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ARTICLE INFO ABSTRACT

Keywords: A series of strained GaAsBi/GaAs multiple quantum well diodes are characterised to assess the potential of
GaAsBi GaAsBi for photovoltaic applications. The devices are compared with strained and strain-balanced InGaAs based
MQWs devices.

Multijunction The dark currents of the GaAsBi based devices are around 20 times higher than those of the InGaAs based
ig(];:aAs devices. The GaAsBi devices that have undergone significant strain relaxation have dark currents that are a

further 10-20 times higher.

Quantum efficiency measurements show the GaAsBi devices have a lower energy absorption edge and
stronger absorption than the strained InGaAs devices. These measurements also indicate incomplete carrier
extraction from the GaAsBi based devices at short circuit, despite the devices having a relatively low background
doping. This is attributed to hole trapping within the quantum wells, due to the large valence band offset of

GaAsBi.

1. Introduction

The current world record solar cell efficiency is held by a multi-
junction device [1]. Multi-junction devices absorb different portions of
the solar spectrum in different sub-cells, minimising the below-band
gap and thermalisation losses in the device [2]. Maximising the effi-
ciency of a multi-junction solar cell requires the band gaps of the sub-
cells to be well optimised, balancing the current produced by each sub-
cell. Finding lattice matched materials at the appropriate band gaps has
proven very difficult, necessitating techniques such as metamorphic
growth and wafer bonding [3]. Multiple quantum well (MQW) systems
have also been developed to overcome this issue and have yielded very
high efficiencies in commercially available devices [4]. InGaAs based
MQWSs have been used in GaAs sub-cells to extend their absorption
edge; however, strain has been a problem with this approach and even
with strain balancing, the critical thickness of each quantum well (QW)
has historically limited the absorption of these devices to ~ 1.3 eV [4].
More recently, interlayered QW designs have been produced that ab-
sorb at longer wavelengths [5-8]; these designs incorporate layers of
intermediate lattice constant and band gap between the QWs and
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barriers. This has enabled InGaAs/GaAsP MQW absorption to extend to
1.13 eV [8]. The intermediate layers have two effects: they reduce the
impact of the abrupt lattice constant change on the crystal quality [7,9];
they also reduce the quantum confinement energy of the QWs and aid
thermionic carrier escape [5,6]. Theoretically, an infinite number of
QWs can be stacked without lattice relaxation, provided that the
average strain of the QWs and barriers integrates to zero. However,
maximising the long wavelength absorption of the MQW stack ne-
cessarily means maximising the In content of the QWs. In order to
maintain strain balance and a reasonable total MQW thickness, this also
requires a large P content of the barriers. The resulting large lattice
mismatch interface between each QW and barrier acts as a potential
seeding point for dislocations and many-period MQWs often suffer from
significant lattice relaxation. The incorporation of GaAs interlayers
reduces the mismatch at each interface and allows thicker MQW stacks
to be grown without significant relaxation [7,9]. The interlayers also
impact on the carrier confinement in the QW. Adding a GaAs interlayer
between an InGaAs QW and a GaAsP barrier staggers the change in
potential between the QW and barrier, reducing the quantum con-
finement. This also combines with the potential gradient due to the
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Fig. 1. Band gap vs strain for several III-V ternary alloys on GaAs over a range of com-
positions. The type of strain for each material is listed in the legend. The band gaps are
calculated for free standing material and the strain is calculated for the same material
compositions, grown pseudomorphically on GaAs. While the curves are not physically
meaningful — they do not account for the effect of strain on the band gaps — they are
indicative of the band engineering potential of each alloy. Data taken from [11-14].

built-in electric field to reduce the energy required to thermionically
escape from the QW [5,6]. This effect may prove important, as recent
work on GalnAsN — which produces large conduction band offsets on
GaAs — has demonstrated electron trapping in MQW layers [10].
GaAsBi is a relatively recent material system that may be an alter-
native to InGaAs. The incorporation of Bi reduces the band gap of GaAs
by ~ 75meV/% Bi [11] (~ 620 meV/% strain on GaAs); which is
significantly larger than the ~ 15 meV/% In [12] (240 meV/% strain on
GaAs) reduction with the incorporation of In. The band gap reductions
per unit strain for several III-V materials on GaAs are shown in Fig. 1.
As GaAsBi and InGaAs have approximately the same critical thick-
ness [15], a greater range of band gaps is afforded by GaAsBi than by
InGaAs while maintaining pseudomorphic material. This enhanced
band engineering capability has driven a dramatic development in
GaAsBi growth [16-18], with several important technological appli-
cations for the material system identified, including solar cells [19,20],
lasers [21,22], spintronics [23] and detectors [24]. By applying this
material system to photovoltaics, it is envisioned that the enhanced
flexibility in band engineering will accelerate the development of multi-
junction photovoltaics in the current bid to exceed 50% efficiency [25].
GaAsBi MQW systems have been studied for a number of years
[26-28]. It has been shown that they can be subject to the same
homogeneity issues as GaAsBi bulk structures [29-31]. These homo-
geneity issues cause the first QW in a series to be either more Bi rich or
more Bi poor than the other QWs, similar to the bulk GaAsBi system
[32]; this is probably caused by the chemisorbed Bi layer mediated
growth mechanism of GaAsBi [33]. It has been shown, however, that
careful control over the growth conditions can mitigate this effect
[29,31]. The growth of GaAsBi has now progressed to the point where a
GaAsBi MQW system can provide sufficient gain to realise an elec-
trically pumped laser with emission beyond 1 um [34]. While GaAsBi
MQWs have demonstrated lasing capabilities, the absorption and pho-
tovoltaic properties of these systems have received very little attention.
In this work, a series of strained GaAsBi/GaAs MQW devices (col-
lectively referred to as “the GaAsBi devices” henceforth) are char-
acterised to assess their potential as solar cells. It is important that the
characteristics of the strained GaAsBi system are understood before
introducing strain balancing. The results are put into context by com-
parison with two InGaAs based MQW devices: the strained 10 period
Ing 16Gap.g4As/GaAs device reported by Barnes et al. [35] (henceforth
referred to as “R1”); the strain-balanced 35 period interlayered InGaAs/
GaAsP device reported by Toprasertpong et al. [8] (henceforth referred
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to as “R2”).
2. Material and methods

A systematic series of GaAsBi/GaAs MQW p-i-n devices was grown
by molecular beam epitaxy (MBE). The devices were grown on (100)
GaAs n-type substrates and are designed as follows: 200 nm n-type
GaAs buffer; 200 nm n-type Aly3GageAs cladding; 620 nm undoped
GaAsBi/GaAs MQW; 600 nm p-type Al 3Gag¢As cladding; 10 nm p+
GaAs cap. The i-regions contained different numbers of evenly spaced,
nominally 8 nm thick, GaAsBi QWs with GaAs barriers of the requisite
thickness to maintain the total i-region thickness. The Bi content of the
wells is difficult to estimate; transmission electron micrographs show
that they are thinner than the nominal 8 nm and do not have abrupt
interfaces [33]. As such it is very difficult to produce an accurate,
meaningful X-ray diffraction fitting model of the system and calcula-
tions of the quantum confinement cannot assume “square” QWs. If one
assumes “square” QWs in these devices then Bi contents of around 4.5%
are estimated throughout the series [15]. In reality, the non-uniform
nature of the QWs suggests that the peak Bi content is probably closer to
5%. It is possible that the graded Bi contents in these layers may alle-
viate the impact of the abrupt QW/barrier lattice constant change on
the material quality. This may mean that careful optimisation of the
growth protocol could potentially remove the need for interlayers in
GaAsBi based MQW solar cells. The details of the general growth
methodology [36] and the specific protocol used to grow these devices
[15] have been discussed elsewhere. The device structure and details of
the nominal i-region designs are shown in Fig. 2a. For clarity, the de-
signs of the R1 and R2 are also shown in Fig. 2.

Circular mesa diodes of several radii up to 200 um were fabricated
by using standard photolithography techniques and wet etching. The
back n-type contact was made using In/Ge/Au and the top p-type
contact was made using Au/Zn/Au. The top contacts were annular to
allow optical access to the device.

External quantum efficiency (EQE) and reflectance spectra were
measured using a combination of xenon and halogen lamps coupled to a
Bentham Instruments monochromator. The monochromatic light was
then delivered via a 600 pm core optical fibre to a custom-built mi-
croscope system, which illuminated a small (150 X 150 um) area. The
EQEs were calibrated by measuring the incident spectrum using cali-
brated Si and Ge detectors. For the reflectance (R) measurement, the
reflected light was measured using calibrated Si and Ge detectors and
the device reflectance extracted from the raw data using corresponding
measurements of a reference mirror. Internal quantum efficiency (IQE)
is calculated as IQE = EQE / (1 - R)

Light current-voltage curves were measured under a close-matched
AM1.5 spectrum (1000 Wm ™~ 2) using a TS-Space Systems solar simu-
lator (Unisim). The solar simulator is dual source with a metal halide
source covering the UV-Vis portion of the spectrum and a quartz ha-
logen lamp covering the Vis-IR. The effective spectral range is
250-1800 nm. The spectrum was calibrated using a spectroradiometer.
The incident light was filtered with a 900 nm long pass filter to simulate
operation under an Ing ¢;Gag 99As subcell in a multi-junction solar cell.

3. Results and discussion
3.1. IV

The dark I-V curves from the GaAsBi devices are shown in Fig. 3,
alongside the curves from R1 and R2. The I-V characterisation was
performed on several diodes of different mesa area for each of the
GaAsBi devices. The measured current densities were consistent
throughout the measurements, indicating that bulk — rather than
surface — conduction was taking place. All of the GaAsBi devices show
good rectifying characteristics, with ideality factors between 1 and 2,
although at high bias QW54 shows a non-exponential increase of
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Fig. 2. Structures of the diodes characterised in this work. a) The GaAsBi devices b) R1 [35] ¢) R2 [8].

current with bias, indicative of a large series resistance in this device.
The dark current densities of R1 and R2 are around 20 times lower than
those of QW05-QW40, which are, in turn, 10-20 times lower than
those of QW54 and QW63. Previous work [15] suggests that QW54 and
QW63 have undergone strain relaxation by dislocation generation and
we attribute the high dark currents in these devices to the dislocations
formed during this relaxation. The same work suggested that QW20 and
QW40 contain enough strain to undergo dislocation propagation
(without dislocation generation), whereas QW05 and QW10 do not. As
the dark currents of QW05-QW40 are all very similar, we conclude that
strain related structural defects do not dominate these I-V curves and,
therefore, QW05-QW40 are representative of the elastically strained
GaAsBi material system.

The purpose of this paper is to compare strained GaAsBi and InGaAs
MQW devices; therefore, the relaxed GaAsBi devices — QW54 and
QW63 — are neglected for the remainder of this paper.
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3.2. Quantum efficiency

The internal quantum efficiency (IQE) data from all of the devices
are shown in Fig. 4. Fig. 4a shows that QW05-QW40 have an absorp-
tion edge at ~ 1.12 eV, which is comparable to that of R2. The ab-
sorption edge achieved by R1 is at ~ 1.25 eV, which is a significantly
higher energy than those of the GaAsBi devices. It is clear that R2 out-
performs the GaAsBi devices, which is to be expected as R2 is a very
well optimised structure, employing strain balancing and interlayered
QWs. To establish whether GaAsBi has the potential to outperform In-
GaAs for MQW PV, it is instructive to compare the GaAsBi devices with
an InGaAs device of a similar design. Fig. 4a also compares the GaAsBi
devices with the strained R1. QW40 shows an extended absorption edge
compared to that of R1, despite both devices being grown very close to
their critical thicknesses.

Fig. 4b shows the reverse bias IQEs of the GaAsBi devices and R2. If
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Fig. 3. I-V plot comparing the GaAsBi devices with R1 and R2. The data from R1 starts at
10~ *mAcm ™2 as it was extracted from [37].

the poor IQEs of the GaAsBi devices are caused by incomplete depletion
of their i-regions, then the application of a reverse bias — which will act
to enhance the in-built electric field — will increase their depletion
widths and, hence, IQEs. In the case of GaAsBi, a poor depletion of the i-
region may be caused by unintentional doping due to Bi incorporation.
Previous work has shown that devices of comparable thickness and
average Bi content require a modest reverse bias to be fully depleted
[38]. Also shown is the 0 V bias spectrum from R1 for reference. The
purpose of Fig. 4b is to compare the IQE spectra in the case of complete
carrier extraction; for R1, the peak IQE actually drops slightly in reverse
bias (not shown), which is consistent with measurements of other high
quality MQW systems [39]. R2 shows very little improvement in its IQE
with reverse bias, indicating efficient extraction of the photo-excited
carriers in this device. However, reverse bias applied to the GaAsBi
devices results in improved IQEs. Evidently there is incomplete carrier
extraction from the GaAsBi devices in the short circuit condition.

3.3. Illuminated IV

The normalised light I-V curves from the GaAsBi diodes and R2 are
shown in Fig. 5. The curves have been normalised by dividing each
diode's current density by its short circuit current density, allowing the
shapes of the curves to be compared more easily. This is also necessary
due to the different experimental conditions used for R2 and the dif-
ference in design between R2 and the GaAsBi devices. R2 was measured
under an 800 nm long pass filter, rather than the 900 nm filter used for
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Fig. 5. Illuminated I-V of the GaAsBi devices and R2 under an AM1.5 spectrum using a
900 nm filter to simulate operation under an Ing 91 Gag.g9As subcell (inset shows the de-
pletion width as a fraction of the i-region thickness for each GaAsBi device at short circuit
as determined by capacitance-voltage measurements performed on the un-illuminated
devices).

Table 1
Standard solar cell characteristics for the GaAsBi devices and R2.

Device Long pass filter (nm) Isc (mAcm~2) Voc (V) FF (%)
QWO05 900 0.17 0.46 67
QW10 0.40 0.43 64
QW20 0.58 0.45 55
QW40 0.85 0.45 48

R2 800 6.3 0.746 68.4

the GaAsBi devices. Also, R2 was designed with a 100 nm GaAs emitter,
which is not present in the GaAsBi device designs. The standard solar
cell characteristics of the GaAsBi devices and R2 are shown in Table 1.

The GaAsBi devices exhibit open circuit voltages (Vocs) around
0.45V, which is consistent with the dark I-V results. This is ~ 300 mV
smaller than the V¢ of R2 despite a similar onset of absorption. The
incorporation of Bi into GaAs has been reported to introduce an ab-
sorption tail below the band gap, due to disorder of the material
[24,40,41]. Based on previous work) [42,43], the disorder induced
states extend < 100 meV into the band gap. It seems unlikely, there-
fore, that the reduction in the Vpcs of the GaAsBi devices are entirely
due to Bi induced disorder. It is probable that the reduced Vs are also
due, in part, to material defects caused by the low growth temperatures
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Fig. 4. IQE data a) at 0 V bias b) at reverse bias (except R1). The bias used for each device was determined by finding the bias at which the IQE appeared to saturate. The R1 spectrum was
collected at 0 V bias; the carrier extraction is assumed to be near 100% in this device, so it is instructive to compare the reverse bias IQEs of the other devices to the 0 V IQE from R1. The

reverse bias used for each device is listed in the legend of b).
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necessary for the formation of GaAsBi.

The illuminated I-V curves in Fig. 5 indicate a reducing fill factor
(FF) with increasing QW number throughout the series. The current
densities of the GaAsBi devices are sublinear in reverse bias, suggesting
that the FF is limited by increasingly poor carrier extraction as the QW
number rises, rather than by shunting; QW05 is an exception to this
trend, as it demonstrates a linearly increasing current density in reverse
bias. One potential cause of the poorer carrier extraction with in-
creasing QW number is a reduction of the depletion width due to the
background doping of the GaAsBi QWs. However, the depletion widths
of the devices in the dark as measured by C-V — shown in the insert of
Fig. 5 — indicate that all of the devices are > 90% depleted at 0 V bias.
Nonetheless, applying a reverse bias to the devices dramatically im-
proves the IQEs of QW20 (~ 40% improvement) and QW40 (~ 70%
improvement), as can be seen by comparing Fig. 4a and b. It seems
likely that carrier trapping in the GaAsBi QWs is the cause of the poor
carrier extraction, as has previously been shown for GaInAsN devices
[10]. However, in contrast to incorporating N, the majority of the band
gap reduction of GaAs due to the incorporation of Bi has been shown to
be due to a raising of the valence band energy [44,45]. This suggests
that holes, rather than electrons, are being trapped in the QWs of the
GaAsBi devices. This trapping appears to affect carriers created within
the QWs and in the GaAs barrier regions, as evidenced by Fig. 6, as the
increase of IQE with reverse bias applies for photons of energy both
above and below the GaAs band gap. A similar issue was investigated in
InGaAs MQW systems [46], although in that system it did not dominate
the device characteristics. Reducing the valence band offset by alloying
with In or N could potentially mitigate this issue in GaAsBi based
MQWs.

As new techniques are developed to improve the electronic prop-
erties of GaAsBi devices [47,48], the performance of GaAsBi MQW PV
will become increasingly competitive with InGaAs MQW PV.

4. Conclusions

A systematic series of strained GaAsBi/GaAs MQW pin diode devices
have been characterised and compared to two previously published
InGaAs based MQW devices [8,35]. The strained GaAsBi based devices
all show rectifying diode behaviour, with ideality factors between 1 and
2, and dark currents roughly 20 times higher than those of the InGaAs/
GaAsP devices. The GaAsBi/GaAs devices with more than 40 QWs show
an increased dark current, indicative of strain relaxation.

The reverse bias IQEs of the GaAsBi/GaAs devices show absorption
onsets at lower energies than that of the strained InGaAs/GaAs device.
However, the strain balanced InGaAs/GaAsP device outperforms the
GaAsBi devices.

Mluminated I-V measurements show that the fill factors of the
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GaAsBi based devices degrade with increasing QW number. This ap-
pears to be due to poor carrier extraction from the QWs, as C-V mea-
surements in the dark show near complete depletion of the i-regions of
the devices. The carrier trapping is probably due to the trapping of
holes as a result of the large valence band offset in GaAsBi.

Further work is required to improve carrier extraction and reduce
the dark currents in the GaAsBi based devices. As these improvements
are made, GaAsBi could become a competitive material system for
multi-junction PV.
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