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Summary

Hypertension is a well-established risk factor for adverse cardio-

vascular events, and older age is a risk factor for the development

of hypertension. Genomewide association studies have linked

ATP2B1, the gene for the plasma membrane calcium ATPase 1

(PMCA1), to blood pressure (BP) and hypertension. Here, we

present the effects of reduction in the expression of PMCA1 on BP

and small artery structure and function when combined with

advancing age. Heterozygous PMCA1 null mice (PMCA1Ht) were

generated and conscious BP was measured at 6 to 18 months of

age. Passive and active properties of isolated small mesenteric

arteries were examined by pressure myography. PMCA1Ht mice

exhibited normal BP at 6 and 9 months of age but developed

significantly elevated BP when compared to age-matched wild-

type controls at ≥12 months of age. Decreased lumen diameter,

increased wall thickness and increased wall:lumen ratio were

observed in small mesenteric arteries from animals 9 months of

age and older, indicative of eutrophic remodelling. Increases in

mesenteric artery intrinsic tone and global intracellular calcium

were evident in animals at both 6 and 18 months of age. Thus,

decreased expression of PMCA1 is associated with increased BP

when combined with advancing age. Changes in arterial structure

precede the elevation of BP. Pathways involving PMCA1 may be a

novel target for BP regulation in the elderly.

Key words: arterial remodelling; ATP2B1; blood pressure;

hypertension; plasma membrane calcium ATPase.

Introduction

Cardiovascular diseases are the world’s leading cause of morbidity and

mortality. Hypertension is a major modifiable risk factor for adverse

cardiovascular events including stroke and aneurysm, and for heart and

renal failure (Kearney et al., 2005). It is thought that at least one in five

people worldwide have elevated blood pressure (BP) and that high BP

contributes to around 9 million deaths worldwide annually (Mancia

et al., 2013; Mozaffarian et al., 2016).

Around 90% of people with hypertension suffer from essential, also

known as primary, hypertension (Mancia et al., 2013), for which there is

no single or clearly identifiable cause. The prevalence of essential

hypertension increases with age, in a roughly linear relationship (Buford,

2016), with around 60% of people over 70 years of age being

hypertensive (Buford, 2016). With an aging global population, it is

projected that, by 2025, around 1.56 billion people will be hypertensive

(Kearney et al., 2005). Thus, it is now ever more important to

understand the underlying basis of BP control and the factors which

may increase the risk of developing hypertension with aging.

Genomewide association studies (GWAS) have shown ATP2B1, the

gene for plasma membrane calcium ATPase 1 (PMCA1), to be highly

associated with BP and with essential hypertension, and importantly,

demonstrated this as a consistent observation in different ethnic

populations (Cho et al., 2009; Levy et al., 2009; Tabara et al., 2010).

PMCA1 is a member of the P-type family of membrane ATPases, which

actively extrude Ca2+ ions from cells. Of the four members of this family

(four separate genes) PMCA1 and PMCA4 are expressed in virtually all

tissues and cell types in the body (Strehler et al., 2007; Cartwright et al.,

2011), including the vasculature (Szewczyk et al., 2007; Kobayashi

et al., 2012). A direct association between PMCA1 and BP has been

demonstrated in animal studies where a reduction in the expression of

PMCA1 has been shown to elevate BP (Kobayashi et al., 2012; Shin

et al., 2013). However, the effect of PMCA1 on BP with advancing age is

unknown.

Vascular resistance is determined primarily by small precapillary

arteries, less than 300 lm internal diameter (in humans) (Mulvany &

Aalkjaer, 1990; Heagerty et al., 2010). It is well established that

increased total peripheral resistance is the principal contributor to

maintaining elevated BP (Heagerty et al., 2010). Enhanced vascular

contractility is evident in mice with reduced arterial expression of PMCA1

(Shin et al., 2013). Whilst this indicates that PMCA1 may play some role

in increased vascular resistance, there is a wealth of evidence to support

the importance of structural changes of resistance arteries in hyperten-

sion (Rizzoni et al., 2003; Heagerty et al., 2010). Rearrangement of

vascular smooth muscle cells (VSMCs) around a smaller lumen diameter

without any global change in the arterial wall cross-sectional area,

termed eutrophic inward remodelling, has been shown to be a

conventional small artery structural abnormality in patients with chronic
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essential hypertension (Mulvany & Aalkjaer, 1990; Rizzoni et al., 2003;

Heagerty et al., 2010; Little et al., 2016). Such changes in small artery

structure have strong prognostic significance in hypertensive patients,

over and above all other known cardiovascular risk factors (Rizzoni et al.,

2003; Mathiassen et al., 2007b). Antihypertensive therapies which

reduce both BP and reverse remodelling of resistance arteries have been

shown to significantly reduce cardiovascular risk compared to interven-

tions which reduce BP without affecting arterial structure (Buus et al.,

2013). It remains an important topic of debate whether the remodelling

is a consequence of hypertension or whether it precedes its development

(Bakker et al., 2002; Martinez-Lemus et al., 2004; Izzard et al., 2006).

Hence, it is important to understand the mechanisms which underpin

eutrophic inward remodelling, and the relationship between elevated BP

and this remodelling.

Therefore, we sought to determine how PMCA1 may be involved in

arterial structure and function with aging. We herein present that global

heterozygous deletion of PMCA1 in mice is associated with an age-

dependent elevation of BP with development of inward eutrophic

remodelling and that structural changes in mesenteric resistance arteries

occur before a detectable increase in BP.

Results

PMCA1Ht and PMCA1flox/flox controls (WT) were born in the predicted

ratio given that PMCA1 total knockouts are embryonic lethal (Okunade

et al., 2004), with neither male nor female PMCA1Ht mice displaying

reduced fertility compared to WT. PMCA1Ht mice were indistinguishable

by eye from WT, appeared healthy and appropriately active, and had

similar lifespan to WT animals.

Immunoblot analysis of tissues from 6-month-old animals showed

that PMCA1 protein expression was reduced by 45–55% in the aorta,

heart, brain and kidney of PMCA1Ht mice compared to WT controls

(Fig. 1A). The mRNA level of Atp2b1 was significantly reduced in the

aorta of 6-month-old PMCA1Ht mice and also in aorta of 18-month-old

PMCA1Ht mice compared to aged matched WT animals (Fig. 1B).

Reduced expression of PMCA1 had no significant effect on the mRNA

level of Atp2b4 (gene for PMCA4 protein) in aorta from 6 months

(P = 0.672) or 18-month-old (P = 0.503) animals, although the relative

Atp2b4 mRNA level was found to be significantly reduced with age

(Fig. 1C). PMCA1 was detected throughout the aorta by immunohisto-

chemical staining, with staining being of a lower intensity in the aorta of

PMCA1Ht mice compared to those from age-matched WT animals

(Fig. 1D). The mRNA level of Atp2b1 was significantly reduced in lung

endothelial cells of 6-month-old PMCA1Ht mice compared to age-

matched WT animals (Fig. 1E). Reduced expression of PMCA1 had no

significant effect on the mRNA level of other genes involved in Ca2+

homoeostasis including Atp2b4 (P = 0.959), NCX1 (P = 0.161) and

TRPV5 (P = 0.731) in kidney from 18-month-old animals (Fig. 1F,G,H,

respectively, t-test with Welch’s correction).

Conscious peripheral systolic BP and diastolic BP of 6- and 9-month-old

PMCA1Ht mice were not significantly different to those of age-matched

WT mice; however, PMCA1Ht mice aged 12 months and older had

significantly elevated peripheral BP when compared to age-matched WT

animals (Fig. 2A). No significant differences in pulse rate were found

between 6-month-old and 18-month-old PMCA1Ht and WT animals

(Fig. 2B). Central BP of 6-month-old animals, measured under anaesthe-

sia, did not significantly differ between WT and PMCA1Ht mice (Fig. 2C).

At 18 months of age, no significant changes in cardiac function of

PMCA1Ht mice, and no significant difference in heart size or cardiomy-

ocyte cell area was found compared to age match WT mice (Fig. S1).

As structural remodelling of resistance arteries is of key prognostic

importance in essential hypertension (Rizzoni et al., 2003), we assessed

the passive properties of isolated mesenteric arteries. Arteries from 6-

month-old PMCA1Ht mice showed no significant difference in lumen

diameter, wall thickness or cross-sectional area (CSA) (Fig. 3A,D,J,

respectively) compared to age-matched WT mice which also exhibited a

similar level of BP. However, the calculated wall to lumen ratio (W:L) was

significantly greater in PMCA1Ht mice compared to WT at this age

(Fig. 3G). Importantly, arteries from 9-month-old PMCA1Ht mice, also

‘normotensive’, displayed significantly reduced lumen diameter and

significantly increased wall thickness and W:L (Fig. 3B,E,H, respectively)

compared to arteries from age-matched WT mice. CSA was not

significantly different between genotypes at this age (one line ade-

quately fits both datasets) (Fig. 3K). Further, arteries from PMCA1Ht

animals with elevated BP (18 months) exhibited a significantly reduced

lumen diameter (Fig. 3C) and significantly increased wall thickness and

W:L (Fig. 3F,I, respectively) with no significant change in CSA (one line

adequately fits both datasets Fig. 3L).

The distensibility of mesenteric arteries decreased with age, evidenced

by a leftward shift in the stress–strain relationship from 18-month-old

mice relative to arteries from 6-month-old mice, but was not modified by

reduction in PMCA1 expression (Fig. 4A). The incremental elastic

modulus (b) of arteries from PMCA1Ht and age-matched WT mice was

not significantly different at each age (Fig. 4B); however, compared to

arteries from 6-month-old mice, arteries from 18-month-old mice

displayed a significantly increased b value, indicative of reduced arterial

distensibility (Fig. 4B).

Whilst arterial structure clearly has an important influence on BP

regulation, we also sought to determine whether PMCA1 may mediate

functional changes in resistance arteries. The magnitude of arterial

contraction in response to 100 mM K+ was not significantly different

between PMCA1Ht and WT mice in arteries from either 6-month-old

(Fig. 5A) or 18-month-old (Fig. 5B) mice. The cumulative dose–

response profile to NA was very similar for arteries from both 6-

month-old (LogEC50 WT: �5.606 � 0.140, Ht: �5.806 � 0.138,

Fig. 5C) and 18-month-old (LogEC50 WT: �6.017 � 0.242, Ht:

�6.038 � 0.115, Fig. 5D) PMCA1Ht and WT mice. Subsequent to

contraction induced with a single maximal dose of NA (30 mM),

simultaneous superfusion with the vasodilator acetylcholine (ACh)

induced no significant difference in the maximal magnitude of

relaxation for vessels from aged PMCA1Ht and WT mice

(32.03 � 10.45% and 39.68 � 14.54% respectively, P = 0.699.

n = 4 & 5, t-test). Arteries from both WT and PMCA1Ht mice were

found to develop tone in Ca2+ containing conditions as seen by a

significant divergence in the pressure–diameter relationship compared

to the nominally Ca2+ free condition (Fig. S2). Calculated basal tone

was found to be significantly increased in arteries from 6-month-old

(Fig. 5E) and 18-month-old (Fig. 5F) PMCA1Ht mice. The basal F400/F500
emission ratio, indicative of arterial [Ca2+]i (Austin & Wray, 1995), was

found to be significantly increased in arteries from PMCA1Ht mice

compared age-matched WT animals at both 6 (Fig. 5G) and 18 months

(Fig. 5H) of age.

Discussion

This study shows that reduced expression of PMCA1 in mice correlates

with elevated BP and small artery remodelling when combined with

aging. Importantly, we show that arterial remodelling precedes the

development of elevated BP. Thus, we propose that reduced expression

of PMCA1 predisposes to the development of elevated BP when
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combined with aging, suggesting that a PMCA1-mediated mechanism

could be targeted to reduce the burden of high BP in older age.

PMCA1 has been described as having a highly important housekeep-

ing function as evidenced by embryonic lethality of global homozygous

knockout mice (Okunade et al., 2004). GWAS studies showing ATP2B1

to be highly associated with BP (Cho et al., 2009; Levy et al., 2009;

Tabara et al., 2010) have highlighted the potential clinical relevance of

ATP2B1. The importance of PMCA1 in BP regulation has been

demonstrated in previous studies using tissue-specific ablation and

silencing of Atp2b1 (Kobayashi et al., 2012; Shin et al., 2013). Our study

shows that although reductions in global PMCA1 expression are not

associated with significant alteration in BP of 6-month-old mice, with

advancing age increased BP is revealed.

Aging has been shown to be a key contributor to cardiovascular

disease risk (Buford, 2016). Less than 10% of people under 30 years of

age have essential hypertension; however, it is estimated that around

60% of people aged over 70 have elevated BP (Buford, 2016). It is clear

that both natural aging and genetic factors increase the risk for the

development of hypertension and that risk factors may combine to

enhance the prospect of adverse cardiovascular events or outcome

(Buford, 2016). The results of this study suggest that Atp2b1 may be

an important risk factor for the development and progression of

hypertension. As even relatively small (5 mmHg) increases in BP are

associated with increased risk of adverse cardiovascular events and

mortality (Lewington et al., 2002; Tabara et al., 2012) managing risk

factors for hypertension can have a large positive effect on a

population’s health.

This study utilized conscious BP measurement to assess the role of

PMCA1. This method has the advantage of enabling repeated measures

to be undertaken so a longitudinal study can be conducted. It has

previously been shown that volume–pressure recording (Coda 6 system)

of systolic BP closely agrees with measurements recorded simultaneously

by radio telemetry (Feng et al., 2008). Elevated BP has previously been

reported in mice with reduced PMCA1 expression at 3 months of age,

but BP at other ages was not investigated (Fujiwara et al., 2014). The

basis of our study was to directly generate mice globally heterozygous

for PMCA1, and we have utilized Cre-recombinase under the CMV

promoter. Fujiwara and colleagues have produced mice globally
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Fig. 1 PMCA1Ht mice display reduced PMCA1 expression. (A) Protein expression of PMCA1 was reduced in tissues from 6-month-old PMCA1Ht mice. Ai. Western blots

(PMCA1 at 143KDa and GAPDH at 50KDa) and Aii. quantification of PMCA1 normalized to GAPDH in WT and Ht mice. n = 3 & 3. (t-test for each tissue). (B) Aortic

mRNA expression of Atp2b1, presented relative to young WT, was significantly reduced in 6-month-old (n = 8 & 7) and in 18-month-old (n = 4 & 6) PMCA1Ht mice

(P < 0.0001). No significant effect of age or interaction was determined (P = 0.050 and P = 0.925 respectively, 2-way ANOVA). (C) Aortic mRNA expression of Atp2b4,

presented relative to young WT, was not significantly reduced in 6 months (n = 8 & 7) or in 18-month-old (n = 4 & 6) PMCA1Ht mice (P = 0.714), although a

significant effect of age was determined (P = 0.0003, 2-way ANOVA). (D) Detection of primary antibody against PMCA1 in aorta from 6-month-old WT Di. and PMCA1Ht

Dii. mice. Diii. Staining of aorta when primary antibody omitted. Div. Staining of aorta with DAB reagent only. Scale bar represents 100 lm. E. mRNA expression of

Atp2b1 was significantly reduced in endothelial cells isolated from lungs of 6-month-old PMCA1Ht mice compared to cells from age-matched WT mice (n = 3 & 5). (F-H)

Total kidney mRNA expression of Atp2b4 (E.), NCX1 (F.) and TRPV5 (G.) was not significantly different in 18-month-old PMCA1Ht mice vs. age-matched WT animals. All data

were plotted as mean � SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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heterozygous for PMCA1 using a Cre-loxP and flippase recombination

enzyme–flippase recognition target recombination system under the

Tie2 promoter (Fujiwara et al., 2014); hence, reduced expression of

PMCA1 was engineered differently to our PMCA1Ht mice. Whilst they do

not quantify protein levels, Fujiwara and colleagues report approximately

70% reduction in Atp2b1 mRNA in brain, heart and aorta (Fujiwara

et al., 2014), whereas our PMCA1Ht mice display approximately a 50%

reduction in gene and protein expression of PMCA1 from the aorta

compared to WT animals. Therefore, a potentially greater degree of

reduced PMCA1 expression may explain Fujiwara and colleagues

observed BP phenotype in 3-month-old mice designated heterozygous

for Atp2b1; akin to complete ablation in VSMCs (Kobayashi et al.,

2012). In contrast, we report no significant difference in peripheral, and

also central, BP between WT and PMCA1Ht mice at 6 months of age.

Therefore, despite both models being termed global heterozygotes, any

direct comparison should be made with caution.

Complete genetic ablation of Atp2b1 specifically in VSMCs has been

reported to be associated with reduced Ncx1 expression and with a

significant increase in Atp2b4 expression (Kobayashi et al., 2012).

However, in the present study we report no significant change in the

expression of Atp2b4 in aorta of PMCA1Ht mice or in gene expression of

renal Ca2+ pumps and channels Atp2b4, Ncx1 or Trpv5 which are

involved in transcellular reabsorption of Ca2+. The expression of other

PMCA family members, isoforms 2 and 3, has been shown to be limited

to specific tissues (Strehler et al., 2007), and we have no knowledge of

these gene products being detected in the vascular system. Therefore,

we suggest the effects we observed on BP and arterial remodelling in our

PMCA1Ht mice are unlikely to be strongly due to the expression of NCX1

or related PMCA family members.

Inward eutrophic remodelling of resistance arteries, the rearrange-

ment of existing wall material around a smaller lumen (Heagerty et al.,

2010), is a key feature of essential hypertension and has been shown to

be prognostic for elevated BP and associated with increased adverse

cardiovascular risk (Rizzoni et al., 2003; Mathiassen et al., 2007b). Here,

we show significantly reduced lumen diameter, significantly increased

wall thickness and no significant change in arterial wall cross-sectional

area from aged PMCA1Ht mice, indicative of inward eutrophic remod-

elling. Importantly, inward eutrophic remodelling has been described as

a feature of accelerated aging (Harvey et al., 2015). Strategies to at least

slow the progression of vascular remodelling have clinical benefit in

reducing BP and reducing the risk of adverse cardiovascular events in

older people (Mathiassen et al., 2007a; Mulvany, 2012; Harvey et al.,

2015).

Traditionally arterial structural changes were thought to be

adaptive responses to elevated BP (Folkow, 1982); however, others

have demonstrated, in genetically modified animals, that vascular

remodelling may precede an increase in BP (Zacchigna et al., 2006).

Whilst there are clearly numerous factors which may influence the

relationship between BP and the vasculature, there is continuing

debate concerning remodelling as a cause or effect of BP changes

(Izzard et al., 2006). Our observations from PMCA1Ht mice show

evidence for inward eutrophic remodelling in mesenteric resistance

arteries before a detectable increase in BP. At 9 months of age,

significant changes in lumen diameter, wall thickness and W:L ratio

were evident but with no significant increase in conscious peripheral

BP. Although we observed no significant changes in lumen diameter

or wall thickness in arteries from 6-month-old PMCA1Ht mice, we did

observe a significant increase in the W:L ratio, which does point to

vascular changes occurring. This suggests that the remodelling, at

least in part, is a relatively early feature of essential hypertension and

is not a direct consequence of a prolonged and significant rise in BP

in PMCA1Ht mice. Reductions in arterial distensibility have been

reported during normal physiological aging (Mitchell et al., 2004) and

were demonstrated in the present study. However, this effect was not

augmented by reduction in PMCA1 expression. This observation

correlates with the proposal that eutrophic remodelling can occur

independently of vascular stiffening (Intengan & Schiffrin, 2001).

Therefore, we propose that elevated BP in aged PMCA1Ht mice is not

6 18
0

200

400

600

800

Age (months)

Pu
ls

e 
ra

te
 (B

PM
)

6 9 12 15 18
0

50

100

150

200
WT
Ht

Age (months)

Sy
st

ol
ic

 B
P 

(m
m

H
g) ** *** **

6 9 12 15 18
0

50

100

150

200

Age (months)

D
ia

st
ol

ic
 B

P 
(m

m
H

g)

** *** **

WT Ht
0

50

100

150

200

Sy
st

ol
ic

 B
P 

(m
m

H
g)

WT Ht
0

50

100

150

200
D

ia
st

ol
ic

 B
P 

(m
m

H
g)

Ai Aii

Ci Cii

B

Fig. 2 Conscious BP increases with age in PMCA1Ht mice. (A) Conscious peripheral BP (Systolic, Ai. and diastolic, Aii.) of PMCA1Ht mice is significantly higher at 12 months

and then at all older ages (t-test vs. age-matched WT, n = 5–7). (B) No significant difference in conscious pulse rate is recorded in young or aged PMCA1Ht mice (P = 0.290,

and P = 0.972 for interaction. Two-way ANOVA) n = 5, 5, 7 & 6. (C) Arterial BP (Systolic, Ci. and diastolic, Cii.) of 6-month-old animals, under anaesthesia, does not

significantly differ between WT and PMCA1Ht mice (t-test, n = 10 & 12). Mean value � SEM. **P < 0.01, ***P < 0.001.
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directly due to increased vascular stiffness but rather a direct PMCA1-

associated mechanism of eutrophic remodelling.

There is now a body of evidence to show that chronic vasocon-

striction can induce eutrophic remodelling (Bakker et al., 2002;

Eftekhari et al., 2007). In the present study, we show that, although

contractile responses to high K+ solution or to NA are similar in arteries

from control and PMCA1Ht mice at both 6 and 18 months of age,

basal intrinsic tone is significantly increased in arteries from PMCA1Ht

mice. Furthermore, this enhanced tone is evident at 6 months of age

suggesting it precedes the development of high BP. This supports

previous reports showing that the basal tone of rat mesenteric arteries

is enhanced during the development of hypertension (Izzard et al.,

1996). However, there remains debate about how vascular tone may

contribute to BP regulation during the established phase of hyperten-

sion. Spontaneously hypertensive rats (SHR) with chronically elevated BP

(20 weeks old) have been shown to display no significant increase in

mesenteric arterial tone compared to age-matched ‘normotensive’

animals (Izzard et al., 1996), whereas basal tone was increased in

middle cerebral arteries from 24-week-old (established hypertension)

but not 4-week-old (prehypertensive) SHR (Gonzalez et al., 2008).
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Fig. 3 Remodelling of small mesenteric arteries occurs with age in PMCA1Ht mice and before a detectable increase in BP. (A) The internal lumen diameter does not

significantly differ between passive mesenteric arteries from WT and PMCA1Ht mice at 6 months of age but is significantly smaller in PMCA1Ht mice at 9 and 18 months (B &

C). (D) Wall thickness is similar at 6 months of age and significantly increases with age in PMCA1Ht arteries (E & F). (G, H. and I) The vessel wall thickness to lumen ratio (W:L)

is significantly increased in arteries from PMCA1Ht mice aged 6, 9 and 18 months old. (J, K and L) The cross-sectional area (CSA) of the vessel wall is not significantly different

between arteries taken from WT and PMCA1Ht mice at any age tested. Extra sum of squares F-test analysis was performed. All data were plotted as mean value � SEM.

n = 4–8 *P < 0.05, **P < 0.01, ***P < 0.001.
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These contrasting observations may reflect vascular bed differences or

the calibre of artery studied. Previous studies have shown that silencing

Atp2b1 increases myogenic tone (Shin et al., 2013) and here, we show

that reductions in the expression of PMCA1 are associated with

enhanced basal tone. The observation of elevated tone in arteries from

young and aged PMCA1Ht mice, compared to age-matched WT

animals, is consistent with the notion that PMCA1 may contribute to

the development and maintenance of hypertension. Herein, we show a

small reduction in the magnitude of basal tone with age, an effect

which has been previously noted in mesenteric arteries and in arterioles

isolated from the gastrocnemius and soleus muscles of rats (Kang

et al., 2009; Vessieres et al., 2016). Such an age-related change has

not been associated with an elevation of BP in rats (Kang et al., 2009),

comparable to aging WT mice used in this study. Of note we did not

detect a significant effect of age on Atp2b1 mRNA levels in the aorta.

As such, we propose that reduced PMCA1 expression not age per se

contributes to relative enhanced arterial tone.

Previous studies have shown that PMCA1 can regulate total [Ca2+]i in

vascular smooth muscle (Kobayashi et al., 2012). In support of this, we

show here that resistance arteries from PMCA1Ht mice pressurized to

60 mmHg exhibit a significant elevation of the indo-1 F400/F500 emission

ratio, indicative of [Ca2+]i. This is consistent with the notion that in

PMCA1Ht mice, PMCA1 is modulating basal tone via effects on Ca2+

homoeostasis. At present, the molecular pathways underlying remod-

elling of resistance arteries remain unclear. Further assessment of how

Ca2+-dependent pathways may contribute to the development and

maintenance of high BP would be useful in designing future targeted

treatment strategies for hypertension.

In summary, we show that PMCA1Ht mice develop increased BP with

advancing age. In this animal model, age-dependent increases in BP are

preceded by inward eutrophic remodelling of resistance arteries, and

elevations in arterial basal [Ca2+]i and intrinsic tone. Although we cannot

completely exclude the fact that changes in the expression of PMCA1 in

other resistance arteries or nonvascular tissues may influence BP, an area

for further investigation, we propose that effects of PMCA1 on the

resistance vasculature play an important role in the development of

hypertension with aging. The results of our study show that changes in

the expression of PMCA1, which in younger mice does not significantly

influence BP, does so when combined with aging, which is a well-

established risk factor for hypertension and cardiovascular disease

(Buford, 2016). The combination of all loci highly significantly associated

with BP in GWAS has been reported to account for only up to 10% of

the total estimated genetic component for BP (Tabara et al., 2012).

Therefore, we propose that some of the ‘missing heritability’ for BP can

be derived from an interaction between a genetic factor and aging.

Changes in the expression and/or activity of PMCA1 may predispose to

the development of hypertension. Therefore, PMCA1-mediated mech-

anisms can be a target for potentially regulating abnormal BP with age,

particularly relevant as the percentage of older people in the population

is increasing.

Experimental procedures

PMCA1Ht mice

Loss of PMCA1 was engineered using a Cre-LoxP system, targeting sites

flanking exon 2 in Atp2b1 containing the ATG transcription site. The

targeting vector and mice were commercially generated by GenOway

(Lyon, France). The targeting vector with two loxP sites flanking exon 2

of Atp2b1 was transfected into 129Sv/Pas ES cells. Fully validated ES cells

clones were injected into C57Bl/6J blastocysts, and the resulting male

chimaeras were bred to generate homozygous PMCA1 flox mice

(PMCA1f/f). To generate a constitutive deletion of PMCA1, PMCA1f/f

mice were mated with mice expressing Cre under the CMV promoter

(CMV-Cre C57Bl/6J). Mice were maintained on a mixed genotype

background and bred as brother/sister matings.

All animals were maintained in a pathogen-free facility, housed under

12 h-light/dark cycle with ad libitum access to food and water. Studies

were performed in accordance with the UK Home Office and institu-

tional guidelines. All experiments in this study utilized male mice

between 6 and 18 months of age. DNA was extracted from a sample of

ear tissue for genotyping of each animal as described in Data S1.

BP measurement

Mice were regularly handled in our experimental facility following

weaning. Conscious BP was measured by determining the tail blood

volume with a volume–pressure sensor and an occlusion tail-cuff (Coda

System, Kent Scientific) following a 3-day acclimatization period for the

animals. Restrained animals were placed on a warming platform set to

37°C. Blood flow to the distal tail was occluded with a maximal cuffing

pressure of 250 mmHg and then steadily deflated over 15 s for a single

cycle. Systolic and diastolic pressures were automatically recorded during

cuff deflation as blood flowed into the tail. Twenty continuous cycles

were performed, with accepted values (volume ≥15 lL from calm and
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Fig. 4 Stiffness of resistance arteries increases with age but is not significantly

altered in arteries from PMCA1Ht mice. (A) Stress–strain relationship derived from

passive properties shows leftward shift for arteries from 6-month-old mice to

18-month-olds. (B) The distensibility of arteries from PMCA1Ht mice is not

significantly different (P = 0.215) from arteries of WT mice as shown by

incremental elastic modulus. A significant increase in age was detected (P = 0.022)

between arteries from 6- and 18-month-old animals. No significant interaction was

determined (0.326) when analysing these 2 ages. Two-way ANOVA with

Bonferroni post hoc test. Mean � SEM. n = 5–8. *P < 0.05.
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relaxed animals) from the latter ten cycles used for data analysis.

5 seconds between each cycle was programmed. Central BP was

recorded, following intraperitoneal injection of Avertin (250 mg/kg body

weight), by insertion of a high-fidelity pressure–volume catheter (Millar

Instruments, Houston, Texas, USA) into the right carotid artery. All BP

experiments were performed between 09:00 and 12:00 h.

Echocardiography

Under isoflurane anaesthesia transthoracic two-dimensional and M-

mode echocardiography were performed using an Acuson Sequoia

C256 system (Siemens) as previously described (Mohamed et al.,

2016).

Dissection of tissues

Mice were killed by cervical dislocation. The entire mesenteric bed and

thoracic aorta were removed and placed separately into ice-cold HEPES

buffer of composition (in mM) 127 NaCl, 5.9 KCl, 1.2 MgSO4, 10 HEPES,

11.8 glucose, 2.4 CaCl2 at pH 7.4. Fat and adherent tissue was removed

from the aorta and the tissue immersed in 4% paraformaldehyde

solution for 60mins or immediately frozen in liquid nitrogen. Excised

hearts were drained of blood, weighed and either flash frozen or

immersed in 4% paraformaldehyde for 24 h. Brain and kidney tissue

were also flash frozen. All frozen tissues were stored at �80°C until

required. Lung tissue was excised into DMEM growth media (Sigma-

Aldrich) supplemented with 10% (v/v) foetal calf serum (Gibco) and 1%

(v/v) penicillin–streptomycin.

Mouse lung endothelial cell (MLEC) isolation

MLECs were isolated from 6-month-old WT and 6-month-old PMCA1Ht

mice as previously described (Oblander et al., 2005; Baggott et al.,

2014).

Western blot analysis

Proteins were extracted, separated and transferred as previously

described (Mohamed et al., 2016). Sufficient protein extract was yielded

by extracting from half of the heart, half of one kidney and one
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Fig. 5 Arteries from PMCA1Ht mice

contract similarly but display elevated

myogenic tone and basal intracellular

calcium. (A & B) The magnitude of

contraction to a depolarizing stimulus

(100 mM K+) is not significantly different

for arteries from PMCA1Ht mice for both

young (A. P = 0.773. n = 6 & 7) and aged

(B. P = 0.334. n = 7 & 6) animals (t-test).

C & D. Arteries from PMCA1Ht mice do not

display a significant difference in

contractility to noradrenaline (NA) from

both young (C. P = 0.537. n = 6 & 6) and

aged (D. P = 0.162. n = 4 & 6) animals

(Nonlinear regression comparison of fits).

(E and F) Arteries from PMCA1Ht mice

display significantly elevated myogenic tone

in both young (E. n = 5 & 5) and aged

(F. n = 6 & 6) animals (comparison of fit

analysis). G. & H. A significantly elevated

arterial indo-1 F400/F500 emission ratio,

indicative of intracellular free Ca2+

concentration, was detected at both ages

(G & H, young and old, respectively. n = 5

& 7 and 7 & 5). All data were plotted as

mean value � SEM. *P < 0.05, **P < 0.01.
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hemisphere of the brain from individual animals, whilst aortic proteins

were extracted from aortae pooled from six to ten animals. Membranes

were probed with monoclonal antibodies against PMCA1 or GAPDH

(Abcam) at 1 lg mL�1 or 0.2 lg mL�1 respectively, overnight at 4°C or

after 3 h at room temperature. Hydrogen peroxide-conjugated sec-

ondary antibodies were detected using ECL detection reagents (Amer-

sham).

Quantitative PCR (qPCR)

Tissues were homogenized by hand under TRIzol Reagent (Invitrogen)

with nucleic acids extracted by phenol–chloroform precipitation and

eluted in diethylpyrocarbonate (DEPC)-treated deionized water. Total

RNA was extracted from MLEC as previously described (Baggott et al.,

2014). Total RNA was treated with amplification grade DNAse 1

(Sigma-Aldrich) and quantified using a NanoDrop spectrophotometer

(Thermo Scientific). Complimentary DNA (cDNA) was generated using a

High Capacity cDNA Reverse Transcription Kit with RNase inhibitors

(Multiscribe Reverse Transcriptase. Applied Biosystems) following the

manufacturer’s protocol. The mRNA level of genes of interest in the

sample was determined in triplicate following a real-time PCR reaction

on a 7500 Fast Real-Time PCR machine for a 10 lL reaction using

TaqMan� gene expression assays (20X primers and probe) and Gene

Expression Master Mix (2X TaqMan� Universal mix) (all Applied

Biosystems). Gene expression was normalized for control gene expres-

sion (GAPDH) and calculated according to the DDCT method (Livak &

Schmittgen, 2001).

Immunohistochemistry

Fixed aortic tissue was embedded in paraffin and sectioned at 5 lm
thickness (Leica 2255 microtome). A polyclonal antibody to PMCA1

(Sigma-Aldrich. 1:50 in 5% horse serum, 16 h, 4°C) was detected with

an anti-rabbit horseradish peroxidise-conjugated secondary antibody

(ThermoFisher. 1:200), and colour visualization was obtained by incu-

bating sections in prepared DAB reagent (Dako) for 15 min, with

subsequent staining in haematoxylin solution for 20 seconds to stain

nuclei.

Pressure myography

Mesenteric arteries were cleared of adherent tissue and fat and 3rd

order arteries isolated and mounted on a pressure myograph (Living

Systems Instrumentation, USA), pressurized to an intravascular pres-

sure of 60 mmHg and superfused with physiological salt solution (PSS)

of composition (in mM) 119 NaCl, 4.7 KCl, 2.4 MgSO4, 25 NaHCO3,

1.18 KH2PO4, 0.07 K2EDTA, 6.05 glucose, 1.6 CaCl2, aerated with

5% CO2/95% air mix and heated to 37°C. Intraluminal diameter (L)

and wall thicknesses (W) were continuously measured by video

dimension analyser (Hausman et al., 2012). Arterial contraction in

response to 100 mM potassium solution (high K+: K+ osmotically

replacing Na+ in physiological buffer) and subsequent dilation in

physiological buffer were recorded. Arteries were superfused with

increasing concentration of noradrenaline (NA) and a dose–response

curve to the stimulus constructed. Arterial passive properties were

measured following superfusion with nominally calcium-free buffer for

30 min at intravascular pressures of 5–140 mmHg (5, 10, 20 mmHg

and subsequently increasing in 20 mmHg steps). Wall thickness to

lumen diameter ratio (W:L), cross-sectional area (CSA), stress, strain

and incremental elastic modulus (b) were derived from the recorded

diameter and wall thicknesses, as described previously (Hausman

et al., 2012).

For simultaneous measurement of intracellular free calcium ([Ca2+]i)

and arterial contractility, isolated segments of mesenteric arteries were

incubated with 20 lM indo-1-AM (Cell Signalling) in HEPES-buffered

physiological solution for 90 min at room temperature and then 30 min at

37°C before being mounted and superfused as described above. The

pressure myograph bath was placed atop an inverted microscope, excited

at 340 nm and emissions measured via photomultipliers at 400 nm and

500 nm as previously described. Following correction for auto fluores-

cence the 400:500 nm emission ratio (F400/F500) was determined. Due to

problems associated with calibrating indo-1 in intact tissues, this ratio was

used as an indication of [Ca2+]i. Previous work has shown that there is a

good agreement between changes in the indo-1 400:500 nm emission

ratio and changes in [Ca2+]i in vascular smooth muscle (Austin & Wray,

1995). Basal F400/F500 levels were compared between groups.

To specifically assess arterial tone, vessels were mounted as described

above and superfused in heated PSS for 45 min. Intraluminal pressure

was then reduced to 5 mmHg and vessels allowed to equilibrate for 5–

10 min as arterial diameter stabilized. Pressure was subsequently

increased incrementally to 10, 20, 40, 60, 80 and 100 mmHg (Ca2+

containing conditions). Intraluminal pressure was then set to 60 mmHg

and arteries were superfused with nominally Ca2+-free buffer for 30 min

before pressure was reduced to 5 mmHg and subsequently sequentially

increased as previously described (nominally Ca2+ free conditions).

Statistical analysis

Contractile responses are expressed as a percentage contraction to the

stimulus relative to the resting lumen diameter in buffer solution.

Contraction to NA is plotted as a cumulative dose–response to log[NA].

The log[NA] value for 50% contraction (logEC50) was calculated for each

artery, and for each genotype group, the mean � SEM is reported.

Intrinsic myogenic tone at each pressure step was derived from the

difference in lumen diameter (D) between passive (nominally Ca2+ free)

and active (Ca2+ containing solution) conditions and expressed relative to

the passive condition ((Dpassive –Dactive)/Dpassive). This ratio is presented as a

% value of the respective passive condition at the defined internal

pressure. The differences between means were considered significant at

P < 0.05 (*). Data were analysed using GraphPad Prism 5 software. t-test

or two-way ANOVA, with Bonferroni post hoc test, were applied as

appropriate. Data were plotted as mean � SEM; n = number of animals.
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