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Environment plays a fundamental role in the competition for resources, and hence in the evolution of

populations. Here, we study a well-mixed, finite population consisting of two strains competing for the

limited resources provided by an environment that randomly switches between states of abundance and

scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios—one of

pure resource competition, and one in which one strain provides a public good—and investigate how

environmental randomness (external noise) coupled to demographic (internal) noise determines the

population’s fixation properties and size distribution. By analytical means and simulations, we show that

these coupled sources of noise can significantly enhance the fixation probability of the slower-growing

species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and

undergoes noise-induced transitions between these regimes when the rate of switching matches the

population’s growth rate.

DOI: 10.1103/PhysRevLett.119.158301

Natural populations face ever-changing environmental

conditions, which influence their evolutionary fate. For

instance, the abundance of nutrients, the presence of toxins,

or external factors like temperature and pH often influence

the evolution of species [1,2]. Several mechanisms have

been suggested for a population to cope with fluctuating

environments, such as phenotypic heterogeneity, bet hedg-

ing, and storing thegains realized during goodperiods [3–7].

The impact of random environmental changes (external

noise) on fitness variability has been studied in population

genetics, predator-prey systems, aswell as in game-theoretic

and relatedmodels [8–19]. Demographic fluctuations (inter-

nal noise), arising in finite populations, are responsible

for fixation—when one species takes over the population

[20,21], and determine the population’s internal composi-

tion. Internal noise is stronger in small populations and

becomes negligible in large ones. The dynamics of the

population composition is often coupled with the evolution

of its size [22–26]. This may result in a coupling of

environmental and internal noise, with external randomness

affecting the population size, which in turn modulates

demographic fluctuations. The interdependence of external

and internal noise is especially relevant to microbial com-

munities, which can experience sudden, extreme environ-

mental changes [27–31]. These may lead to population

bottlenecks: new colonies or biofilms formed from only

few individuals, thus prone to fluctuations. This mechanism

leads to feedback loops between social interactions and

environment, and to population dynamics of great evolu-

tionary relevance [27–29]. For instance, recent experiments

on Pseudomonas fluorescens showed that the formation

and sudden collapse of biofilms promotes the evolution of

cooperative behaviors [30,31].

Most studies, however, treat environmental and internal

noise independently [8–19]. Moreover, environmental ran-

domness is often modeled with white noise [8,9,16],

although the correlation time is finite in realistic settings.

Here, we develop an approach to study the coupled effect of

environmental and internal noise on the evolution of a two-

species population in a stochastic environment: We assume

that the carrying capacity randomly switches between two

values, following a dichotomous noise [32,33]. A distinctive

feature of this model is the coupling of internal and

environmental noise (Fig. 1): Demographic fluctuations

depend on the population size that varies following the

switching environment. We first consider a scenario with

pure resource competition, in which the dynamics of the

population composition and its size are only linked by

demographic fluctuations. Then, we investigate a public

good scenario in which interspecies social interactions

FIG. 1. Cartoon of the model: Coupled evolution of the

population size and its composition, consisting of strains S (open

circle) and F (filled circle), subject to a stochastically switching

carrying capacity KðtÞ ∈ fK−; Kþg; see Eq. (3). K switches

with rate ν from K− to Kþ, leading to population growth and

decreasing demographic fluctuations (internal noise). When K
switches (with rate ν) fromKþ toK−, the population size declines

and demographic fluctuations increase.
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explicitly couple the composition and ecological (size)

dynamics. Using analytical and computational means, we

showhowenvironmental and internal noise can significantly

influence the population’s fixation properties. Moreover,

we show that external noise induces a transition between

different regimes of the population size distribution.

We consider a well-mixed population of finite and time-

fluctuating size NðtÞ ¼ NSðtÞ þ NFðtÞ consisting of two

strains. At time t, NSðtÞ individuals are of a slow-growing
strain S, corresponding to a fraction x ¼ NS=N of the

population, and NF are of a fast-growing species F.
Individuals of strain α ∈ fS; Fg reproduce with a per-capita
rate Tþ

α ¼ fα=f̄ [23,24], where fα is the fitness of strain α

and f̄ ¼ xfS þ ð1 − xÞfF is the average fitness. Here

fF ¼ 1 and fS ¼ 1 − s, where 0 < s ≪ 1 denotes the weak

selection intensity that disadvantages the strain S [20]. The

population size growth often depends on its composition;

e.g., one strainmay produce a public good. This is accounted

for by multiplying the birth rates Tþ
α by a “global fitness”

gðxÞ [22–24]. Here, we focus on two important cases:

(i) pure resource competition: gðxÞ ¼ 1, in this setting x
andN are only coupled by fluctuations; and (ii) public good:

gðxÞ ¼ 1þ bx, corresponding to an explicit coupling of x
and N, where x represents the fraction of “cooperators”

producing a public good and enhances the population

growth rate through the benefit 0 < b ∼Oð1Þ. Both strains

compete for limited resources which constrains the pop-

ulation size as encoded by the death rate T−
α ¼ N=K. We

consider that in the presence of environmental randomness,

K fluctuates stochastically. The population thus follows a

multivariate birth-death process [34,35] in which, at each

time increment, an individual at random reproduces [with

per-capita rate gðxÞTþ
α ], or dies (with per-capita rate T

−
α ), or

the carrying capacity changes state (with rate ν). The ensuing

master equation fully describes the stochastic population

dynamics, whose main features are the distribution of N
and the probability that S or F fixates by taking over the

population, but is difficult to solve [35]. Upon ignoring any

form of noise, the population size N and composition x
evolve deterministically according to [23,24,36]

_N ¼ N

�

gðxÞ −
N

K

�

; ð1Þ

_x ¼ −sgðxÞ
xð1 − xÞ

1 − sx
; ð2Þ

where the dot signifies the time derivative. Here, we study

the population dynamics subject to a randomly switching

carrying capacity (environmental noise) and to stochastic

birth and death events (internal noise). We therefore have to

account for these sources of noise.

To model environmental randomness, we let the

carrying capacity KðtÞ switch stochastically between a

state of abundant resources (K ¼ Kþ) and one of scarcity

(K ¼ K− < Kþ). Figure 1 illustrates this stochastic

environment and its impact on the population. We consider

that environmental switching occurs continuously at rate ν,

according to a dichotomous Markov noise ξðtÞ∈f−1;þ1g
with zero-mean, hξðtÞi ¼ 0 (h·i denotes the ensemble aver-

age), and autocorrelations hξðtÞξðt0Þi¼expð−2νjt−t0jÞ,
where 1=ð2νÞ is the finite correlation time [32,33]. Hence,

the carrying capacity obeys

KðtÞ ¼
1

2
½ðKþ þ K−Þ þ ξðtÞðKþ − K−Þ�; ð3Þ

with average hKi ¼ ðKþ þ K−Þ=2. If this is the sole source
of noise (no internal noise), the evolution obeys a piecewise

deterministic Markov process (PDMP) [18,19,39,40],

defined by Eq. (2) and

_N ¼ N

�

gðxÞ −
N

K
þ ξ

NðKþ −KÞ

KKþ

�

; ð4Þ

where K ¼ 2KþK−=ðKþ þ K−Þ is the harmonic mean of

Kþ andK−. Equation (4) is obtained from Eqs. (1) and (3) as

shown in the Supplemental Material [36]. Hence, environ-

mental randomness alone yields a multiplicative noise ∝

ξðKþ − K−ÞN
2 in Eq. (4). Demographic fluctuations being

ignored, x obeys Eq. (2), which is decoupled from N, and

evolves on a time scale∼1=s; see supporting videos [37] and
Supplemental Material [36].

Internal noise arises in finite populations when birth

and death events occur randomly, and is responsible for

fixation. If demographic fluctuations are the only source of

noise (say K is constant), the fixation probability ϕ of the

strain S can be computed from a fitness-dependent Moran

process [20,21,41,42] with the same strain-specific fit-

nesses as in our model, and constant size N ¼ K [43].

Given an initial fraction x0 of S individuals, this probability

in a population of constant size N is ϕðx0ÞjN ¼

ðe−Nsð1−x0Þ − e−NsÞ=ð1 − e−NsÞ [44,45]. Hence, the fixation
probability of the slow strain is exponentially small in

large size populations. Since the fixation probability clearly

depends on x0, for notational simplicity we henceforth

write ϕ≡ ϕðx0Þ and ϕjN ≡ ϕðx0ÞjN .
Below, we investigate the joint effect of environmental

and internal noise on the population dynamics. In particu-

lar, since extreme environmental changes can occur more or

less rapidly in microbial communities [27–31], we study

the influence of the switching rate ν on the species fixation

probability and the distribution of N.

(i) The pure resource competition scenario.—When

g ¼ 1, both species simply compete for limited resources.

By the competitive exclusion principle [46], F always

prevails in the deterministic limit. In this case, the rate

equations (1), (2) are decoupled. However, demographic

fluctuations, which drive to fixation, scale with the popula-

tion size: the stochastic dynamics of x is thus coupled with

that of N; see Fig. 1. While x relaxes on a slow time scale
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t ∼ 1=s,N reaches a quasistationary state in a time t ¼ Oð1Þ,
see supporting videos [37] and Supplemental Material [36].

Equation (4) is associated with a PDMP whose marginal

(unconditioned of ξ ¼ �1) stationary probability density

function (PDF) is [32,36]

p�
νðNÞ ¼

Zν

N2

�

ðKþ − NÞðN − K−Þ

N2

�

ν−1

; ð5Þ

where Zν is the normalization constant and the PDF has

support ½K−; Kþ�. Although this PDF only accounts for

environmental noise, it captures the main features of the

quasistationary distribution of the population size (N-QSD)

of the fullmodelwhenK− ≫ 1 [47]. Since x andN evolve on

different time scales, the PDF (5) can be combined with ϕjN
to determine the fixation probability. For this, we rescale the

switching rate, ν → ν=s, to map environmental changes onto

the internal dynamics’ relaxation time scale, where ν=s is

the average number of switches occurring while x relaxes.

Indeed, when ν ≫ s (fast switching), many switches occur

prior to fixation and the environmental noise self-averages,

whereas when ν ≪ s (slow switching) the population is

likely to experience solely the carrying capacity Kþ or K−

before one species fixates. The fitness-dependent Moran

process gives the fixation probability in those limits. When

ν → ∞, there is self-averaging with ξ → hξi ¼ 0 in (4) that

becomes the logistic equation (1) with K ¼ K, yielding

ϕ ¼ ϕjK.When ν → 0,K is equally likely to remain atKþ or

K− until fixation occurs, yielding ϕ ¼ ðϕjKþ
þ ϕjK−

Þ=2.

Based on these physical considerations, fully detailed in

the Supplemental Material [36], we propose to assume the

following expression for the S fixation probability when

0 < s ≪ 1 and K− ≫ 1:

ϕ≃

Z

Kþ

K−

�

e−Nsð1−x0Þ − e−Ns

1 − e−Ns

�

p�
ν=sðNÞdN: ð6Þ

By averaging the effect of internal noise, given by ϕjN, over
the external-noise-induced PDFp�

ν=s, Eq. (6) accounts for the

fact thatN evolvesmuch faster than x relaxes. The expression
(6) reproduces the expected results in the two limiting

regimes ν ≫ s and 0 < ν ≪ s. Moreover, Eq. (6) accurately

predicts the stochastic simulation results over a broad range

of ν values, capturing the nontrivial ν dependence of ϕ, see

Fig. 2(a). We find that ϕ can increase or decrease with ν [36]

and, importantly, environmental noise can significantly

enhance the S fixation probability in all regimes: ϕ is always

greater than ϕjhKi obtained in a nonrandom environment

with N ¼ hKi [36].
We have verified that the mean fixation time scales as

Oð1=sÞ [36]. Hence, after a time t≳ 1=s, either species
likely fixated and, while the population then only consists of

S or F, its size keeps fluctuating, see supporting videos [37]
and Supplemental Material [36]. Since demographic fluc-

tuations have a marginal influence on the N-QSD when

K− ≫ 1, the PDF p�
ν captures its main long-time features;

see Fig. 3. For example, the long-time average population

size hNi� is well described by the average over Eq. (5):

hNi� ≃
RKþ

K−
Np�

νðNÞdN, which is independent of s and x0;

see Fig. 2(b). The histograms of Fig. 3 show that the

environmental noise causes a noise-induced transition of

the N-QSD at about ν ¼ 1 [32]. The transition, predicted

by p�
ν, separates regimes in which environmental change

is faster or slower than the population’s growth rate. For

ν > 1, fast switching results in a unimodal N-QSD, see

Figs. 3(a), 3(b), whereas for ν < 1, the environment changes

slowly and the N-QSD is bimodal, see Figs. 3(c), 3(d) and

Ref. [36]. The fast decay and slower growth ofN, character-

istic of a logistic dynamics, lead the population size to dwell

longer about K− than about Kþ. As captured by p�
ν, this

results in right-tailed distributions in Fig. 3. Since Eq. (5)

only accounts for external noise, it cannot reproduce some

features caused by demographic fluctuations, such as the

N-QSD not being strictly confined within the support of p�
ν

FIG. 2. (a) ϕ vs ν for ðKþ; K−; x0Þ ¼ ð450; 50; 1=2Þ, with s ¼
0.02 (open circle, blue/black) and s ¼ 0.07 (diamond, orange/

gray). Symbols are from simulations (104 runs). Solid lines are

from Eq. (6); dashed and dotted lines show ϕ when ν=s → ∞

(dashed) and 0, see text. (b) hNi� vs ν. Symbols are from

simulations (104 runs) with s ¼ 0.02 (open circle) and s ¼ 0.07

(diamond); they collapse on the curve (solid line) obtained by

averaging N over (5); see text.

FIG. 3. Histograms of population size (N-QSD) and from p�
ν,

for ν ¼ 20 (a), ν ¼ 2 (b), ν ¼ 0.2 (c), and ν ¼ 0.02. (d) Solid

lines result from simulations (105 samples, after t≳ 1=s). Dashed
lines are the corresponding histograms from Eq. (5). Dotted lines

show N ¼ K in (a), and N ¼ K� in (b)–(d). Parameters are

ðKþ; K−; s; x0Þ ¼ ð450; 50; 0.02; 0.5Þ.
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[35,36]. However, as Fig. 2 shows, these deviations only

marginally affect hNi� and ϕ.

(ii) The public good scenario.—The above approach can

be generalized to cover cases where internal and ecological

dynamics are explicitly coupled. As an application, we

consider a public good scenario in which S is a “co-

operative” strain benefiting the population by enhancing

the global fitness gðxÞ ¼ 1þ bx (b > 0) and the carrying

capacities, see below. The dynamics of x and N are now

coupled, breaking the time scale separation: N becomes a

fast variable, enslaved to the slowly varying x, see videos 6
and 7 in Ref. [37] and Supplemental Material [36]. After

fixation, x ∈ f0; 1g and the N-QSD can be obtained as for

b ¼ 0. When F fixates (x ¼ 0), the N distribution is

described by p�
ν (5). If S fixates (x ¼ 1), the population

size distribution is captured by p�
ν;b, obtained by substitut-

ing K� → ð1þ bÞK� and ν → ν=ð1þ bÞ in Eq. (5).

Hence, p�
ν and p�

ν;b are the PDFs conditioned to fixation

ofF and S (but unconditioned of ξ), respectively. To address
the dynamics before fixation, we approximately account for

the correlations betweenN and x by introducing an effective
(constant) parameter 0 ≤ q ≤ b. We then set gðxÞ ¼ 1þ q
in Eq. (4), resulting in a PDMP, decoupled from x, for the
size of an effective population whose marginal PDF, p�

ν;q

(see Eq. (S2) in [36]), interpolates between p�
ν and p

�
ν;b. As

for b ¼ 0, when 0 < s ≪ 1 and K− ≫ 1, the S fixation

probability in this effective population is [36]

ϕq ¼

Z

ð1þqÞKþ

ð1þqÞK−

�

e−Nsð1−x0Þ − e−Ns

1 − e−Ns

�

p�
ν=s;qðNÞdN: ð7Þ

To determine the effective value of q for given ðK�; s; bÞ,
we consider the limit ν ≫ 1, where the environmental

noise self-averages, and match the prediction of Eq. (7)

with the fixation probability obtained in simulations [36].

As Fig. 4(a) shows, with suitable q, Eq. (7) reproduces the
simulation resultsϕq ≃ ϕ for a broad range of ν and different

values of b.
After t≳ 1=s, fixation has typically occurred and the

population size distributions (when K− ≫ 1) are well

described by p�
ν;b (S fixation) and p�

ν (F fixation). With

these conditional PDFs and ϕq, the long-time average

population size reads

hNi� ≃ ϕq

Z

ð1þbÞKþ

ð1þbÞK−

Np�
ν;bðNÞdN þ ~ϕq

Z

Kþ

K−

Np�
νðNÞdN;

ð8Þ

with ~ϕq ¼ 1 − ϕq. Figure 4(b) shows that Eq. (8) agrees

well with simulation results, but cannot capture the

behavior at very low ν (ϕq being inferred at ν ≫ 1). The

conditional N-QSD and conditional PDFs p�
ν and p�

ν;b

present unimodal and bimodal regimes. Specifically, after S
fixation, N’s growth rate is 1þ b and the associated PDF

p�
ν;b undergoes a noise-induced transition at ν ¼ 1þ b.

Similarly, the N’s growth rate when F fixates is 1, and p�
ν

undergoes a transition at ν ¼ 1. Since the marginal size

distribution is the sum of the conditional distributions

weighted by the fixation probability, it is characterized

by several regimes and transitions. These properties are

well captured by combining p�
ν;b and p

�
ν weighted by ϕq, as

shown in Fig. 4. When ν > 1þ b, the switching rate

exceeds the population’s growth rate, and both conditional

PDFs are unimodal with different peaks, yielding a bimodal

marginal distribution; see Fig. 4(c). For 1 < ν < 1þ b,
p�
ν;b is bimodal and p�

ν is unimodal. When ν is below the

population’s growth rate (ν < 1), both conditional PDFs are

bimodal. As a result, the marginal size distribution has three

peaks when 1 < ν < 1þ b and four peaks when ν < 1; see

Fig. 4(d). As for b ¼ 0, the influence of demographic

fluctuations on the N-QSD is to cause slight deviations

from the PDF predictions, particularly at low ν [36].

Motivated by the evolution of microbial communities in

volatile environments, we have analyzed the dynamics of a

two-species population subject to a randomly switching

carrying capacity (dichotomous noise). A distinctive feature

of our model is the coupling of the environmental and

internal noise: demographic fluctuations depend on the

population size, which in turn changes with the varying

carrying capacity (environmental noise). By analytical and

computational means, we have studied the coupled effect

of environmental and internal noise on the population’s

ecological and fixation properties. Our analytical approach

is based on a time scale separation, arising under weak

FIG. 4. (a) ϕ vs ν for ðs; bÞ ¼ ð0.01; 0.2Þ (diamond, blue/gray),

(0.05,0.2)(open circle, red/black), (0.05,2)(downward triangle,

green/dark gray). Solid lines are from Eq. (7). In all panels

ðKþ; K−; x0Þ ¼ ð450; 50; 0.5Þ. (b) hNi� vs ν for ðs; bÞ ¼
ð0.025; 2Þ (square, orange/gray), (0.05,2) (downward triangle,

blue/dark gray), (0.025,8) (diamond, red/black). Solid lines

are from Eq. (8). (c),(d) Size distributions for ν ¼ 20 (c) and

ν ¼ 0.02 (d), with b ¼ 2 and s ¼ 0.02. Solid and dashed lines

are, respectively, histograms from simulations (105 replicas, after

99% fixation [36]) and obtained from p�
ν;b and p

�
ν weighted by ϕq,

see text.
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selection, between the ecological and internal dynamics.We

have also combined the properties of suitable stochastic

processes governed solely by internal fluctuations on one

hand, and only by environmental noise on the other hand. In

the case of pure resource competition (no explicit coupling

between internal and ecological dynamics), we have deter-

mined the population size distribution, characterized by

various regimes, and found that the average size decreases

with the switching rate. Assuming a suitable expression for

the fixation probability and using stochastic simulations, we

have investigated how environmental randomness affects

the strains’ fixation properties and found that it can signifi-

cantly enhance the fixation probability of the disadvantaged

strain. As an application, we have considered a public good

scenario in which internal and ecological dynamics are

explicitly coupled.We have thus devised an effective theory

that has allowed us to probe the effects of environmental

switching and public good benefit on the fixation probability

and population composition. We have characterized the

population size distribution and the noise-induced transi-

tions between their unimodal (fast switching), bimodal, and

multimodal forms, arising when the switching rate matches

that of the population growth. Our findings show that

coupled environmental and demographic noise can signifi-

cantly influence the population dynamics by greatly affect-

ing its fixation properties and therefore its composition. This

is particularly relevant to microbial communities, which

often feature connected internal and ecological evolution.
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