abstract state, to ensure that certain partial function applications are
properly defined, so again the stronger definition is simpler to use.

8 The full IOA framework also includes features for reasoning about liveness. In this paper we are only interested in safety properties, so we
do not describe these features.
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Both IOAand forward simulation have beenmechanized byMüller [Mül98], which is nowpart of the standard
Isabelle distribution.We havemechanized a proof that our notion of forward simulation (Definition 4.2) is sound,
i.e., implies trace refinement by showing that it implies the definitions of Müller [Mül98].

4.2. The TMS2 specification

In this section we describe the TMS2 transactional memory specification [DGLM13], which is strictly stronger
than opacity [LLM12b]. TMS2 is designed to capture structural patterns common to practical TM implementa-
tions, while being general enough to serve as a specification for a large class of implementations.

TMS2 imposes a stronger real-time ordering constraint on transactions than opacity, only allowing writing
transactions to be reordered if their TMEnd operations overlap. Recall that opacity allows transactions to be
reordered if they overlap regardless of whether or not their TMEnd operations overlap.

Example 4.1 To see this distinction, consider the history h5 below.

h5 �̂ 〈inv1(TMBegin), res1(TMBegin(ok)), inv2(TMBegin), res2(TMBegin(ok)), inv1(TMRead(x )), res1(TMRead(0)),
inv2(TMRead(x )), res2(TMRead(0)), inv1(TMWrite(x , 1)), res1(TMWrite(ok)),
inv2(TMWrite(y, 1)), res2(TMWrite(ok)), inv1(TMEnd), res1(TMEnd(commit)),
inv2(TMEnd), res2(TMEnd(commit))〉

which may be visualised as follows:

Because the TMEnd(commit) operations donot overlap, the ordering constraint forTMS2 requires that the transac-
tion by process 1 be ordered before the transaction by process 2. However, doing so will result in a non-interleaved
history that does not satisfy memory semantics. Opacity on the other hand permits the transaction by process 2
to be ordered first, which would result in a history consistent with a memory semantics, i.e., h5 is opaque. �

Formally, TMS2 is specified by the IOA in Fig. 4, which describes the required ordering constraints, memory
semantics and prefix properties.We assume a setT of transaction identifiers (tids), which are used to index actions
and state variables. Also, we assume a set L of locations and a set V of values. Thus, memory is modelled by a
function of typeL → V . A key feature of TMS2 is that it keeps track of a sequence ofmemory states, one for each
committing transaction that contains a write. This makes it simpler to determine whether non self-referencing
reads are consistent with previously committed write operations. Each committing transaction containing at least
one write adds a new memory version to the end of the memory sequence.

The state space of TMS2 has several components. The first, memories is the sequence of memory states. For
each tid t there is a program counter variable pct , which ranges over a set of program counter values (called
PCVals in Fig. 4). Program counters are used to ensure that each transaction is well-formed, and to ensure that
each transactional operation takes effect between its invocation and response. For each tid t there is also a a
begin index variable beginIdxt , that is set to the index of the most recent memory version when the transaction
begins. This variable is critical to ensuring the real-time ordering property (see below). Finally, for each tid t there
is a read set, rdSett , and a write set, wrSett , which record the values that the transaction has read and written
during its execution, respectively. The read set is used to determine whether the values that have been read by
the transaction are consistent with the same version of memory (see validIdx below). The write set, on the other
hand, is required because writes in TMS2 are modelled using deferred update semantics: writes are remembered
in the transaction’s write set, but are not published to any shared state until the transaction commits. Deferred
update is very common among many transactional memory implementations, but is not used in TML. As we
shall see, it is straightforward to account for this difference in the simulation relation.

Each action of TMS2 is indexed by a tid, and consists of a pair of functions ‘Pre’ and ‘Eff’ that describe the
precondition and effect of the action on the state, respectively. For example, the action respt (TMBegin) can only
be fired in a state satisfying pct � beginPending and its effect updates the value of pct to ‘ready’. The external
actions of TMS2 can be divided into two categories: invocations and responses, with invocations and responses for
each transactional operation. TMS2 has internal actions for each read, write and commit operation, where the
action name is prefixed by “do”. These internal actions can be thought of as the points where the transactional
operations “take effect”, similar to the linearization points of the KIV proof in Sect. 3.



Mechanized proofs of opacity

Fig. 4. The state space and transition relation of TMS2

TMS2 ensures that all transactions satisfy two constraints.

1. The read set of every transaction is consistentwith at least one version ofmemory inmemories (the consistency
constraint). This ensures that there is at least one valid serialization of all committing transactions.

2. The version of memory against which consistency is judged is the latest memory at some point during the
transaction’s execution (the real-time constraint). This ensures consistency with respect to the real-time order
of the transactions.
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Fig. 5. The state space and selected transitions of the TML automaton

We assume maxIdx denotes the largest memories index, and latestMem denotes the most recent version of
memory. For a memory state mem : L → V and read set rdSet : L → V , we assume readCons(mem, rdSet)
holds whenever rdSet is consistent with mem. Finally, we assume predicate validIdx (t,n) holds iff n is a valid
index for a t ∈ T , i.e., n is between the maximum index of memories when t began (recorded in the beginIdxt
variable) and the current maximum index ofmemories , and furthermore, the contents of t ’s read set is consistent
withmemories(n). This ensures that every transaction satisfies both the consistency and real-time constraints at
every point before the transaction commits. Note that if the location l being read is in the transaction’s write set,
then TMS2 returns the value that was written.

With the exception of invt (TMBegin), external actions only dependon andmodify the programcounter variable
pct . Collectively, they ensure that all transactions are well-formed, and that each “do” action occurs between
the appropriate invocation and response. Additionally, action invt (TMBegin) sets beginIdxt to the maximum
index in memories ; this will be the earliest version of memory that can be read by non self-referencing reads
of transaction t . The respt (abort) action is enabled whenever t has a pending operation (that is, whenever t
has made an invocation without a matching response), but has not committed. Note that after the invt (cancel)
action, no other action is possible except respt (abort).

The DoWritet (l , v ) action simply adds a mapping l �→ v as a pending write in the write set of t . The
precondition of action DoReadt (l ,n) ensures that either the location l is self-referencing (i.e., l is in the write set of
t), inwhich case it returns the value for l inwrSett , orn is a valid index for t (i.e., validIdx (t,n) holds), inwhich case
it returns the value at l inmemories(n). Read-only transactionsmay end by executing the DoCommitReadOnlyt (n)
action, while committing writer transactions take the DoCommitWritert action.

The real-time ordering constraint for TMS2 is implicitly imposed by the preconditions of the
DoCommitReadOnlyt (n) and DoCommitWritert actions. Action DoCommitReadOnlyt (n) requires that n is a valid
index for transaction t , whereas DoCommitWritert requires that t ’s read set is consistent with the last element of
memories .

4.3. The TML algorithm as an IOA

In this section, we describe how we model TML as an IOA. Fig. 5 presents the states of TML, and some example
transitions. TML has the same external actions as TMS2, excluding the invt (cancel) actions (TML does not
support cancellation). Each atomic statement of TML is modelled using an internal action.
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We model all TML’s local variables using functions over T . TML also has a shared glb variable of type N,
and a variable mem, which is a function from locations L to values V , representing the memory state.

TML uses the glb variable to implement a locking protocol. To assist reasoning about this protocol, we
introduce an auxiliary variable writer to record which transaction owns the lock (this variable takes the special
value ⊥ when no transaction owns the lock.) When transaction t successfully executes the CAS at line W2, writer
is set to t . When transaction t executes the write at line C2, writer is set to ⊥.

As with TMS2, the TML automaton uses a program-counter variable pct for each t ∈ T , to ensure that
each transaction is well-formed, and that internal actions occur within the appropriate operation. In TML, the
external actions are enabled by the same program-counter values as in TMS2 (values from the set PCExternal ).
There is also one program-counter value for each line in the pseudocode presented in Fig. 1.

4.4. The simulation proof

In this section, we describe the simulation relation used in the Isabelle proof. All Isabelle theory files related to
this proof may be downloaded from the URL [TML16].

Definition 4.2 requires that for each internal transition of TML, either the concrete post-state is related to the
abstract pre-state, or else there is some internal transition of TMS2 such that the concrete post-state is related to
the abstract post-state. In the first case, we say that the concrete transition is a stutter step. In the second case,
we say that the concrete transition simulates the abstract step. Our simulation relation must enable us to prove
that when a concrete transition simulates an abstract transition, the precondition of the abstract transition is
satisfied. We first motivate our simulation relation in terms of this requirement. We then describe in detail how
concrete steps are matched with abstract steps and how we prove that the preconditions of the simulated steps
are satisfied.

Our simulation relation is divided into two relatons: a global relation globalRel , and a transactional relation
txnRel . The global relation describes how the shared state of the two automata are related, and the transaction
relation specifies the relationship between the state of each transaction in the concrete automaton, and that of
the transaction in the abstract automaton. The simulation relation itself is then

simRel (cs, as) � globalRel (cs, as) ∧ ∀ t ∈ T • txnRel (cs, as, t)

We first describe globalRel . Recall that TMS2 features a sequence of memory states, one for each writing
transaction that has completed so far. The memory state specified by the sequence’smaxIdx is the latest memory.
The memory of TML is this latest memory, except that if there is a writing transaction, then that transaction’s
writes have already been applied. This is because in TML, eachwrite is applied immediately to the sharedmemory,
whereas TMS2 defers the write. Thus, globalRel specifies that for related concrete and abstract states cs and as ,
we have

cs .mem � as .latestMem ⊕ writes(cs, as) (1)

where

writes(cs, as) �̂
{∅ if cs.writer � ⊥
as .wrSetcs.writer otherwise

In the simulation proof, the role of (1) is to ensure that each read1 action reads the appropriate value from the
shared memory.

Recall that the preconditions of the DoReadt (l ,n) and DoCommitReadOnlyt (n) actions require that n be a
valid index. We call these actions validation actions. Our simulation relation must be strong enough to allow us to
verify that these conditions hold whenever TML takes a step that simulates a validation action. To achieve this,
we exploit an association between the values taken by glb and those taken by maxIdx in TMS2. Note that glb is
incremented twice for each successful write transaction, and therefore the number of successful write transactions
is floor (glb/2). We define the write-count function, which for each n ∈ N yields the number of successful write
transactions in an execution of TML if cs.glb � n in the last state:

writeCnt(n) �̂ floor (n/2)

As we shall see, writeCnt is used to relate cs.glb with as .maxIdx , as well as each cs.loct with as .beginIdxt . Recall
that in/ TMS2, maxIdx is incremented once for each successful write transaction. Thus, globalRel specifies that

writeCnt(cs.glb) � maxIdx (as) (2)

globalRel is just the conjunction of 1 and 2.
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We turn now to txnRel . Let an in-flight transaction be any transaction t that has executed the respt (TMBegin)
action but not executed either of the respt (TMEnd) or respt (abort) actions. txnRel specifies that each in-flight
transaction t satisfies the following properties:

as .beginIdxt ≤ writeCnt(cs.loct ) (3)
readCons(as .memories(writeCnt(cs.loct )), as .readSett ) (4)

These properties enable us to prove as .validIdx (t, cs.loct ) for all in-flight transactions t . To see this, first observe
that in TML, every in-flight transaction satisfies cs.loct ≤ cs.glb, and as described above, writeCnt(cs.glb) �
as .maxIdx . Therefore,

writeCnt(cs.loct ) ≤ as .maxIdx (5)

Together, (3), (4) and (5) imply as .validIdx (t, cs.loct ) for all in-flight transactions t .
Recall that the precondition of the DoCommitReadOnlyt (n) action requires that t ’s write set be empty, and the

precondition of the DoCommitWritert action requires that thewrite set be nonempty. To handle this we exploit the
fact that in TML, writing transactions have an odd loc value (at least after the first write has completed). txnRel
requires that each in-flight transaction satisfies the following equivalence, except during the interval betweenwhen
a write transaction successfully executes the compare-and-swap at line W2 and executes the subsequent write at
line W5:

even(cs.loct ) ⇐⇒ as .wrSett � ∅ (6)

Because TML uses the parity of loct to determine whether a transaction is read-only, (6) enables us to prove the
appropriate precondition when TML simulates a commit action.

In TML, when an in-flight transaction t has an odd loct value, it is the unique writing transaction, and
loct � glb:

odd (cs.loct ) ⇒ cs.writer � t ∧ cs.loct � cs.glb (7)

As we describe below, this invariant enables us to prove that each writing transaction t satisfies the precondition
of DoCommitWritert when it commits, and that Property (1) is preserved during the actions write5t (when the
transaction writes to the shared memory) and commit2 (when the (writing) transaction commits).

All of TMS2’s preconditions involve an assertion about the value of pct . Therefore, our simulation relation
needs to constrain the relationship between cs.pct and as .pct . This involves specifying an abstract program
counter value for each possible concrete program counter value. For example, txnRel (cs, as, t) implies

cs .pct � notStarted ⇒ as .pct � notStarted (8)
cs.pct � read1 ⇒ as .pct � doRead(cs.addrt ) (9)

cs.pct � write5 ⇒ as .pct � doWrite(cs.addrt , cs.valt ) (10)
cs .pct ∈ {commit1, commit2} ⇒ as .pct � doCommit (11)

We are now ready to describe how concrete transitions are matched with abstract transitions. We do so using
a step-correspondence function, denoted sc, that takes a concrete state, a transaction and an internal action, and
returns an appropriate abstract internal action, or else ⊥, indicating that the step of TML is a stutter step. In
the list below, we describe the cases when sc(cs, t, a) �� ⊥. For each case, we explain how to prove that the
precondition of the abstract action holds.
• Aread operation takes effectwhen a transaction executes R1when glbhas not beenmodified since the transac-
tionbegan.Thus, ifa � read1 and cs.loct � cs.glb, then sc(cs, t, a) � DoReadt (cs.addrt ,writeCnt(cs.loct )).
At this point t is in-flight transaction. Therefore, as described above, txnRel guarantees that
validIdx (t,writeCnt(cs.loct )). Property (9) ensures that as .pct has the correct value.

• A write operation takes effect when when a transaction executes the write at line W5. Thus, if a � write5
then sc(cs, t, a) � DoWritet (cs.addrt , cs.valt ). Property (10) ensures that as .pct has the correct value.

• When a transaction begins the commit operation with an even loc variable, then it is a read-only transaction.
Therefore, when a � commit1 and cs.loct is even, sc(cs, t, a) � DoCommitReadOnlyt (writeCnt(cs.loct )).
Again, txnRel guarantees that validIdx (t,writeCnt(cs.loct )). Property (6) ensures that t ’s write set is empty.
Property (11) ensures that as .pct has the correct value.

• If a transaction begins the commit operation with an odd loc variable, it is a writing transaction that owns
the TML lock. After executing the write at line C2 that releases the TML lock, the transaction’s writes become
visible to the other transactions, so the transaction takes effect at this point. Thus, when a � commit2,
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sc(cs, t, a) � DoCommitWritert . The precondition of DoCommitWritert requires that
readCons(as .latestMem, as .readSett ). We already know that validIdx (t,writeCnt(cs.loct )) and that
writeCnt(cs.glb) � as .maxIdx . By Invariant (7) of TML is that when the writing transaction t commits,
cs .glb � cs.loct . Therefore, validIdx (t, as .maxIdx ) and thus readCons(as .latestMem, as .rdSett ). Property
(6) ensures that t ’s write set is nonempty. Finally, Property (11) ensures that as .pct has the correct value as
usual.

In all other cases sc(cs, t, a) � ⊥.
We have not yet discussed how we show that the simulation relation is preserved across all steps of TML.

These proofs are largely routine. To give a flavour of how these proofs work, we prove that Property (1) is
preserved across all transitions. We consider an arbitrary transition (cs, a, cs ′) ∈ trans(TML) and abstract state
as where simRel (cs, as). The variables that appear in Property (1) are cs.mem, cs.writer , as .memories , and
as .wrSetcs.writer . None of these variables can be changed except when a � commit2t , a � write2t when
cs .loct � cs .glb or a � write5t for some t ∈ T . We consider each case in turn.

• When a � commit2t , cs ′.writer � ⊥ and sc(cs, a, t) � DoCommitWritert . Therefore, writes(cs ′) � ∅, so
we must prove that cs ′.mem � as ′.latestMem, where as ′ is the post-state of the abstract transition. But
cs .writer � t by Property (7) and the fact that cs.loct is odd at this point in the code. Thus,

cs ′.mem
� cs .mem by the transition relation of TML
� as .latestMem ⊕ as .wrSetcs.writer Property (1)
� as .latestMem ⊕ as .wrSett since t � cs.writer
� as ′.latestMem by the transition relation of TMS2

as required.
• TML has the invariant that cs.writer � ⊥ ⇐⇒ even(cs.glb). Therefore, when a � write2t and cs.loct �
cs .glb, cs .loct is even and therefore cs.writer � ⊥ and thus writes(cs) � ∅. Furthermore, as .wrSett � ∅ by
Property (6). Thus

cs ′.mem
� cs .mem by the transition relation of TML
� as .latestMem ⊕ writes(cs) by Property (1)
� as .latestMem since writes(cs) � ∅
� as .latestMem ⊕ as .wrSett since as .wrSett � ∅
� as .latestMem ⊕ writes(cs ′) since cs ′.writer � t

as required.
• When a � write5t , cs.loct is odd and hence cs.writer � t by Property (7). sc(cs, a, t)

� DoWritet (cs.addrt , cs.valt ), so as ′.wrSet � as .wrSet ⊕ {cs.addrt �→ cs.valt }. Thus
cs ′.mem
� cs .mem ⊕ {cs.addrt �→ cs.valt } by the transition relation of TML
� (as .latestMem ⊕ as .wrSett ) ⊕ {cs.addrt �→ cs.valt } by Property (1) and cs.writer � t
� as .latestMem ⊕ (as .wrSett ⊕ {cs.addrt �→ cs.valt })
� as .latestMem ⊕ as ′.wrSett as ′.wrSet � as .wrSet ⊕ {cs.addrt �→ cs.valt }
� as .latestMem ⊕ writes(cs ′) since cs.writer � cs ′.writer � t
� as ′.latestMem ⊕ writes(cs ′) by transition relation of TMS2

as required.

Mechanization We have mechanized the TMS2 automaton, and the TML model in Isabelle. As has been men-
tioned, we used the IO automaton model of Müller [Mül98]. We have also proved in Isabelle that that simRel is a
forward simulation, and that the TML automaton satisfies all the necessary invariants. We have not mechanized
a proof that every TMS2 trace is opaque, because this proof has already been mechanized in [LLM12b].
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Formalising TML in Isabelle and completing these proofs took one person 8 working days, working on the
proof about 70% of full time. The formalisation used a pre-existing model of the TMS2 automaton in Isabelle.
The proofs were developed using the Isar proof language [Wen02]. Isar provides facilities for decomposing a proof
into cases, which is important for quickly identifying the aspects of a proof that require human intervention. Once
this stucture was established, it was straightforward to determine which simplification rules and lemmas should
be applied in each case. Typically, this amounted to choosing an appropriate set of definitions to expand. The
simulation and invariant proofs themselves only required more sophisticated lemmas on 10 occassions. Writing
these proofs was routine, though somewhat time consuming.

5. Comparison of the techniques

In this section, we compare the two verifications of TML. Recall that the linearizability method (i.e., Method 1)
proves inductively that for each history of TML there is an opaque linearized history, and thus that the TML
history is opaque. On the other hand, the simulation method (i.e., Method 2) proves the existence of a forward
simulation from an IO automaton representing TML to the TMS2 automaton, whose traces are opaque.

Specifications The abstract specifications used in the two methods differ in one important respect. In TMS2 (and
in conventional definitions of opacity), actions are indexed by transaction identifiers. Threads or processes are
not an explicit part of the model. In the definition of opacity given in this paper, however, events are indexed by
processes, and transactions are modelled as sequences of transactional operations satisfying appropriate well-
formedness conditions (see Sect. 2.2). The key difference is that one process can execute several transactions, but
each transaction identifier can only be associated with one transaction.

The linearizability method verifies TML with respect to the definition of opacity of Sect. 2.3. This choice is
not fundamental to the linearizability proof. A linearizability-based method could be completed using the same
techniques, but where events are indexed by transaction identifiers (or equivalently, where each process executes at
most one transaction). Likewise, TMS2 could be adpated to support process-indexed events: transaction-indexed
variableswouldbecomeprocess indexedvariables, and these variableswouldbe resetwhen each transaction ended.

The fact that processes can execute several transactions does introduce complexity to the proof. We need
mechanisms to resolve runs (and histories) into transactions, and to paste transactions back together into runs.
This complexity can be observed in the definition of transaction in Sect. 2.2 and the need for the function tseq .

Because of its relative simplicity, the transaction-indexed model used in the simulation method is preferable
when considering STM systems in isolation. However, the process-indexed model is more faithful to an STM
interface that one would expect to find in a multithreaded library or programming language, and is uniform
with models used to represent linearizable concurrent objects. For this reason, the process-indexed model may be
preferable when considering the behaviour of clients of a transactional memory, especially when the transactional
memory is composed with other concurrency abstractions, such as linearizable objects.

Proof decomposition Both methods employ an intermediate layer between the behaviour of TML and opacity.
However, this layer is different in each method. In the simulation method, this intermediate layer is TMS2, an
automaton whose histories are already known to be opaque (see Fig. 3). In order to show opacity for TML, it
was only necessary to prove the existence of a simulation from TML to TMS2. The simulation proof benefits by
decomposing the proof of opacity into two independent proofs.

In the linearizability proof method, the intermediate layer is the set of alternating histories that linearize his-
tories generated by TML (see Sect. 3.3). We show that these alternating histories are opaque (Sect. 3.4). However,
this part of the proof depends intrinsically on invariants of TML itself, and thus there is no real decomposition. It
is important to note that the linearized histories do not constitute an intermediate specification for transactional
memory, in the same way as TMS2 is a self-contained specification.

Generality of the method In the linearizability method, each run event is given a semantics in terms of its effect on
memory states, based on the eager-writes of TML (see Sect. 3.4). Unfortunately, this simple semantics cannot be
used to model the behaviour of an STM implementation that uses deferred updates, so the applicability of this
semantics is limited to STM implementations with eager updates. In order to support deferred updates, a new
and more complicated semantics for run events would need to be developed. This semantics would likely involve
recording write sets for each transaction, and applying these write sets to a shared memory during commits, in a
manner similar to TMS2’s DoWrite action. This extra machinery would complicate the proof that the existence
of a valid run guarantees opacity of the corresponding alternating history (that is, it would be more difficult to
prove the analogue of Theorem 3.2).
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In contrast, TMS2 can be used to verify algorithms with either deferred- or eager-update semantics. As has
been noted, there is already a published simulation proof that the NORecs algorithm (which employs deferred
updates) implements TMS2 [LLM12a], and we believe that several other STM algorithms [DSS06, SMvP08,
HLMSI03] could be shown to implement TMS2 using simulation methods. For these reasons, we believe that
TMS2 and simulation can be used to verify a large and important class algorithms.

We should note that forward simulation alone is not always enough to prove trace inclusion. In some cases,
the forward simulation technique that we have used here would need to be replaced or extended by backward
simulation [LV95]. While being closely related, backward simulations have a different flavour, and are sometimes
counter-intuitive. However, forward and backward simulations together provide a complete proof method for
trace inclusion.That is, if all traces of automatonC are also traces of automatonA, then there is some intermediate
automaton I such that there is a forward simulation fromC to I , and a backward simulation from I toA [LV95].

There is another obstacle to straightforwardly generalising the simulation method. TMS2 is strictly stronger
than opacity (see [DGLM13] for a discussion). Although at the time of writing we are not aware of any, there may
be implementations of transactional memory that are opaque, but do not implement TMS2. It is possible to use
the simulation methodology in such cases, although it may be more difficult. Lesani et al. [LLM12b] present an
opacity automaton whose traces are precisely the opaque histories. Because of the completeness of forward and
backward simulation, proving the opacity of any algorithm can be reduced to proving the existence of appropriate
simulations between an IOA model of the algorithm and the opacity automaton.

Inductive structure Both verification methods share a common structure, a structure that is characteristic of
refinement proofs. Both work by constructing a certain abstract object (i.e., specification), inductively along each
execution of TML. In the simulation proof, this object is a state of TMS2 satisfying the simulation relation. In
the linearizability proof, the abstract object is the run witnessing the opacity of the TML history. In each case,
the existence of the abstract object is sufficient to guarantee the correctness of the execution so far. In this sense,
both proofs work the same way. However, the two abstract objects are very different. We now consider which of
these abstract objects is simpler to reason about.

Both proofs must address the problem of demonstrating that opacity’s real-time order constraint is satisfied.
To accomplish this, the simulation proof depends heavily on the correctness of TMS2. Recall from Sect. 4.2 that
TMS2 guarantees that each nonaborting transaction is consistent with respect to a memory state that was the
latest state sometime during the execution of the transaction, and this is achieved using the beginIdx variable.
Property (3) ensures that writeCnt(cs.loct ) is at least as great as beginIdxt , and therefore may be a valid index for
t . Property (3) is simple to state and it is easy to prove that it is preserved. The corresponding properties in the
linearizability proof are significantly more complicated. The key invariants for proving the real-time constraint
in the linearizability proof are INV3 and INV4. Both invariants involve an assertion about the order in which
transactions occur in the run rs , and proving their preservation involves reasoning about sequences rather than
natural numbers. Furthermore, preservation of INV3 necessitates reordering of transactions in the run sequence,
during commit and abort steps.

Both proofs must address the problem of demonstrating that TML’s shared memory contains appropriate
values at each location (i.e., that the value at each location can be legally returned by any read operation of any
transaction such that loc � glb). The simulation proof achieves this using Property (1), and the linearizability
proof does so using INV5. Ideally, Property (1) would be a simple equality between TML’s memory and the
latestMem of TMS2. The fact that TML uses eager updates, but TMS2 uses deferred updates necessitates the
more complicated formulation. INV5 is simpler, in that the last state of the validating sequence σ is simply the
shared memory of TML.

Both proofs must address a peculiarity of TML’s behaviour: a read-only transaction whose loc variable is
strictly less than glb may still commit successfully (so long as it does not attempt a read or write operation). This
is possible even whenmultiple conflicting writing transactions may have complete since the read-only transaction
began. This phenomenon is handled straightforwardly in the simulation proof. In TMS2 read-only transactions
may be validated against an old version of the memory when they commit. As discussed in Sect. 3.4, this is a
delicate case in the linearizability proof, requiring special care in constructing the new sequence of memory states.

INV2 and Property (7) both express the same idea: there is at most one transaction with an odd loc variable
(the writing transaction), and the value of this variable is equal to glb. However, Property (7) does this using the
writer auxiliary variable. Whereas INV2 expresses this using a more complicated formulation involving ordering
within the run sequence: the writing transaction is the last transaction in rs .
Mechanisation Neither proof is tied to a specific proof assistant, both are based on formal specifications using
higher-order logic. The linearizability proof was done withKIV, but could easily be ported to Isabelle. The second
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proof was done independently with Isabelle and KIV, to have a comparison between the different approaches to
specification and the different proof styles used in the tools. Sect. 4 describes the Isabelle proof.

The total time to complete the linearizability proof with KIV was about 4 weeks, of which about 2 weeks were
spent modelling and verifying the TML algorithm itself. The simulation proof required around a week for both
Isabelle and KIV.

As the KIV simulation proof was developed after the linearizability proof, the reduction in effort is partly
attributable to the familiarity with TML and its invariants gained during the linearizability proof. In the case
of the KIV simulation proof some part of the speedup is also due to reusing parts of the specification of TML.
However, even taking this into account we believe the simulation proof required less that 40% of the effort
required for the linearizability proof proper. The main part of the gain can be attributed to the fact that the
TMS2 automaton does not require certain auxiliary definitions used to define opacity, that employ quantifiers.
For example, transactions require the existence of processes, which have executed specific events in the history;
the semantics requires the existence of a suitable memory sequence; preserving the real time constraint requires
that all pairs of transactions are correctly ordered. Also, all of the invariants INV1-INV6 involve quantification
over all transactions.

To deal with such quantified properties in the linearizability proof, it was necessary to define various rewrite
rules for use in the main proof. Without this, unfolding the quantified definitions in the main proof leads to
large and unreadable formulae, as well as the need to instantiate quantifiers manually. Defining rewrite rules for
quantified definitions was a main part of the proof effort of the linearizability approach. Altogether the proof in
KIV required 80 lemmas, 150 rewrite rules (that were not already in the library of predefined data types).

In contrast, themainproofof the step correspondence conditionof the simulationapproach involves almost no
quantifieddefinitions, except for the three top-level quantifiers: the simulation relation for each transactionmust be
preserved by every step of the algorithm, and a suitable abstract state as ′ must exist tomake the diagram commute.
Both the proof in Isabelle and KIV therefore first define lemmas that remove of these top-level quantifiers.

For the KIV proof of the simulation approach this resulted in four lemmas, and was already sufficient: the
proofs of the four lemmas just blindly unfold definitions and require just 5 rewrite rules. Altogether 248 proof
steps with 91 interactions were needed.

The Isabelle and KIV simulation proofs follow the same ideas, although there are many technical differences.
Here, we only mention the most important two. Full details can be found on the Web page [TML16].

• The KIV proof uses the linearization points R2 andW5 (c.f. Fig. 1) from the linearizability proof as the steps
that simulate DoRead/DoWrite, while the Isabelle proof uses R1 for DoRead.

• The KIV proof avoids the need to compute the parameter n of DoRead as floor (glb/2) by existentially
quantifying over n in the TMS2 automaton. The simulation also just asserts the existence of a valid n. The
price to pay is that DoRead is the only non-deterministic transition, and its simulation proof needs an extra
lemma.

In summary the Isabelle proof hasmore structure, (e.g. it uses an intermediate layer of deterministic automata,
and proves invariants separately from the simulation), at the price of defining more lemmas.
Conclusions We believe that the simulation proof has several advantages over the linearizability proof. We have
argued that it is simpler and required less time to complete. This simplicity derives from the fact that the proof
used an existing intermediate specification, known to be opaque. The simulation proof avoids reasoning directly
about histories, and avoids explicitly maintaining a serialisation of transactions.

As we have noted, the question of whether events should be indexed by process or transaction identifiers is
independent of the proof method. Some of the complexity in the linearizability proof derives from the choice
to index events with processes, each of which can execute several transactions. However, this model may be
preferable when considering clients of transactional memory, or when transactional memory is composed with
other concurrent objects.

Based on this particular study, we offer no suggestions about the choice of proof assistant. Clearly the best
choice of proof assistant depends on the experience that the human prover already has, and on the level of help
and advice that the prover can obtain from colleagues and collaborators.

6. Conclusions

There are many notions of correctness for STMs [Les14, GK10]. Of these, opacity is an easy-to-understand
notion that ensures all reads are consistent with committed writing transactions. We have developed a proof



Mechanized proofs of opacity

method for, and verified opacity of, a transactional mutex lock implementation. Many definitions of opacity in
the literature require an explicit mention of the permutations on histories, which would make proofs significantly
more complex. Our formalization has avoided the explicit use of permutations.

Opacity defines correctness in terms of histories generated by interleaving STM operations as well as state-
ments within the operations. Our method simplifies proof of opacity by reformulating opacity in terms of runs,
and proving opacity of the runs. A run allows interleaving of operations, but each operation is treated as being
atomic, and hence, the statements within an operation are not interleaved. Linearizability is used to justify replac-
ing an interleaved history by an alternating one (Theorem 3.1), while Theorem 3.2 justifies proving opacity of an
alternating history by proving opacity of the run corresponding to the history.

Our second proof method is based a definition of opacity specified in terms of IOA. This is particularly
interesting for verification, as it readily gives us a formal specification which can be used as an abstract level in
a refinement-based proof. Refinement is also the way of comparing definitions in this case: TMS2 is known to
refine TMS1 and (an IOA version of) opacity [LLM12b].

Although there are severalworks comparing and contrasting different correctness conditions for STM(includ-
ing opacity) (e.g., [DGLM13, LLM12b, AGHR14]), there only a handful of papers that consider verification of
the STM implementations themselves. A model checking approach is presented in [GHS10], however, the tech-
nique only considers conflicts between read and write operations in different transactions. More recently, Lesani
has considered opacity verification of numerous algorithms [Les14], which includes techniques for reducing the
problem of proving opacity into one of verifying a number of simpler invariants on the orders of events [LP14].
However, these decomposed invariants apply directly to the interleaved histories of the implementation at hand,
as opposed to our method that performs a decomposition via runs.

In ongoing work, we are developing in Isabelle a framework for mechanically verifying TM algorithms. As
discussed in Sect. 1, Lesani et al. [LLM12a] have pursued similar goals; namely, a TM verification framework for
thePVSproof assistant based on IOAand simulation, and the verification of theNOrec STMalgorithm.There are
several technical differences between the two approaches. Our Isabelle development uses the existing Isabelle IOA
formalization, which supports reasoning about both safety and liveness properties. Lesani et al. [LLM12a] have
developed their own IOA formalization that only supports safety properties. They employ a more hierarchical
proof structure, introducing three intermediate automata between TMS2 and a low level NOrec model. We prove
a direct simulation from TML to TMS2. These extra layers are at least partly motivated by the complexity of
the NOrec algorithm, compared with TML. However, there is considerable overhead in defining intermediate
automata. Understanding how best to hierarchically decompose proofs, while reducing overall proof effort, is
part of our ongoing work.

Finally, [LLM12a] handles actions and traces differently to us, and to what is standard for IOA. In a typed
setting, it seems natural that each automaton has its own type of actions. However, actions in different types
cannot be equal. Therefore, if each automaton has its own type, the traces of one automaton can never be traces
of another. Lesani et al. [LLM12a] resolve this issue by equipping each automaton with a view function that
maps the automaton’s actions into a set of events, which are shared between automata. In our solution, we define
labelled transition systems whose actions are from a disjoint union of internal and external actions.We transform
this LTS into an IOA whose actions are from a disjoint union of the external actions and a type with a unique
tau element. In the IOA transition relation, these tau transitions are just the transitions of the underlying LTS
where the internal action is hidden by existential quantification. Understanding the relative merits of these two
approaches requires further study. However, our aproach fits directly into the existing IOA framework.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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