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Abstract—The errors, due to stair-cased meshing, in the
Shielding Effectiveness (SE) of cavities modelled with thin bound-
aries, in the Finite-Difference Time-Domain (FDTD) method, are
examined. The errors in SE are found to be associated with the
error in the surface area of the cavity caused by the use of a
stair-cased mesh. An empirical solution is demonstrated, which
improves the stair-cased model accuracy to be comparable to
that achievable by a conformal model. Errors in the resonant
frequencies ,Q factors and field minima of a cavity, due to the
stair-cased mesh, are also noted.

Index Terms—Finite-Difference Time-Domain, Shielding Effec-
tiveness, Stair-cased Mesh, Thin Layer

I. INTRODUCTION

The Finite-Difference Time-Domain (FDTD) method is

a popular numerical method originally formulated to solve

Maxwell’s equations [1], however it has since been appro-

priated by other fields, most commonly acoustics. FDTD’s

popularity lies in its simple implementation and efficient

computation.

A commonly cited source of error in FDTD, and indeed

other CEM techniques that rely on a cuboid grid such as TLM,

is stair-casing. This describes the approximation used when

modelling a surface that does not align with the orthogonal

finite-difference grid. Fig. 1 shows an example of a stair-cased

approximation where the black lines represent the approxima-

tion used to represent a non-aligned and curved surface given

by the dotted line.

Stair-casing is frequently used in electromagnetic simula-

tions as it requires no extra effort to implement (it is inherent to

the basic FDTD method) and can provide reasonably accurate

results. It is especially common when creating simulations

using thin layer models as many of those models rely on the

cuboid grid to function [2]–[4].

The errors caused by stair-casing for scattering from flat

conductive sheets have been analysed by Cangellaris and

Wright [5] where they determined that numerical dispersion

is introduced by stair-cased boundaries. Later Holland [6]

published work that considered the scattering from a 2D PEC

cylinder, it was determined that accurate results could be

Fig. 1. Representation of a stair-cased approximation of a curved surface
where the dotted line is the curved surface and the solid lines are the
approximation.

achieved using a stair-cased mesh if the mesh size was small

enough, however use of a conformal technique could achieve

a reduction in run time by an approximate factor of 256

by allowing a coarser mesh. The problem of scattering from

curved surfaces was revisited by Häggblad [7] who showed

that the large errors were found close to the surface, but the

errors observed further from the surface were reduced.

Previous work on stair-casing has focused mainly on errors

in scattering. This paper considers the effect of stair-casing on

the shielding effectiveness (SE) of cavities.

The SE of a closed cavity is determined by both the material

composition of the enclosure, and its shape. SE is defined in

this paper as a ratio between the incident external electric field,

Einc and the electric field, Eint, at a point inside the cavity,

usually the centre; in decibels this is given by:

SE = 20log10(
Einc

Eint

) (1)

In Section II the effect of stair-casing on the SE of a

spherical cavity is examined, and a new empirical method to

correct the error is applied.

In Section III the empirical method is extended and applied

to a cubic cavity to demonstrate its broader application.978-1-5386-0689-6/17/$31.00 ©2017 IEEE
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Fig. 2. Set-up of a 1 m radius hollow spherical shell made from a material
with a conductivity of 1 kS/m that is 1 mm thick. The shell is illuminated by
a polarised plane wave.
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Fig. 3. Shielding effectiveness at centre of spherical cavity.

II. SPHERICAL TEST CASE

A spherical shell is used initially, as an analytic solution for

its SE is available. Each type of error in the stair-cased FDTD

model will be identified and discussed to determine its cause

and potential solutions.

The curved structure of the shell requires significant use

of stair-casing approximations as shown in Fig. 2. The mesh

shown was generated using our structured mesh generator [8].

The spherical shell used has a radius of 1 m and a shell

thickness of 1 mm. The shell is made from an isotropic

material with a conductivity of 1 kS/m. The shell is represented

using a Surface Impedance Boundary Condition (SIBC) thin

layer model [2] in order to avoid the need for an extremely fine

mesh to model the thickness of the shell. The mesh size used

is 20 mm. The structure is illuminated by a linearly polarised

plane-wave and the electric field at the centre of the sphere is

recorded in order to determine the SE of the shell.

Fig. 3 shows the results of the simulation in comparison

to the analytic SE [9]. There are a number of discrepancies

between the simulated result and the analytic solution. The
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Fig. 4. Error in resonant frequencies for a stair-cased spherical shell using
different mesh sizes.

most commonly documented [10], [11] error is in the value

of the resonant frequencies. In Fig. 3 the frequency of each

resonance is approximately 0.5 % too high; this error can be

reduced by decreasing the mesh size; the effect of doing so is

shown in Fig. 4. A small amount of this error can be attributed

to dispersion of the wave as it propagates along the mesh, this

is discussed in Section III.

It can also be seen in Fig. 3 that there are resonances in the

simulated results which are not present in the analytic solution.

These extra features correspond to those resonances that have a

node at the centre of the sphere (i.e. on the observation point).

Fig. 5 shows a cross section plot of the E-field magnitude

across the sphere at 237.6 MHz generated by the CONCEPT

II, MoM based code [12] using a stair-cased representation.

The light areas inside the sphere denote field maxima and the

dark areas show low field values. This frequency corresponds

to an unexpected resonance peak from Fig. 3. It can be seen

that there is a resonance at this frequency that has a node at the

centre of the sphere. Fig. 6 shows the magnitude of the electric

field across the diameter at the same frequency. It can be seen

that the electric field is greatly reduced near the centre, as

would be expected at a node. However at the exact centre there

is an increase in magnitude in both lines; in the FDTD case

the increase is larger than in the MoM solution. The analytical

solution assumes a mathematically perfect sphere, which has

a node at the centre, however for both the structured and

unstructured meshes a numerical approximation to a sphere

is used; the field at the centre of the sphere is highly sensitive

to changes in the structure of the sphere.

The last obvious error in Fig. 3 is that the magnitude of

the simulated SE is consistently about 3 dB higher than the

analytic solution. As a result of using a stair-cased approxima-

tion to represent the sphere, the effective surface area of the

shell is higher than the surface area of the analytic sphere. We

suspected that the error in SE was related to the error in surface

area, which depends on the mesh size used. We repeated the

simulation with different mesh sizes and compared the error in



Fig. 5. Planar E-Field plot for a cross section of the inside of the sphere at
237.6 MHz.
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Fig. 6. Line plot of E-field across spherical cavity at 237.6 MHz

surface area of the shell to the error in magnitude of the SE. It

is apparent that the two errors are correlated. Unlike the error

in the resonant frequency, the error in surface area cannot be

improved by reducing the mesh size. The error in surface area

is consistently around 49 % regardless of the mesh size used.

As a result of this the error in magnitude of SE cannot be

improved by reducing the mesh size.

A. Thin Layer correction factor

To compensate for the error in the magnitude of the surface

area we applied a correction factor that increased the magnetic

field on the surface of the thin boundaries used to represent

the shell, this served to amplify the transmission and reflection

coefficients of the thin layer to counteract the larger loss that
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Fig. 7. Comparison of the effective surface area of the stair-cased spherical
shell and the error in magnitude of SE.
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Fig. 8. Shielding effectiveness at the centre of the hollow spherical shell for
different FDTD methods.

has been observed. This correction factor is applied as an

average across the entire surface of the sphere. In this case

the empirically determined average correction factor used is

1.4 .

Fig. 8 shows a comparison of the SE at the centre of the

sphere using the corrected thin layer model and the original

thin layer model, there is also a comparison to a conformal

FDTD model [13]. It can be seen that the correction factor has

improved the magnitude of the SE considerably, with reduction

in the error from approximately 3 dB to less than 1 dB. It can

also be seen the the error in magnitude is now less than that

of the conformal technique. However the resonant frequency

is not affected by this correction and its error is still greater

for the stair-cased mesh than the conformal one.

III. CUBE TEST CASE

The spherical shell is highly stair-cased, but it is also

rotationally invariant. This means that the meshing of the

sphere is not affected by its orientation in relation to the FDTD



Fig. 9. Set-up of a 1 m hollow cubic shell made from a material with a
conductivity of 1 kS/m that is 1 mm thick. The shell is illuminated by a
polarised plane wave.

grid. To further test the use of a correction factor, a cubic

cavity is investigated. Ordinarily a single cuboid structure

could be made to align with the FDTD grid, in this case

there would be no stair-casing errors. However if the cube

is rotated with respect to the grid, as shown in Fig. 9, then

stair-casing is required to represent those surfaces that are no

longer aligned. The shell of the cube is constructed of the

same conductive material as in the spherical test case and has

the same thickness.

The cube is rotated around a single axis, this causes four of

the faces to no longer be aligned with the grid and require a

stair-cased approximation. The extra surface area for a stair-

cased face can be determined by considering the coarse and

fine stair-cased approximations of a line as shown in Fig. 10.

The length of the coarse stair-cased approximation is the same

as the length of the fine stair-cased approximation as:

S1 =

n∑

i=1

Ai , S2 =

n∑

i=1

Bi (2)

Where S1 and S2 are the lengths of the y- and x-orientated

sides of the coarse approximation respectively. ai and bi
are the lengths of the y and x orientated sides of the fine

approximation respectively. The two sides of the coarse stair-

cased approximation can be related to the length of the original

line L by:

S1 = LcosΘ , S2 = LsinΘ (3)

Where Θ is the angle of rotation of the line to the orthogonal

grid. And therefore the length of a stair-cased approximation

of a flat surface in 2D is given by:

S = S1 + S2 = L(sinΘ+ cosΘ) (4)
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Fig. 11. Fitted and empirically determined correction factor for different
angles for the cubic shell.

Fig. 10. Coarse (Dot Dashed) and fine (Dashed) stair-cased approximations
of a straight line (Solid)

The total error in surface area of the meshed cube due to

the stair-cased faces is therefore given by:

A = L(cosΘ+ sinΘ− 1) (5)

It is worth noting that (4) does not depend on the mesh size

and therefore cannot be improved by using a higher resolution

mesh.

For the cubic shell case the correction factor does not need

to be applied to all the thin layer surfaces, only those that

contribute to a stair-cased surface. The optimal magnitude

of the correction factor is first determined empirically by

employing a parameter sweep varying the angle of rotation and

correction factor. A fit is then made to the empirical data in

Fig. 11 such that the optimal corrected transmission coefficient

is given by:

τc = τo(cosΘ+ sinΘ)3 (6)

Where τc and τo are the modified and original transmission

coefficient respectively. However, when evaluating the use-

fulness of the correction factor it important to consider not
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Fig. 12. Error in SE for cubes meshed at different angles with and without
a correction factor applied.

just the shielding effectiveness of the cavity, but also the Q

factor. The Q factor is related to the transmission and reflection

coefficients of the cavity wall material by:

Q ∝

1

τ + ρ
(7)

From (7) it can be seen that the sum of the transmission and

reflection coefficients must remain constant if the Q-factor is to

remain constant, when the transmission coefficient is modified.

Therefore the modified reflection coefficient is given by:

ρc = ρo + τo(1− (cosΘ+ sinΘ)3) (8)

For the unmodified thin layer model using a 50 mm mesh

results in errors in SE of more than 120% at the highest

rotational offsets in comparison to a cube aligned with the

FDTD grid. When using the correction factor method, de-

scribed above, the errors in SE were reduced to less than 10%

for all angles as shown in Fig. 12. This is an improvement

in error from more than 5 dB to less than 0.4 dB. The size

of the error is largely unaffected by the mesh size chosen as

this will not affect the surface area much except in the case

of exceptionally coarse meshes.

A comparison of SE over a range of frequencies for a

cube rotated 45° is shown in Fig 13. The magnitude of

the SE is consistently closer to the result obtained from the

aligned cube in the corrected case. The Q factor of the first

four resonances is presented in Fig 14. Without applying the

correction factor, the Q is nearly doubled when using a stair-

cased approximation at 45° compared to the aligned cube

case. After applying the correction factor the error in the Q

is reduced from greater than 80 % to less than 10 % at the

first resonance. Fig 15 shows how the error in Q varies with

the angle of rotation. It can be seen that the application of the

correction factor has reduced the error for all angles.

The accuracy of the resonant frequency of the rotated cube

has not been improved by the corrections to the boundary
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correction factor applied.
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reflection and transmission coefficients, as the error in the

resonant frequency depends on the error in the geometry of the

cube, along with the dispersion, and anisotropy of the mesh.

For the aligned cube the error in resonant frequency is about

0.05%. This we attribute to mesh dispersion and anisotropy.

This means that the effect of stair-casing dominates the error

in the non-aligned case

Unlike for the spherical shell, the correction factor given by

(6) can be applied to any flat surface that is rotated along a

single axis in relation to the mesh.

IV. CONCLUSIONS AND FURTHER WORK

The errors, in the SE of a cavity, due to stair-cased meshing

have been demonstrated and their causes identified. It has been

determined that errors in the resonant frequency of stair-cased

cavities can be improved by using a finer mesh. However

the error in the surface area of stair-cased cavities, and the

associated error in SE, is not affected by the mesh size.

A method of correcting errors related to the effective surface

area has been proposed to improve the accuracy of non-aligned

thin layer models without the need to develop the thin layer as

a conformal model. A specific solution has been presented for

a spherical cavity that produced magnitudes of SE comparable

to results from conformal simulations. A solution is given for

correction of stair-cased meshing of flat surfaces at arbitrary

angles about one axis and validated using a cubic model

considering both the shielding effectiveness and Q factor.

It has been demonstrated that the use of a correction factor

for stair-cased meshes produces results of similar or improved

accuracy in comparison to a conformal model. However,

unlike the conformal model, there is no improvement in the

accuracy of the frequency response. A strong advantage of the

correction factor is the minimal amount of effort involved in

its implementation.
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