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ABSTRACT 11 

Tropospheric ozone pollution is recognised as an important threat to terrestrial ecosystems but impacts 12 

on peatlands are little understood despite the importance of peat as a global carbon store. Here we 13 

investigate the impacts of three levels of elevated exposure to tropospheric ozone on peatland 14 

microbial communities with a particular focus on testate amoebae, the dominant microbial consumers. 15 

We found that in the intermediate (ambient + 25 ppb O3) and high treatments (ambient +35 ppb 16 

summer, +10 ppb year round) there were significant changes in testate amoeba communities, typified 17 

by an increase in abundance of Phyrganella spp. and loss of diversity. Phyrganella is often suggested to 18 

feed on fungi so the community change identified in our experiment might suggest that the testate 19 

amoeba response is at least partially mediated by interactions with other microbial groups. We do not 20 

find evidence for changes in numbers of undifferentiated microalgae, nematodes or rotifers but do find 21 

weak evidence for an increase in flagellates and ciliates. Our results provide the first direct data to show 22 

the impact of ozone on microbial consumers in peatlands.  23 

KEYWORDS: Protists; Air pollution; Mire; Anthropocene 24 

Tropospheric ozone (O3) pollution is affecting an increasingly large proportion of the global land area 25 

with widespread impacts on terrestrial ecosystems (Mills et al., 2011; Wilkinson et al., 2012; Fuhrer et 26 

al., 2016). Through this century climate change is expected to increase the frequency of the intense 27 

ozone events which lead to the most widespread damage (Royal Society, 2008). Ozone reduces soil 28 

carbon sequestration and storage in forests (Talhelm et al., 2014) but there is considerable uncertainty 29 

regarding impacts on the very large peatland carbon pool (c.600 GtC (Yu et al., 2010)). The limited 30 

experimental evidence has shown changes in peatland plant communities and key carbon cycle 31 

pathways but there is a lack of consistency between studies and the overall consequences for net 32 

ecosystem carbon balance remain unclear (Morsky et al., 2008; Toet et al., 2009; Toet et al., 2011; 33 

Williamson et al., 2016; Toet et al., 2017).  34 
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A key mediator of change in the peatland carbon cycle is the microbial foodweb comprised of  35 

prokaryotes (bacteria, archaea), micro- and macroeukaryotes including phototrophs (e.g. chrysophytes, 36 

diatoms), fungi, protozoa (e.g. ciliates, flagellates, testate amoebae) and micrometazoa (nematodes, 37 

rotifers) (Gilbert et al., 1998b; Jassey et al., 2013a). A particular focus of this paper is testate amoebae 38 

which are the most abundant group of eukaryotic microorganisms in peatlands (<50% of extractable 39 

non-fungal biomass (Gilbert et al., 1998b)). Testate amoebae play important roles in ecosystem 40 

processes such as primary production through C assimilation by mixotrophs (Jassey et al., 2015) and 41 

decomposition through top-down control on the microbial foodweb (Wilkinson and Mitchell, 2010; 42 

Jassey et al., 2012; Jassey et al., 2013b). Peatland testate amoebae are known to be sensitive to 43 

pollutants including sulphur (Payne et al., 2010), nitrogen (Nguyen Viet et al., 2004; Payne et al., 2012), 44 

heavy metals (Nguyen-Viet et al., 2007) and particulate matter (Meyer et al., 2012) and changes in 45 

testate amoebae due to pollution have been linked to re-structuring of overall microbial foodweb 46 

structure (Karimi et al., 2016). The impact of ozone on testate amoebae and other microbial consumers 47 

has not been addressed in any previous peatland studies and is an important knowledge gap. 48 

Here we investigate the impact of ozone on testate amoebae and other peatland microorganisms using 49 

a mesocosm experiment. Full details of the experimental set-up are described in Toet et al. (2017). In 50 

brief, the experiment consisted of mesocosms (19 cm diameter, 35 cm depth) extracted from wet heath 51 

peatland (UK NVC community M15: Scirpus cespitosus-Erica tetralix) and maintained with water table at 52 

50mm depth. Mesocosms were  exposed to one of: ambient O3 (non-filtered air, c.25 ppb: ‘control’), 53 

ambient plus 10 ppb O3 24hrs/day (‘low’), ambient plus 25 ppb O3 24hrs/day (‘medium’) and a high 54 

summer exposure of ambient plus 35 ppb O3 for the period April to September 8hrs/day and plus 10 ppb 55 

for the remainder of the year (‘high’). The upper 50 mm of 10-15 Sphagnum papillosum stems were 56 

removed from 7-9 replicates after 3.5 years and stored refrigerated in glutaraldehyde (Mazei et al., 57 

2015). Microorganisms were separated by physical agitation and inspected microscopically at 400x 58 

magnification with a minimum of 100 tests counted (Payne and Mitchell, 2009) and counts converted to 59 

biomass following Gilbert et al. (1998a). In parallel with testate amoeba analyses, the abundance of 60 

undifferentiated microalgae (principally desmids and diatoms), rotifers, nematodes, flagellates and 61 

ciliates was recorded following the same method. We analysed multivariate data using one-way analysis 62 

of similarity (ANOSIM: (Clarke, 1993)) and non-metric multi-dimensional scaling (NMDS) ordination 63 

based on Bray-Curtis dissimilarity (Bray and Curtis, 1957) and tested for treatment effects in univariate 64 

data using ANOVA. We calculated testate amoeba relative abundance, concentration and biomass and 65 

conducted separate data analyses for each. Data analyses used PAST vers. 3.04 (Hammer et al., 2001) 66 

and the R-package vegan (Oksanen et al., 2007).  67 

Results showed a significant difference in testate amoeba community structure between treatments for 68 

data based on biomass, concentration and relative abundance of all tests (P≤0.03; Table 1) and a clear 69 

treatment effect in the ordination plot (Fig. 1). These results were largely driven by a single taxon: 70 

Phyrganella spp. (Fig. 2) which was on average three times more abundant in the High treated samples; 71 

many analyses lost significance when this taxon was removed (Supplementary Table 1). Results were not 72 

significant for relative abundance and concentration based on live individuals only, most likely due to 73 

the low counts (Table 1). Testate amoeba species richness was significantly reduced compared to the 74 

control in Medium and High treatments (ANOVA: F1,3=3.2, P=0.037, Fisher’s LSD: P<0.05; Fig. 3). Mean 75 

testate amoeba biomass of the High treated samples was 50% greater than the control samples but the 76 

P-value was above the generally-accepted cut-off of P=0.05 (ANOVA: F1,3=2.8, P=0.055; Fig. 3). We found 77 

no significant difference in abundance of the other groups of microorganisms quantified (Fig. 4) with the 78 

exception of grouped flagellate and ciliates (ANOVA: F3=4.0, P=0.017) which were significantly more 79 

abundant than control in the Low and High treatments. However, counts were very low (mean=7.7 80 
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individuals per sample) so we cannot place strong weight on this result. In addition to treatment effects 81 

it is possible that the microbial communities of the mesocosms may have changed over the course of 82 

the experiment due to factors other than ozone; we have no data with which to test this. 83 

Our results demonstrate clear changes in testate amoeba community due to ozone fumigation. Most 84 

changes start in the Medium treatment (ambient +25 ppb) and are highly significant with ozone leading 85 

to a community which is different in composition, less diverse and possibly of higher biomass. There are 86 

many plausible mechanisms for how ozone exposure could lead to changes in testate amoeba 87 

communities through both direct impacts (oxidation) and indirectly through changes in the peat physical 88 

environment, physiological change and community shifts in plant communities (Searles et al., 2001) or 89 

changes to microbial competitors, prey or predators (Li et al., 2015). As isotope tracer studies show that 90 

ozone only penetrates a few millimetres into peat soils (Toet et al., 2009) indirect impacts are more 91 

probable. Other results from this experiment have shown reduced pore-water ammonium and reduced 92 

methane emission but no evidence for impacts on sedge green leaf density, root biomass or dissolved 93 

organic carbon (Toet et al., 2017). These results do not directly imply a mechanism for the changes 94 

detected here. No other data on soil microbial communities are currently available for these mesocosms 95 

but there is data from other peatland studies. In a field mesocosm experiment Morsky et al. (2008) 96 

found that both the fungal PLFA 18:2ω6 and total PLFA concentration were enhanced by ozone 97 

exposure with no change in bacterial PLFAs. The increase in total PLFAs parallels the possible increase in 98 

testate amoeba biomass and ciliate+flagellate abundance here, potentially due to an increased food 99 

supply for protozoa. Our finding of increased testate amoeba biomass also parallels the results of Li et 100 

al. (2015) from mineral soils who found an increase in PLFAs linked to protozoa with ozone exposure. 101 

The finding of increased fungal PLFAs by Morsky et al. (2008) is particularly interesting given the 102 

increase in Phryganella spp (most likely predominantly P. acropodia) detected here. This taxon has been 103 

observed to feed on spores of a limited range of fungal species (Ogden and Pitta, 1990) and increase in 104 

abundance in response to increased fungal abundance (Coûteaux and Devaux, 1983; Coûteaux, 1985). 105 

The taxon is often considered to be mostly, or even exclusively mycophagous (Gilbert et al., 2000) but 106 

may primarily feed on saprophytic fungal exudates or exudate-feeding bacteria rather than fungi 107 

themselves (Vohník et al., 2011). The only study which has directly compared PLFA 18:2ω6c results with 108 

P.acropodia abundance did not find a correlation (Krashevska et al., 2008) but this was in a quite 109 

different ecosystem. We consider that an increased fungal abundance or changed fungal community 110 

structure in the ozone treated samples is one likely explanation for the testate amoeba changes 111 

detected.  112 

Our results clearly demonstrate that ozone exposure leads to a significant change in testate amoeba 113 

community, likely to be mediated by interactions with other microbial groups. The loss of diversity and 114 

increased dominance by a single taxon suggest a potential loss of functional redundancy and 115 

degradation of resilience. It seems clear that ozone exposure can be added to the increasingly-long list 116 

of global change factors which are known to influence peatland microbial consumers.  117 
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 224 

FIGURES and TABLES 225 

Figure 1. Non-metric multidimensional scaling (NMDS) ordination of testate amoeba data based on 226 

biomass represented by all tests. Symbols sized in proportion to total biomass with pies showing 227 

proportions of selected major species. Stress is relatively high (0.25) so patterns should be interpreted 228 

with caution. There is an overall significant difference between treatments (ANOSIM, P<0.01), with 229 

significant differences between control and both high and medium treatments when tested individually. 230 

Different treatments are marked by differently coloured outlines and enclosing polygons (green= 231 

ambient, blue=low, yellow=medium and red=high). 232 

 233 

Figure 2. Differences in relative abundance of Phryganella between treatments. Boxes show the median 234 

(central line), first and third quartiles (grey box) and tenth and ninetieth percentiles (‘whiskers’). 235 

Significant differences between treatments are marked by differing letters. Overall differences are highly 236 
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significant (P<0.01). 237 

 238 

Figure 3. A) Total testate amoeba biomass based on all tests. B) Species richness based on live 239 

individuals. Boxes show the median (central line), first and third quartiles (grey box) and tenth and 240 

ninetieth percentiles (‘whiskers’). Significant differences are marked by differing letters. Differences 241 



10 

 

between treatments for biomass are marginally non-significant (P=0.55). 242 

 243 
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Figure 4. Box plots showing difference in abundance of quantified microbial groups in experimental 244 

mesocosms. A) Flagellates and ciliates, B) Rotifers, C) Nematodes, D) Microalgae. Boxes show the 245 

median (central line), first and third quartiles (grey box) and tenth and ninetieth percentiles (‘whiskers’). 246 

Significant differences are marked by differing letters (significant differences were only found for 247 

flagellates and ciliates). Note that for all the groups other than microalgae absolute numbers of 248 

individuals counted were low.249 

 250 

Table 1. ANOSIM tests of differences in testate amoeba community structure between experimental O3 251 

treatments. ns=non-significant. A version of this table with the abundant Phryganella spp. excluded is 252 

presented as Supplementary Table 1.  253 

Analysed data Tests included RANOSIM and P-value 

Relative abundance All  0.10 (P=0.03)* 

Live individuals only ns 

Concentration All  0.10 (P=0.03)* 

Live individuals only ns 

Biomass All  0.14 (P=0.004)* 

Live individuals only 0.12 (P=0.01)* 

* In post-hoc testing Bonferroni corrected P-values are significant for comparison of control with high treatment and control with medium 254 
treatment only.  255 

 256 
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Supplementary Table 1. ANOSIM tests of differences in testate amoeba community structure between 257 

experimental O3 treatments with Phyrgranella spp. excluded. ns=non-significant.  258 

Analysed data Tests included RANOSIM and P-value 

Relative abundance All  ns 

Live individuals only ns 

Concentration All  ns 

Live individuals only ns 

Biomass All  ns 

Live individuals only 0.09 (P=0.03)* 

* In post-hoc testing Bonferroni corrected P-values show no significant difference between any of the treatments.  259 

 260 


