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Abstract

Significance: Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to
changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire
cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for
mechanistic studies, with the results extrapolated to tissues in vivo.
Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various
tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols
(epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could
retard cancer progression in vivo in animal models as well as in tumor cell models.
Critical Issues: Extrapolation from in vitro and animal models to humans is not straightforward given both the
extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well
as the heterogeneous metabolism of different tumors.
Future Directions: Comparison of data from studies on primary cells or in vivo are essential not only to validate
results obtained from cultured cell models, but also to highlight whether any differences may be further
exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool
to study the effects of flavonoids, provided that the limitations of each model are understood and taken into
account in interpretation of the data. Antioxid. Redox Signal. 29, 1633–1659.
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Introduction, Scope and Aims of This Review

Polyphenols constitute a large group of molecules
found in plants, and are present in all diets, especially

those high in fruits, vegetables, and plant-based products
such as coffee and tea. The group includes isoflavones such as
daidzein and genistein from soy, stilbenes such as resveratrol,
phenolic acids such as the chlorogenic acid group found in
coffee and fruits, and the flavonoids, subdivided into flavo-
nols, of which quercetin is the most studied, flavanols, such
as epicatechin and related compounds, found at high levels

in green tea, flavanones, especially hesperidin from orange
juice, and anthocyanins from berries. This review will focus
on flavonoids, where most of the work reported in the liter-
ature related to mechanisms of action on tumor cells is on
quercetin and epicatechin (including green tea catechins such
as (-)-epigallocatechin gallate [EGCG]).

Quercetin has been tested in several animal models of
carcinogenesis, often co-administered at a high dose to-
gether with a strong cancer-promoting agent or in a model of
cancer development, and the results do not always indicate
a protective effect. For example, in rats treated with
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nitrosomethylurea to generate pancreatic cancer, quercetin
promoted carcinogenesis (16). In contrast, when benzo(a)-
pyrene was used to generate lung cancer in Swiss albino
mice, quercetin supplementation exerted a protective effect
against cancer development, but crucially as a guide for
mechanism of action, the effect was much more pronounced
when quercetin was given as a chemopreventive agent rather
than as a chemotherapeutic agent (110). When female ACI
rats were given quercetin (2.5 g/kg food) for 8 months, there
was no protection against breast cancer (224), but quercetin
together with doxorubicin increased anti-tumor activity in
mice with 4T1 breast cancer (63). These examples indicate
that it is difficult to draw any general conclusions, and,
therefore, specific animal studies are incorporated into the
main body of the review when and where appropriate.

In humans, several trials have tested the efficacy of fla-
vonoids on cancer risk and progression. A phase I trial of
quercetin has been reported (71), and trials with flavonoids on
cancer progression in cancer patients in phase I and II clinical
trials have been reviewed (242). Epidemiological studies
report that intake of quercetin-rich food reduced the risk of
gastric cancer by 43% (66) and of colon cancer by 32% (241).
Widely reported effects of quercetin have led to claims that
high concentrations can inhibit the growth of cancer cells,
and hence could aid chemoprevention.

Green tea is the most studied chemopreventive agent and
so far, results obtained show some promise for further stud-
ies. In a study of more than 8000 individuals, daily con-
sumption of green tea demonstrated delayed cancer onset;
further, breast cancer patients experienced a lower recurrence
rate and longer remission (73). However, high doses of green
tea, generally above that possible to be obtained from the
diet alone, that is, as a supplement in the form of an extract,

may cause hepatotoxicity in some individuals (21, 108, 151,
177). It is highly doubtful whether nutritional doses could
ever achieve a high enough concentration in blood or other
tissues required to exert this effect (167). Very high transient
blood concentrations can be achieved by pharmaceutical
doses or by direct intravenous administration, as shown for
quercetin (90). These factors must be addressed in any study
proposing to use flavonoids, at dietary or pharmacological
doses, as agents to reduce the risk of cancer or, indeed, of any
chronic disease.

When considering the interaction of any molecule, whe-
ther a flavonoid, other phytochemical, nutrient, drug, or
toxin, with a target, the absorption, metabolism, and excre-
tion must be considered. The process of absorption can
substantially modify the chemical structure of the parent
molecule and, hence, change the nature of the compound
encountered by the cell or tissue of interest. Pathways of
flavonoid metabolism have been extensively reviewed (55),
and will not be presented in detail here, but will be considered
where directly relevant to the issue discussed. Quercetin
bioavailability has been widely reported and is well under-
stood; the interaction of quercetin and epicatechin with the
intestine, leading to absorption, is summarized in Figure 1.
Quercetin, epicatechin, and EGCG pharmacokinetics have
been documented in detail and reviewed in humans (42, 43,
55), and the pathways of metabolism and excretion in the
urine are adequately established (143, 157, 189). The areas
that lack some important information concern the interac-
tion of polyphenols with the gut microbiota, whereas the full
profile of metabolites arising from gut microbiota cataly-
sis has not yet been fully described in detail (188, 194,
228, 263). Typical concentrations of flavonoids and their gut
microbiota-metabolites in blood have been reported in

FIG. 1. The metabolic re-
actions of quercetin and
epicatechin in small intes-
tine enterocytes and in dif-
ferentiated Caco-2 cells,
which, ultimately, lead to
absorption and bioavail-
ability. The uptake of glu-
cose can also be attenuated
by polyphenols at this site via
inhibition of glucose trans-
port. GLUT, glucose transpor-
ter; UGT, uridine diphosphate
glucuronosyl transferase;
SULT, sulfotranferase.
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numerous publications after consumption of flavonoids from
foods, supplements, or pharmaceutical preparations in both
animals and humans in vivo (55, 143, 195, 263). Never-
theless, it is difficult to make a direct comparison between
in vivo and in vitro concentrations, but some guidelines have
been given (55, 125, 143, 262). When considering the ex-
trapolation from animal pre-clinical studies to human inter-
vention studies, we can use hesperidin as an example. If we
assume that the concentration achieved in plasma is a suitable
target comparison, then *15 mg (aglycone equivalents)/kg
body weight administered to rats gave rise to a*0.6 lM peak
concentration in plasma (149), whereas a much lower dose
per kilogram body weight of 50 mg (aglycone equivalents)/
70 kg to humans gave a similar concentration (*0.5 lM) in
plasma (143). It is also possible to take the approach we have
recommended earlier (117), where the strategy is to first show
an effect in humans, and then demonstrate the mechanism.
In this way, arguments about which in vitro concentration
to choose become less important since the effect is already
demonstrated in vivo, and the goal of the in vitro experiments
is to elucidate the mechanism, rather than prove the effect.

The first and critical step of any interaction of a flavonoid
with a cell is consideration of the primary target. Several
high-affinity molecular targets have been identified, which
could trigger subsequent cellular events. In addition, if the
target is intracellular, the flavonoid or derivative must enter
the cell to reach it, by either passive diffusion or transporter-
facilitated processes. Clearly, the expression of such trans-
porters and target proteins is vital to enable the flavonoid to
exert an effect, and, therefore, relative expression of these
molecules in normal and tumor cells is important. Flavonoids
will interact differently in various types of cells and tissues
given the diverse profile of the required transporters, affect-
ing their bioavailability and the abundance of their molecular
targets and downstream effectors required to realize an effect.
Based on these aspects, this review addresses two questions:
To what extent can the effect of flavonoids on tumor cell
models be extrapolated to in vivo effects? And, conversely,
can flavonoids be used to selectively reprogram or even help
to kill tumor cells? To answer these questions, the review will
first consider some of the differences between tumor and
normal cells that are relevant to flavonoid action, before
discussing in more detail reported interactions of flavonoids
with molecular targets in both settings.

Examples of Differences Between Tumor and Normal
Cells Responsible for Differential Flavonoid Action

Most commonly used cell models in vitro
to study flavonoid action

Cultured cells are a well-established in vitro experimental
system that is extensively used when studying the effects of
flavonoids on biological systems. Most of the cell lines used
in the lab are immortalized and derived from a tumor tissue,
which are then passaged, cultured, grown, and often differ-
entiated. The latter retain functional aspects of their original
phenotype. Human Caco-2 and Caco-2/TC7 cells have been
isolated from the colon but are used as a model for the small
intestine, as after the differentiation of confluent cultures,
they form microvilli and express some small intestinal brush
border marker enzymes such as sucrase. In conjunction with
human studies, they constitute an indispensable proxy for

absorption, disposition, metabolism and excretion studies of
numerous drugs and phytochemicals, including flavonoids,
and have been extensively characterized (27, 93, 230, 282,
286). Human cancer-derived HepG2 cells are believed to
retain several hepatic functions and are, as such, used for
in vitro hepatocellular studies. Various molecular analyses
have documented differences to primary hepatocytes (46),
and it is now becoming apparent that their glycolytic nature
may be responsible for their failure to replicate effects re-
ported in culture in human liver tissues in vivo or in hepa-
tocytes ex vivo after liver tissue resection. Human MCF-7 and
MDA-MB-231 cells have been commonly used as models for
human breast cancer, and, given the lack of human cells,
mouse INS-1 cells are one of the main lines studied as a
model for pancreatic cells.

For tumor cells both in vivo and in vitro, the profiles of gene
expression, transporters, and signaling pathways are somewhat
different to normal cells. Tumor cells are cultured in vitro to
provide a model for hepatotoxicity and chemoprevention
studies. In some cases where tumor cells retain substantial
characteristics of their original phenotype, they are used to
provide information on mechanisms of action, which can then
be extrapolated to the whole organism in vivo. Nonetheless,
culturing practices, for example, concentration of nutrients in
the medium, repetitive sub-culturing, culture vessel/material,
length of differentiation, oxygen availability, and consistency
between different batches can lead to significant inter-
laboratory differences in observed effects and further com-
plicate interpretation of reported data in the literature (4).
Moreover, the concentration of the flavonoid employed is
important. The intestine is exposed to high concentrations of
flavonoids after oral ingestion, where millimolar concentra-
tions can be found, whereas after absorption in the intestine,
the maximum concentration is only a few micromolar. This
also needs to be taken into account in the design of in vitro
experiments, and when studying different cell types.

Differences in gene expression between normal
and tumor cells

Transporter differences between Caco-2 cells and small
intestinal tissue. When used as an intestinal in vitro model,
Caco-2 cells are grown on filters for 21 days, and during this
period the gene expression of many intestinal enzymes and
drug transporters gradually increases (212). Caco-2 cells
grown on a plastic support for only 4 days have a lower
expression of transporters than cells grown on permeable
filters for 21 days (4). Caco-2 cells (and their TC7 clone)
provide an excellent example where it is essential to under-
stand the experimental model to appropriately extrapolate
results to in vivo. For example, the flavonoid quercetin is
bioavailable in humans, and it is absorbed through the small
intestine (192) (Fig. 1). The absorption and biological effects
of quercetin in humans are the subject of numerous reviews
(55, 143, 190). Quercetin exists in planta as a glycoside, and
it is consumed mostly in this form (198). The glucoside is not
absorbed intact, but must first be deglycosylated by a brush
border enzyme, lactase phlorizin hydrolase (LPH) (52). This
enzyme is highly abundant in the small intestine, but it is
almost absent on the brush border of Caco-2 or Caco-2/TC7
cells (36, 207) (Fig. 1). Consequently, although Caco-2 or
Caco-2/TC7 cells can be used as a model to examine the
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absorption or biological effects of quercetin as an aglycone,
they cannot be used to examine the action of quercetin gly-
cosides, or, indeed, any other phytochemical bound to a sugar
moiety; this includes plant extracts where the active com-
ponents are glycosylated. An exception is where a flavonoid
glucoside can interact directly with proteins on the brush
border surface as in the case of the sugar transporter glucose
transporter (GLUT)2, to which some flavonoid glucosides
bind and inhibit its glucose-transporting activity (114)
(Fig. 1). This interaction involves direct binding to attenuate
sugar transport, whereas the flavonoid glucoside itself is not
a substrate of the transporter (79). In general, the absence of
LPH in the cell model is clearly less important when the
protein target is expressed on the surface of the cell and the
glycoside can interact directly without prior deglycosylation
being a requirement.

The transporter ABCC2 (Fig. 1) is higher in Caco-2 cells
compared to intestinal enterocytes (68). This indicates that
intestinal efflux of conjugated flavonoids will be emphasized
in the cell model, and, hence, measured absorption will appear
to be less than in the normal tissue. On the other hand, the
conjugating enzymes, sulfotransferase (SULT) and uridine
diphosphate glucuronosyl transferase (UGT), are present in
both small intestinal enterocytes and Caco-2 cells, and so
conjugation will occur in both. However, the profile of these
phase II enzymes is different, not only between Caco-2, Caco-
2/TC7 cells, and enterocytes, but also between the duodenum,
jejunum, and ileum, and so the exact rates of conjugation and
the profile of products will depend on the exact distribution and
the enzyme specificities, which vary for each flavonoid and
enzyme combination. For example, UGT8 and UGT9 are the
most active on epicatechin, followed by UGT1A1 (285), and
so the exact rate of conjugation will depend on the expression
of these three isoforms. In the small intestine, 1A1 is high, with
1A8 and 1A9* 10-fold lower (181).

These examples highlight the complexity of using cultured
immortalized cells for studies on flavonoids, indicating that
appropriate interpretation of experimental data depends on a
detailed underlying knowledge of the characteristics of the
cellular system.

Flavonoid transporter differences between HepG2 cells
and hepatocytes. Small-molecule effectors can interact with
a cell by binding to surface proteins or by entering the cell by
active, facilitated, or passive transport. Sufficiently hydro-
phobic and relatively small molecules, such as quercetin, epi-
catechin, and many synthetic drugs, can enter cells by passive
diffusion and do not rely on active transport. In many cases, the
concentration gradient for diffusion is maintained by further
metabolism of the molecule once inside the cell. However,
hydrophilic molecules such as glucose cannot enter cells by
passive diffusion and are instead transported into the cell by
transporters. These include a range of GLUTs, which are fa-
cilitative transporters and do not require energy (114), and
additionally in the intestine and kidneys by sodium-dependent
active transport (99). The profile of GLUTs is different in
normal and tumor tissues, leading to potential differences in
energy metabolism. In normal hepatocytes, GLUT2 is the main
transporter, and this insulin-responsive transporter is translo-
cated to the cell surface to allow glucose uptake when high
concentrations are present, such as post-prandially after a
sugar-containing meal. Hepatocytes also express GLUT10,

GLUT9, and GLUT3 (111). The main functional GLUTs in
HepG2 cells are GLUT1, which is highly expressed in many
tumor cells, and GLUT9 (234); GLUT2 is expressed, but it may
be localized internally (94), and GLUT3 mRNA is also highly
expressed (Fig. 2). Even though GLUT1 is expressed at notably
elevated levels in human cancers, it remains the rate-limiting
step for glucose transport into cancer cells, and high expression
is correlated with poor patient survival in most solid tumors
(253). A summary of some of the differences described earlier
in glucose utilization between hepatocytes and HepG2 cells is
shown in Figure 3, and the distribution of GLUT transporter
mRNA in hepatocytes and HepG2 cells is shown in Figure 2.

Attachment of a sugar or glucuronide moiety to a flavonoid
such as quercetin prevents passive diffusion by increasing
size and decreasing hydrophobicity (Fig. 1). The conjugation
of flavonoids by phase II metabolism has been well docu-
mented (55), and the exact compounds in blood have been
reported (1, 167). For the conjugates to enter cells, they must
travel either by passive diffusion, which is slow for conju-
gates such as glucuronides and sulfates, or more rapidly by
transporters such as organic anion transporter (OAT)
(SLC22A family) or organic anion-transporting polypeptides
(SLCO family) (9, 265, 266). The expression of these
transporters is different between normal and tumor cells, and
since OAT expression can be downregulated in the latter, the
uptake of flavonoid conjugates into cells would be lower in
cultured cells compared with normal cells in vivo (Fig. 2). In
addition, many cancer cells show drug resistance (159), and
have extremely high levels of efflux transporters, such as the
ATP-binding cassette (ABC) transporters, which actively
transport conjugated molecules, such as flavonoids and
drugs, out of the cells. Elevated expression of P-glycoprotein
(ABCB1) (38) and of multidrug resistance-associated protein
(MRP)2 (ABCC2) (82, 124) is responsible for the reduced
effectiveness of many anti-cancer drugs, although some lines
of research argue that MRP2 is partially located intracellu-
larly in all the cell lines, and even when overexpressed in
HEK293 cells may remain intracellular and not be functional
at the plasma membrane (4). Cancer cell lines generally have
much lower levels of cytochrome P450s. For example,
CYP1A2 is high in hepatocytes but absent in HepG2 cells,
whereas HepG2 cells still express some, albeit low, of the
CYP1A1 isoform. Because of these differences in CYP ex-
pression, hepatocytes are better than HepG2 cells for study-
ing biotransformation of drugs and flavonoids. However, the
response of xenobiotic metabolizing enzymes to inducers is
similar in hepatocytes and HepG2 cells (260). Catechol-O-
methyltransferase (COMT), the enzyme that methylates fla-
vonoids containing a catechol group, is very high in both
HepG2 cells (255) and in liver (92) (Fig. 2).

These transporter expression differences undermine the
usefulness of cultured cells to study the effect of the relevant
molecules such as flavonoid conjugates, and to more closely
represent the situation occurring in vivo. Any exposure of
cultured tumor cells to flavonoids will be much less effective
than exposure to normal cells, since efflux transporter over-
expression will remove the flavonoid (as conjugate) from the
cell very rapidly compared with normal cells. In addition,
in vivo, flavonoid conjugates, as reported for quercetin, may be
deconjugated and therefore activated near sites of inflamma-
tion (75, 156, 239). Further, monocarboxylate transporter
(MCT)1, which transports lactic and pyruvic acids and hence
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FIG. 2. Comparison of mRNA expres-
sion of selected transporters and enzymes
relevant to flavonoid action and metabo-
lism in human hepatocytes and HepG2
cells. Data were obtained by using hepato-
cytes from six volunteers and from cul-
tured HepG2 cells by using real time
RT-PCR according to (92). ABC, ATP-binding
cassette; COMT, catechol-O-methyltransferase;
CYP, cytochrome P450; NQO1, quinone re-
ductase oxidoreductase; RT-PCR, reverse
transcriptase-polymerase chain reaction.

FIG. 3. Illustrative meta-
bolic differences between
glucose utilization in hepa-
tocytes and HepG2 cells.
Information summarized from
data presented and discussed
in this review. HIF-1a, hypoxia-
inducible factor-1a; NOX,
NADPH oxidase; Nrf2, nu-
clear factor (erythroid-derived-
2)-like 2; PDC, pyruvate
dehydrogenase complex; ROS,
reactive oxygen species; TCA,
tricarboxylic acid.
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is of importance in glycolysis and gluconeogenesis, is highly
expressed in most immortalized cell lines in terms of both gene
and protein expression, and was also found to be functional in
five out of six investigated cell lines, including HepG2, Caco-
2, and Caco-2/TC7 cells (4). In general, MCT1 accepts short-
chain monocarboxylates and small drugs with carboxylate
groups such as salicylate as substrates, suggesting that care
should be exercised when investigating small mono-
carboxylate compounds. It is fortunate that very few drug
substrates have been identified for MCT1 (158), whereas in-
hibition of MCTs has been proposed as a therapeutic strategy
to target metabolic pathways in cancer through blocking py-
ruvate metabolism, in addition to their effects on lactate efflux
pathways (57).

In summary, differences in transporter expression between
normal and tumor cells can substantially alter the interaction
of a flavonoid with cellular processes, and in some cases, may
prevent or diminish the flavonoid reaching a molecular site
of action.

Metabolic differences between normal and tumor cells
that could affect interactions with flavonoids

General metabolic differences between normal and tumor
cells and redox status. Metabolic differences in energy
storage and utilization are critical when considering the re-
sponse of normal and tumor cells to effectors such as glucose,
drugs, and phytochemicals, including flavonoids. As the
major fuels for mitochondrial substrate oxidation to harness
energy in the form of ATP, glucose and fatty acids compete
with each other at the level of the pyruvate dehydrogenase
complex (PDC). PDC is usually active in most healthy tissues
in the well-fed state, and suppression of PDC by pyruvate
dehydrogenase kinases (PDKs) is crucial to spare pyruvate
and other three carbon substrates when glucose is low, termed
metabolic flexibility.

Tumor cells, in general, exhibit several metabolic adap-
tations that allow them to grow rapidly, such as unregulated
uptake of glucose mainly through GLUT1, increased anaer-
obic glycolysis with excess lactate production, and lowered
mitochondrial ATP generation through the electron transport
chain and oxidative phosphorylation (OXPHOS), processes
that are collectively termed the ‘‘Warburg effect.’’ In addition
to glycolysis, cancer cells also shunt glycolytic intermediates
into the pentose phosphate pathway, serine biosynthesis, and
lipid biosynthesis, as opposed to complete oxidation by mi-
tochondrial respiration, and so efficiently generate NADPH,
another factor that is essential for biosynthetic processes to
enable cancer cell survival (32). In some tumors, this is
achieved by limiting pyruvate utilization by mitochondria.
Many cancer cells can also use alternative sources of energy
such as amino acids, fatty acids, and lactate. Glutamine has
been identified as a critical nutrient for cancer cells for glu-
tathione synthesis and to replenish tricarboxylic acid (TCA)
cycle intermediates for the biosynthesis of lipids and mito-
chondrial ATP production, complementing the altered state
of glucose metabolism. Glutaminase inhibition led to cell
cycle arrest similar to peroxisome proliferator-activated re-
ceptor (PPAR)c activation through modulation of reactive
oxygen species (ROS) in lung cancer cells, and both b oxi-
dation and PDKs were found to be essential in the sequence of
events (226).

The importance of these anaplerotic reactions for cancer
cell survival is such that in cells derived from solid tumors
undergoing loss of attachment (LOA) to the extracellular
matrix, inhibition of glucose uptake and catabolism results in
the loss of ATP and NADPH as a result of decreased flux
through the pentose phosphate pathway. Under LOA condi-
tions, characterized by high ATP demand, production of ROS
is increased and linked to upregulation of antioxidant
mechanisms and reactivation of fatty acid oxidation requiring
maintenance of redox balance (32). An enhanced antioxidant
response and increased detoxification capacity in subgroups
of melanoma and lymphoma have been previously identified
and characterized by high OXPHOS activity (31, 138, 245).
More specifically, in lymphoma, the authors reported higher
levels of reduced glutathione in the OXPHOS subgroup
compared with the non-OXPHOS subgroup (31). Similarly,
in melanoma, ROS levels were reduced in the OXPHOS
subgroup due to enhanced ROS detoxification capacities
mediated by PPARc coactivator 1a (PGC-1a) (245). A dual
capacity of tumor cells for glycolytic and OXPHOS metab-
olism has been put forward, redefining the ‘‘Warburg effect’’
and increasingly supporting the idea that it is the physio-
logical stresses, dictated by the cancer microenvironment
such as the lack of oxygen, which are the main drivers of the
metabolic switch in tumor cells (80).

Mitochondrial function is responsible for the majority of
oxygen consumption, accounting for 70%–90% of total ox-
ygen consumption within the cell, whereas constant supply of
electron donors (e.g., NADH) constitutes an important factor
regulating mitochondrial respiration. Higher respiration rates
are linked to higher levels of mitochondrial ROS production
and may lead to increased proton leak and a drop in mito-
chondrial membrane potential in healthy cells (60). Poorly
formed blood vessels in tumors constitute a bottleneck that
limits oxygen supply to the growing tumor (211, 244).
Oxygen consumption within the tumor causes an imbalance
resulting in hypoxia and activation of downstream events,
whereas the severity of the response is dependent on the level
of oxygen deprivation (37). With respect to tumor growth
characteristics, moderate hypoxia causes a slowing of tumor
cell proliferation whereas severe hypoxia causes outright cell
death (185). Regulating the redox potential by restricting
mitochondrial respiration as well as low levels of electron
donors will activate AMP-activated protein kinase (AMPK)
and other related energy sparing pathways. This will lead to
metabolic adaptation and improved metabolic status for the
healthy tissue, and increased oxidative stress leading to se-
nescence of cancer cells through restriction of biosynthetic
pathways at the early stages of cancer chemoprevention.
However, AMPK activation in the solid tumor microenvi-
ronment could enhance cancer cell survival through inhibi-
tion of fatty acid synthesis and preservation of NADPH (109).
It comes as no surprise that AMPK has long been a target of
cancer drug research and quercetin in that light is viewed as
a beneficial agent (96).

Reducing hypoxia by decreasing oxygen consumption
restores tumor growth in most cases of established cancers,
with a compensatory increase in glycolysis. Anaerobic gly-
colysis is advantageous to cancer cells for survival under
hypoxic conditions. In normal cells, ROS stemming from
mitochondrial OXPHOS activate and stabilize hypoxia-
inducible factor (HIF-1)a, inducing downstream controlled
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genes that stimulate anaerobic glycolysis to minimize the
mitochondrial ROS-producing burden, and to mobilize anti-
oxidant defenses. In cancer cells and especially in solid
tumors where hypoxia is maintained, HIF-1a remains ab-
normally stabilized, and through upregulation of glycolytic
enzymes and long-term inactivation of the PDC complex,
owing to increased expression of PDKs (PDK1), reduced
levels of ROS protect cancer cells from apoptosis (25, 26). In
addition, glycolytic metabolites such as lactate and pyruvate
also stabilize HIF-1a via a hypoxia-independent mechanism
and establish a positive loop of HIF-1a activities, suggesting
that obesity or insulin resistance could increase the develop-
ment of cancers (57). Hypoxia in tumors also leads to over-
expression of HIF-2a, which, subsequently, favors cancer
cell survival, proliferation, and metastasis involving non-
canonical glutamine metabolism as recently shown in human
pancreatic ductal adenocarcinoma (PDAC) (76, 136).

Generally, ROS/RNS interact with certain amino acid
residues of proteins (protein tyrosine phosphatases, protein
tyrosine kinases [PTKs], and protein kinase C [PKC]) and, in
turn, activate downstream kinase cascades such as phosphoi-
nositide 3-kinase (PI3K) and mitogen-activated protein kinases
(MAPKs). PTKs have been found to be hyperactivated in many
cancer cells and are regarded as oncoproteins, whereas acti-
vation of the c-jun-N-terminal kinase (JNK) signaling pathway
involving nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-jB) and MAPKs in cancer and inflammation
are also linked to increased blood lactate levels through inac-
tivation of the PDC complex (187).

Modulation of such metabolic pathways has for many
years been the objective of various studies in an effort to
maximize chemoprevention by altering the redox state of
cancer cells without affecting healthy tissue. In that direction,
PDKs are seen as potential molecular targets in antiglycolytic
therapies for cancer, whereas in various cancer cell lines,
inactivation of PDKs, by either chemical or molecular ap-
proaches, has led to an increased activity of PDC (19). In
contrast, mining of microarray data from human tumor data
sets has shown that PDK4 is commonly downregulated in
tumors compared with their tissues of origin, whereas PDK1
expression is always high in liver metastases and either low
or high at the primary tumor site. This suggests that the
metabolic switch influencing tropism of cancer cells may
occur when they acquire metastatic properties (64), pointing
to differential regulation by distinct pathways in different cell
types and suggesting varying dependencies on PDH flux
between normal and transformed cells (89).

Currently, the diverse metabolic signatures of different
cancers, the anaplerotic mechanisms that may be activated,
depending on the stage of the cancer and the proliferation
stage of the specific cancer in question, are posing a great
challenge for cancer therapeutics. In an effort to achieve
breakthroughs in drug discovery, research has expanded to
devise a plethora of different inhibitors and combined ther-
apies to halt cancer progression at the different stages (ex-
amples shown in Fig. 7) and polyphenols in that light are
believed to have a role to play.

Metabolic differences between HepG2 cells and hepatocytes
that could affect interactions with flavonoids. Hepatocytes
generate a substantial proportion of their ATP through mi-
tochondrial action, and high glucose may overload the elec-

tron transport chain in mitochondria, especially through
leakage of complex I (193). Highly proliferative cells such as
HepG2 generate most ATP by glycolysis, even though they
have sufficient oxygen and normal, functional mitochondria,
and cancer cells are resistant to compounds that impair mi-
tochondrial activity (146). In normal hepatocytes, GLUT2
responds to high glucose and insulin, and it increases glucose
uptake after, for example, a carbohydrate-rich meal (65, 197).
However, differences in GLUTs discussed earlier lead to
unregulated glucose uptake in HepG2 and other tumor cell
lines. HepG2 cells retain some insulin responsiveness, but
chronic high-glucose treatment of HepG2 cells leads to
modified energy metabolism, through increased PDC E1a
subunit protein and mRNA and increased total PDC activity
(236), and also to insulin resistance, which includes loss of
insulin-induced Akt phosphorylation and increased phos-
phorylation of insulin receptor substrate-1 (IRS-1) (174).

In vivo, chronically elevated plasma glucose leads to en-
hanced levels of intracellular ROS, insulin resistance, and
perturbed metabolism in the liver, with the metabolic sensors
AMPK and SIRT1 downregulated (178). In cultured human
QZG hepatocytes, high glucose led to increased generation
of ROS and lowered cell viability via PKC activation, de-
creased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and
heme oxygenase 1 (HO-1) protein, and decreased both the
phospho-Akt:Akt and the phospho-extracellular signal-
regulated kinase (ERK):ERK ratios (257). High levels of glu-
cose initially increased mRNA of base excision repair genes in
HepG2 cells, and activity of poly[ADP-ribose]polymerase 1,
leading to lowered cellular NAD+ and insulin receptor phos-
phorylation, but in the longer term, induced ROS accumula-
tion and DNA damage (184). HepG2 cells express NADPH
oxidase 1 (NOX1), which generates ROS under high glucose.
NOX1 knockdown led to increased UTP-glucose-1-phosphate
uridylyltransferase, which catalyzes the synthesis of UDP-
glucose, the precursor for glycogen synthesis. Most cultured
tumor cells, including HepG2, typically express elevated
NOX1 and low rates of glycogen synthesis, enabling them to
channel glucose to glycolysis rather than energy storage,
to maintain their high energy utilization (18). Increased ROS
from NOX1 induce HIF-1a target genes such as GLUT1 and
glucose-6-phosphatase (78). Experimentally, glucose at a very
high non-physiological concentration (>50 mM) has also been
shown to cause apoptosis in HepG2 cells (35).

High-glucose-induced changes in lipid metabolism are
observed in HepG2 cells, such as induced fatty acid synthase
(FASN) activity via increased mRNA stability (213), in-
creased accumulation of intracellular storage lipids (276), in-
creased hepatic lipase (243), and changes in intracellular
metabolites such as transient increases in glucose-6-phosphate,
3-phosphoglycerate, citrate, and lyso-phosphatidyl choline,
and decreases in serine, acylcarnitines, and phosphatidyl eth-
anolamine (155). All these aspects contribute to tumor pro-
gression, and recently, acetyl-CoA carboxylase (ACC)a was
reported to have a central role in mediating de novo lipogenesis
for metabolic adaptation in human hepatocellular cancer (254).
Similarly, de novo lipogenesis activation was also reported in
an array of cancer cells following limitation of access to ex-
ogenous lipids as may occur in intact tumors (49).

The tumor-specific modulation of carnitine palmitoyl
transferase (CPT)1A, the rate-limiting step in b oxidation,
and of FASN, in human colorectal cancer and breast
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carcinomas, has also been reported. CPT1A was significantly
decreased in the cytoplasm of tumorous samples, whereas
FASN was increased in addition to a striking CPT1A nuclear
localization both in the tumors and in vitro in epithelial
neoplastic cells such as MCF-7, Caco-2, and HepG2 (152,
199). A link to histone acetylation and post-translational
modifications was also apparent, since a correlation between
nuclear CPT1A levels and histone deacetylase activity in
tumorous tissues and neoplastic cell lines was reported.
Caco-2 cells, when grown in vitro as colonocytes (without
differentiation), preferentially oxidized butyrate instead of
glucose as an energy source to produce acetyl-CoA for fatty
acid synthesis. Butyrate pre-treated cells displayed a modu-
lation of glutamine metabolism characterized by an increased
incorporation of carbons derived from glutamine into lipids
and reduced lactate production, reversing their initial highly
glycolytic nature linked to PDC deactivation through upre-
gulation of PDK4 involving hyperacetylation of histones at
the PDK4 gene promoter level (19).

These phenotypic differences in metabolism may influence
the effect of flavonoids on normal and tumor cells, depending
on the environment encountered by the cell as defined, for
example, by the concentration of glucose used in the medium
and the frequency of medium changes, the use of nonessential
amino acids, and glutamine that can top up the TCA cycle, in
combination with growth factors and fatty acids in the form

of fetal bovine serum. Notably, the presence of hepatic cells
in vivo in close proximity to macrophages, adipocytes, and
other satellite cells with a plethora of diversified signaling
functions cannot be mimicked in vitro but can, nonetheless,
significantly affect the bioactivity of flavonoids in both
healthy and diseased individuals.

Interaction of Flavonoids with Tumor and Normal Cells

Molecular targets of quercetin and epicatechin

Direct interactions. Irrespective of the cell physiology,
any effect of a small molecule on a cell requires initial in-
teraction with primary targets, followed by subsequent signal
transduction and/or gene expression that will lead to func-
tional effects. Although many proteins have been reported to
interact directly with flavonoids, the strength of the interac-
tion is critical; only sufficiently strong binding will lead to
significant regulation. The crystal structure of several mam-
malian target proteins bound to quercetin has been reported,
and these will form the basis of the interactions that will first
be considered here (Fig. 4), followed by discussion of other
potentially important targets.

Quercetin competitively inhibits bovine mitochondrial
F1-ATPase, an ATP synthase, with an IC50 value of 2–6 lM
(169), and such interaction could lead to numerous changes in

FIG. 4. Molecular targets of quercetin. The proteins where crystal structures have been determined in complex with quercetin
are shown. The name of the protein is shown in purple, and the function is also indicated. Structures shown are from the PDB
(structures 5AUW, 4WNJ, 4LMU, 3NVY, 3LM5, 3BPT, 2JJ2, 2O3P, 2HCK). DAPK1, death-associated protein kinase 1; DRAK2,
serine/threonine kinase 17B; PDB, Protein Data Bank.
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overall cellular metabolism through secondary effects, since
this mitochondrial protein is responsible for synthesizing
most of the ATP fueling cellular processes in normal cells.
Features of the crystal structure of the protein bound to
quercetin show that it inhibits both synthetic and hydrolytic
activities of the enzyme (83).

Xanthine oxidoreductase (XOR) is a molybdenum- and
flavin-dependent enzyme that produces uric acid from hypo-
xanthine (Fig. 5). Under certain conditions, it can produce
hydrogen peroxide and superoxide radicals, and for example, is
the major source of superoxide in plasma after ischemia-
reperfusion injury (182). Excess uric acid production is,
therefore, accompanied by high levels of intracellular super-
oxide production. As a partial consequence of this, high plasma
uric acid, derived from XOR, is also a marker of metabolic
syndrome and gout risk (141) whereas mitochondria in cancer
cells generate more superoxide anions when compared with
their normal counterparts (251). Superoxide is also the primary
cause of endothelial dysfunction in high-glucose-treated
HUVECs (200). One of the main deleterious effects is the re-
action of superoxide with nitric oxide (NO), which not only
consumes NO but also produces damaging peroxynitrite
(Fig. 5). Peroxynitrite leads to protein damage by nitration, and
this reaction contributes, for example, to liver and renal mito-
chondrial damage in diabetic rats (137, 205). Although quer-
cetin and conjugates can react directly with ROS/RNS such as
superoxide (28, 240) and peroxynitrite (196), and flavonoids
are potent chemical antioxidants in many assays (102), the rate
of reaction and likely intracellular flavonoid concentrations
make it unlikely that such a reaction is biologically significant
in vivo (117, 118, 220). It is more likely that flavonoids affect
these processes generating reactive species by attenuating the
catalytic rate of XOR and other oxidative enzymes. Quercetin
binds to the active site of XOR with a Ki of*1 lM (29), one of
the few direct molecular interactions (51, 140) that has been
shown to have a consequential effect in humans in vivo (215).
The crystal structure of XOR complexed with quercetin
has been reported (29). The action of flavonoids on XOR is

illustrative of the current thinking behind the mechanism of
action of flavonoids in vitro. Rather than acting as direct free
radical scavengers, they attenuate the activity of some pro-
oxidant enzymes; the damaging effect of these enzymes is
mostly apparent only when they are running fast, that is, with
high substrate concentration coupled with limiting availability
of co-factors such as NAD+/NADH.

Serine/threonine kinase 17B (DRAK2) is an inducer of
apoptosis (153). In pancreatic islet cells from mice over-
expressing DRAK2 and fed with a high-fat diet, stimulation
with inflammatory cytokines increased apoptosis and led to
glucose intolerance and decreased insulin secretion (77, 145).
DRAK2 plays a role in tumorigenesis, and mediates cyclo-
oxygenase (COX)-2 overexpression in colorectal cancer
cells, rendering them resistant to apoptosis (61). Quercetin
binds to and interacts directly with DRAK2 (162, 218).

Death-associated protein kinase 1 (DAPK1) is a calcium/
calmodulin-dependent serine/threonine kinase that is in-
volved in various cellular signaling pathways triggering cell
survival, apoptosis, and autophagy. DAPK1 phosphorylates
Pim-1, resulting in inhibition of its catalytic activity, nuclear
localization, and cellular function (275). Human Pim-1 is a
Ca2+/calmodulin-regulated serine/threonine kinase, able to
phosphorylate different targets, involved in cell cycle pro-
gression or apoptosis, and is induced by cytokines (13).
Quercetin binds directly to both DAPK1 and Pim-1 (100),
indicating its ability to inhibit multiple kinases.

In addition to binding to albumin for transport around the
body (24), quercetin also binds to transthyretin, a serum
transport protein that is highly expressed in the liver, at a
different site to the one for thyroxine T4 (41). Transthyretin
amyloidosis constitutes a form of cardiac hypertrophy and is
characterized by increased levels of inflammation. Data on
the functional effects of quercetin binding to transthyretin are
not available in the literature, but such an interaction could
potentially increase its local bioavailability. Transthyretin
dysregulation has been linked to pre-eclampsia through es-
tablishment of hypoxic conditions (85).

FIG. 5. Reactions catalyzed by XOR leading to ROS and protein thiol oxidation. This large and complex enzyme is a
flavin- and molybdenum-containing protein with iron-sulfur centers at the catalytic site. It catalyzes oxidation of both
hypoxanthine and the intermediate, xanthine, to form uric acid. Under certain conditions, it produces excess hydrogen
peroxide and superoxide (74, 115, 182), which can then undergo further reactions to generate intracellular ROS. Superoxide
can undergo several reactions, including oxidation of thiol groups to produce a thiyl radical and hydrogen peroxide (264),
which would account for the activation of Nrf2 by superoxide (183). NO, nitric oxide; XOR, xanthine oxidoreductase.
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The enzyme 3-hydroxyisobutyryl-CoA (HIB) hydrolase is
found predominantly in the liver, heart, and kidney, and it
converts HIB to free CoA and 3-hydroxyisobutyrate, which can
be a precursor for hepatic gluconeogenesis. The enzyme also
has roles in valine, leucine, and isoleucine degradation, b-
alanine metabolism, and propanoate metabolism (97, 217). The
activity of the enzyme is lower in livers with cirrhosis or he-
patocellular carcinoma, suggesting a decrease in the capability
of detoxifying HIB (105). Cirrhosis resulted in a significant
decrease in HIB hydrolase activity and the branched chain
amino-acid pathway, but it had no effect on citrate synthase
activity. This suggests that the decrease in HIB hydrolase ac-
tivity does not reflect a general decrease in mitochondria, but it
may contribute to cellular damage, culminating in liver failure
(238). Valine catabolism is unique compared with the other
branched chain amino-acid pathways as the potentially toxic
compound, methacrylyl-CoA, is formed as an intermediate,
having considerable potential for cytogenic, mutagenic, and
clastogenic actions (216). Quercetin interacts with the enzyme
and forms a complex (Fig. 4); however, binding constants are
not available in literature. Interestingly, tolcapone, a potent
inhibitor of COMT for the treatment of Parkinson’s disease,
was found to have hepatotoxic effects due to off-target binding
to HIB hydrolase, whereas no binding was seen for the less
toxic COMT inhibitor entacapone. The mitochondrial toxicity
profile of tolcapone, entacapone, and two other novel COMT
inhibitors was consistent with the off-target interaction profile
of the compounds, supporting the hypothesis that HIB hydro-
lase is a candidate off-target underlying related mitotoxicity of
the drugs (248). Given the fact that quercetin also accumulates
in mitochondria at high levels even at low concentrations (72,
179), potential toxic effects at high concentrations, especially
in cancer cells, could also be mediated through HIB hydrolase.

In a molecular docking study, quercetin could be docked to
the MEK1 pocket separate from but adjacent to the ATP
binding site similar to that observed for PD318088, a highly
selective MEK1 inhibitor that does not compete for ATP, in
the crystal structure of the MEK1-PD318088 complex. The
hydroxyl group at the 3¢ position of the C ring of quercetin
can make a critical hydrogen bond with the backbone amide
group of Ser212 that would lock MEK1 into a catalytically
inactive form by stabilizing the inactive conformation of the
activation loop. The predicted binding mode of quercetin is
also similar to that of PD318088. Binding of quercetin blocks
the Raf/MEK/ERK/p90RSK pathway and leads to subse-
quent suppression of AP-1 and NF-jB activity. Quercetin
inhibited MEK1 activity more strongly than Raf1 activity,
suggesting that MEK1 is the most potent molecular target of
quercetin for suppressing neoplastic transformation (129).

Other possible direct targets have been suggested by using
biotinylated quercetin as a tag to identify proteins with a strong
binding affinity from a soluble cell extract. Some proteins that
were identified based on this methodology are casein kinase II,
ubiquitin-activating enzyme E1, heat shock protein 70 and 90, an
ATPase, and two mitochondrial ATP synthase subunits (256).
Quercetin may also interact with membrane proteins directly
such as sugar transporters. Although there are no external
docking sites on the sugar transporter GLUT1 for quercetin,
within the inner vestibule, glutamate and lysine residues
hydrogen-bond quercetin, completely inhibiting glucose transfer
when bound (48). Quercetin also inhibited GLUT2, but not
GLUT5 nor SGLT1 (128).

A potentially important molecular target of EGCG from
green tea is the strong binding (Ki = 40 nM) to the 67-kDa
laminin receptor, which is expressed on a variety of tumor
cells, and the expression level of this protein strongly cor-
relates with the risk of tumor invasion and metastasis (233).
EGCG also strongly interacts with human leukocyte elastase
(HLE) with an inhibition constant of 0.4 lM. HLE is a serine
protease found in the dense azurophil granules of poly-
morphonuclear leucocytes and possesses the ability to cleave
elastin, the major component of elastic fibers that surround
blood vessels, lung tissues, and ligaments. HLE may be acti-
vated on exposure to various cytokines and chemo-attractants,
including TNF-a, interleukin (IL)-8, C5a, and lipopoly-
saccharide. Abnormally elevated levels of HLE produced in
the liver or deficiency in one of its natural inhibitors such as a1-
protease inhibitor cause severe permanent tissue damage.
Hence, HLE has been linked to many inflammatory disorders
(160). High blood concentrations of poly-morphonuclear HLE
and IL-6 are indicators for the occurrence of multiple organ
failures at the early stage of acute pancreatitis (104). More
recently, acute exacerbation of idiopathic pulmonary fibrosis
was associated with elevated serum neutrophil elastase and the
role of these serine proteases is well acknowledged in the clinic
(229). Inhibition of some others described that direct binding
targets of EGCG such as matrix metalloproteinase (MMP)-2,
thrombin, and cathepsin G are much weaker (210).

When considering the importance of the binding interac-
tions, it would certainly be reasonable to assume that the
tighter binding of a ligand, the more likely the effect would be
relevant and evidenced in vivo. In addition, the effect on a cell
would depend on the level of expression of the target protein.
If, for example, the enzyme XOR was absent from a tumor
cell line, then the cell would not be expected to respond to the
effects of quercetin on uric acid metabolism since XOR is the
key site of interaction for this effect (Fig. 2).

Controversial role of Nrf2 in cancer—direct and indirect
regulation by quercetin. Quercetin also interacts directly
with Nrf2. Nrf2 is a well-studied transcription factor that
binds to the antioxidant response element (ARE) in pro-
moters of many detoxifying or antioxidant enzyme genes in
response to various xenobiotics and stresses (5, 107, 246),
and as a consequence, Nrf2 knockout mice are more sus-
ceptible to carcinogens (201). Nrf2 is also involved in pro-
tecting endothelial cells from glucose-induced oxidative
stress (269) and in the expression of glyoxylase I, resulting in
improved glucose homeostasis (270). Transcription of HO-1
is regulated through Nrf2 (123) via the ARE (5), and this
responsive gene is often used as a marker of Nrf2 action.
NQO1 (quinone reductase) was one of the first genes to be
shown to contain an ARE and to require Nrf2 for transcrip-
tion (70, 246). As part of the process of inducing NQO1,
quercetin binds to the Nrf2 protein and increases its half-life
four-fold (237). Chemically, quercetin can be oxidized to
a quinone form via a semiquinone intermediate. The quinone
form can then react with sulfhydryl groups to form a gluta-
thione adduct (Fig. 6). This reaction can occur in cells (12),
and consequently the 6- and 8-glutathionyl quercetin adducts
are secreted into the medium. After consumption of quercetin
in humans, glutathionyl quercetin adducts are found at low
levels in urine, suggesting that the conjugation reaction can
occur in vivo (101). The presence of ascorbate slows the
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oxidation of quercetin and inhibits formation of the quinone
forms (131), but, once formed, quercetin quinone reacts
preferentially with thiol groups compared with ascorbate
(23). The quinone form of quercetin is only a poor substrate
for NQO1 and although NQO1 is induced by quercetin,
NQO1 does not provide protection from the effects of quer-
cetin quinone (22). Although these conjugation reactions
clearly occur both in vitro and in vivo, the predominant re-
action of quercetin is conjugation with methyl, glucuronosyl,
or sulfate groups (20, 55, 86), and as a result, these metabo-
lites of quercetin dominate in urine (101, 166) and plasma
(53, 166) (Figs. 1 and 6).

Keap-1 contains three crucial cysteine residues that play a
role in the interaction with Nrf2, controlling its degradation
via ubiquitin, and its response to oxidative stress. Both sul-
foraphane, a well-characterized inducer of NQO1 and HO-1,
and oxidative stress stabilize Nrf2 by allowing it to escape
Keap1-dependent degradation and activate genes by nuclear
translocation and binding to the ARE. Cys151 is required for
this process, and a post-translational modification of this
residue is induced by oxidative stress (277). Since quercetin
induces NQO1 and HO-1, it has been proposed that it could
interact with Nrf2/Keap-1 to induce ARE-controlled en-
zymes (237), by forming protein adducts as shown in Fig-
ure 6. However, it is not known whether this occurs in cells.
Quercetin binds to Nrf2 and stabilizes it, and it also binds
directly to Keap-1, thus preventing its proteolytic degrada-
tion, and suggesting that the interaction of quercetin with
the Cys151 is possible (237). However, some studies have
suggested that quercetin does not interact with Nrf2 in en-
dothelial cells (214), although we have data showing that
quercetin is a potent HO-1 inducer in HUVECs (unpublished
data). Further, stabilization of Nrf2 or of Keap-1 by inter-
action with cysteine residues requires catechol groups (225).
Methylation of one of the hydroxyl residues of quercetin
prevents the formation of thiol adducts (131), but since 4¢-O-
methylquercetin induces HO-1 in HepG2 cells (272), this
suggests that interaction of the catechol group with thiol
residues on Keap-1 or Nrf2 is not the only mechanism of
induction of ARE-controlled genes by flavonoids. When

treated with 20 lM quercetin, GSH concentration in HAEC
transiently dropped by 20% and returned to baseline within
18 h. Since GSSG also decreased, this suggests that these
changes were due to consumption of glutathione rather than
thiol oxidation, and in support of this, quercetin glutathione
conjugates were exported into the medium (132).

A substantial literature documents the chemopreventive effect
of Nrf2 activators (268), particularly those that are naturally
occurring. Nrf2 activators, such as sulforaphane, curcumin, and
dithiolethiones (Oltipraz), have undergone clinical trials (142).
However, some recent research implicating Nrf2 in tumor cell
proliferation is causing controversy. Studies in breast cancer
cells revealed that Nrf2 regulated the expression of growth fac-
tors, transmembrane receptors, kinases, and transcription regu-
lators under hypoxia through the GSH signal that impinges on
cell proliferation (204, 232). The hyper-activated Nrf2 can
contribute to overexpression of target genes, leading to cancer
cell survival and proliferation. In addition, Nrf2 can aid cancer
cells in resisting chemotherapy and radiotherapy (268). Nrf2
overexpression enhanced resistance to chemotherapeutic drugs,
such as cisplatin, doxorubicin, and etoposide, in cancer cells
(258). In addition, Nrf2 silencing through RNA interference
inhibited tumor growth and enhanced the efficacy of chemo-
therapy in nonsmall-cell lung carcinoma cells (222). The aber-
rant activation of Nrf2 was attributed to the radio resistance in
NSCLC cells (221) and linked to upregulation of drug efflux
pumps, such as ABCG2, which enhances the resistance to anti-
cancer drugs in lung epithelial cells (223). Increased expression
of the ABC transporters would also blunt interactions of poly-
phenols with cellular targets due to increased elimination of
intracellularly formed metabolites.

In contrast with normal cells, Nrf2 protein constitutive
upregulation in many tumors is due to somatic mutations
in the Keap1 or Nrf2 genes (98). It has also been suggested
that in certain settings Nrf2 augments purine nucleotide
synthesis, thus supporting tissue hypertrophy. In human lung
A549 cells constitutively overexpressing Nrf2 due to har-
boring of mutant Keap1, upregulation of Nrf2 led to in-
creased utilization of glutamine by increasing GSH synthesis
as a consequence of glutamate-cysteine ligase induction and

FIG. 6. Formation of
quercetin conjugates, ad-
ducts, and redox forms. The
predominant route of metab-
olism of quercetin is conju-
gation by phase II enzymes,
where R1 and R2 can be
methyl groups, R1 can be
sulfate, and R1, R2, R3, or
R4 can be glucuronide moie-
ties. Oxidation of quercetin
yields superoxide and a more
reactive quinone form, which
can interact with glutathione or
with cysteine residues on a
protein such as Nrf2 or Keap-1.
EGCG, (–)-epigallocatechin
gallate.
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increased decarboxylation of malate as a consequence of malic
enzyme 1 induction (161). This change in cellular metabolism
required both loss of Nrf2 repression by Keap1 and co-
stimulation via the PI3K-Akt pathway as opposed to induction
of antioxidant and detoxification genes, which requires only
inhibition of Keap1. So far, a role for quercetin has only been
described with regard to the cytoprotective role of Nrf2.

Recent work has further complicated the Nrf2 activation
story as the acetylation–deacetylation status of Nrf2 was also
found to define its nuclear translocation, its ability to promote
transcription, and its egress from the nucleus to terminate its
transcriptional activity (112). Specifically, SIRT1, which
belongs to the family of NAD+-dependent deacetylases, was
shown to decrease acetylation of Nrf2, as well as Nrf2-
dependent transcription (103). Quercetin could affect SIRT1
through inhibition of NAD+-consuming enzymes such as
CD38 and PARP (69, 81) and could, therefore, have an in-
direct effect on Nrf2 acetylation status, although this mech-
anism of action has not been explored.

On the basis of this evidence, there seems to be a dual role
of Nrf2 in carcinogenesis: beneficial in the early stages where
activation of the Nrf2 pathway leads to activation of cyto-
protective genes and thus generation of antioxidant machin-
ery that removes ROS, reactive aldehydes such as 4-
hydroxynonenal, and xenobiotics from the cells; but detri-
mental in later stages of cancer by increasing resistance to
conventional radio- and/or chemotherapy. Such effects are
relevant to all stages of cancer progression, as shown in
Figure 7, however to different extents.

Multimodal effects of quercetin and epicatechin
on HepG2 cells and hepatocytes affecting
cellular homeostasis.

The effect of quercetin on HepG2 cells is very concen-
tration dependent, and there is abundant evidence to show

that at >30 lM, the dominant effect is on the cell cycle pro-
gression, apoptosis, and cell death. At these concentrations,
quercetin decreased cyclin D1 protein and induced G1 phase
arrest (283), increased gene expression of the tumor sup-
pressor p16 (278), and of Cdk inhibitors p21 and p27, whose
loss can mediate a drug-resistance phenotype, increased tu-
mor suppressor p53 (165), activated JNK and ERK signaling
pathways (249), decreased survivin (BIRC5), an inhibitor of
apoptosis that attenuates caspase activation, and Bcl-2 pro-
tein levels, increased caspase-3/caspase-9 activity (235),
downregulated expression of PI3K, PKC, and COX-2, and
enhanced the expression of B-cell lymphoma-2-like protein
4 (Bax) (150). At similar concentrations (50 lM for 48 h),
quercetin downregulated the Ras GTPase-activating protein
and b-tubulin and these effects were correlated with reduced
cell migration ability. When 10 lM was directly compared
with 100 lM, only the higher concentration of quercetin in-
duced significant apoptosis (119), and several studies report
that quercetin at <20 lM has only a minimal effect on HepG2
cell death. Further, the effect of quercetin on caspase-3 ac-
tivity was maximal at 50 lM in HepG2 and declined at higher
concentrations whereas this coincided with mitochondrial
Bax activity (87). Low doses of quercetin (0.1–1 lM) in-
creased Cu/Zn superoxide dismutase and glutathione perox-
idase mRNA in tert-butyl hydroperoxide-treated HepG2 cells
(6). High concentration effects have led to claims that quer-
cetin can inhibit the growth of cancer cells and, hence, could
act as a chemopreventive agent.

The effect of high concentrations of quercetin on cell death
is less pronounced in primary human hepatocytes. Quercetin
as high as 100 lM did not affect the viability of human he-
patocytes as assessed by lactate dehydrogenase release into
culture medium, and had no effect on CYP2E1 nor intracel-
lular GSH concentration, and this high concentration actually
protected cells from ethanol-induced toxicity through in-
duction of HO-1 via the MAPK/Nrf2 pathways (273, 274).

FIG. 7. The defining char-
acteristics of cancer cells.
Adapted from Ref. (95).
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These reported differences between the cancer phenotype of
immortalized cells and primary isolated cells can cloud
judgement, since the potential molecular targets of a flavo-
noid are linked to the differential metabolic signature of the
cells and also their tumor background.

Quercetin at >25 lM also lowered intracellular FASN
mRNA and activity and overall modulated fatty acid syn-
thesis (279). Oleic acid induced lipid droplet formation, in-
creased triglycerides, the inflammatory cytokines TNF-a and
IL-8, and increased insulin resistance as apparent by inhibi-
tion of insulin-stimulated glucose uptake. Quercetin at 10 lM
protected against oleic acid-induced hepatic steatosis as
shown by decreased triglyceride content, increased insulin-
mediated glucose uptake, increased intracellular glutathione,
decreased TNF-a and IL-8, increased total superoxide dis-
mutase activity, catalase and glutathione peroxidase activi-
ties, increased albumin and urea, and decreased alanine
aminotransferase activity (247).

As has been reported in several systems, quercetin is a
potent competitive inhibitor of GLUT1 (147) whereas it was
also reported to inhibit the uptake of glucose and of (non-
metabolized) deoxy-D-glucose in HepG2 cells, but over 12 h,
increased mRNA expression of the main GLUTs GLUT1 and
of GLUT9 (116), presumably as a response to the acute inhi-
bition. Given the differential expression of GLUTs between
cancer cell lines, normal tissues, and in cancer, this activity of
quercetin may be of importance in potentiating cellular re-
programming and induction of apoptosis of cancer cells.
Treatment of HepG2 cells with quercetin (50 lM for 48 h) led
to *70 protein changes, notably involved in metabolism;
cytoplasmic malate dehydrogenase and succinate dehydro-
genase were substantially downregulated, whereas FASN,
L-lactate dehydrogenase A chain, a-enolase, glyceraldenhyde-
3-phosphate dehydrogenase, and phophoglycerate kinase were
all upregulated (284).

In rat hepatocytes, fatty acid synthesis was reduced dose
dependently by quercetin, between 2.5 and 50 lM (84), in
broad agreement with the effect described earlier (279) on
HepG2 cells. Cholesterol synthesis was unaffected in hepa-
tocytes. Quercetin at 25 lM decreased ACC and diacylgly-
cerol acyltransferase activities, but it did not affect FASN nor
HMG-CoA reductase activities (84). This implies that al-
though the overall effect of quercetin on rat hepatocytes is to
decrease fatty acid synthesis, the mechanism may differ from
that observed in human HepG2 cells, possibly because of the
species difference in cell line origin. The product of ACC is
malonyl-CoA, which implies that quercetin would decrease
malonyl-CoA levels through decreased ACC activity. In-
corporation of labeled acetate into VLDL-triglyceride was
reduced by 36% in the presence of quercetin, and quercetin
was, therefore, proposed to decrease both de novo fatty acid
synthesis and triglyceride synthesis in rat hepatocytes (84).

High glucose decreased tyrosine-phosphorylated and total
levels of IR, IRS-1 and -2, inactivated AMPK, and the PI3K/
Akt pathway, decreased GLUT2, increased PEPCK, and di-
minished glucose uptake in HepG2 cells. Pre-treatment with
epicatechin (10 lM) attenuated or prevented these changes,
suggesting improved insulin sensitivity and delay of potential
hepatic dysfunction (44). In the same cell line, high glucose
increases phosphorylation of IRS-1, leading to lowered
insulin-stimulated phosphorylation of Akt, and this effect is
partially blocked by EGCG. These effects are mediated via

EGCG-activated AMPK (139). In comparison and under
normal glucose conditions, quercetin at the lowest concen-
tration tested (10 lM) increased the phospho-Akt:Akt and
phospho-ERK:ERK ratios, but notably this effect declined at
higher concentrations and was reversed by 100 lM (87).

Phospho-Nrf2 increased after treatment of HepG2 cells
with quercetin up to 10 lM, then decreased to below control
values at 50 lM, as did the ratio of nuclear to cytosolic Nrf2
(88). Bell-shaped responses are commonly evidenced for
Nrf2 activators and, although the reason behind this is not
known, other post-transcriptional modifications and second-
ary interactions with deacetylases are believed to be involved
(103). Similarly, quercetin at high, but not low (<10 lM),
concentrations induced CYP1A1 mRNA and activity in
HepG2 cells (249) but neither CYP2E1 protein nor activity
(273) was affected by 100 lM treatment with quercetin.
Using hepatocytes from two donors, quercetin at >80 lM did
not induce the conjugating enzyme UGT1A1, the efflux
transporters ABCB1 or ABCC2, nor the cytochrome P450s,
CYP1A2, CYP2B6, and CYP3A4, whereas quercetin in-
duced the expression of UGT1A1 and CYP1A2 in HepG2
cells (134). In human hepatocytes from one donor, quercetin
at 10 lM produced no change in the conjugating enzymes
UGT1A1 and SULT2A1, the transporters ABCG5 and
ABCC3, nor in HNF4a, but at 50 and 250 lM some of these
genes were downregulated (134). At 5–25 lM, quercetin
induced the mRNA expression of several mitochondrial
biogenesis activators (PGC1a, nuclear respiratory factor-1,
and mitochondrial transcription factor A), mitochondrial
DNA, and COX IV protein in HepG2 cells, through a
mechanism involving HO-1 (203). At 100 lM, the induction
of HO-1 by quercetin was accompanied by increased Nrf2 in
the nucleus and this increase was abolished by MAPK in-
hibitors (274).

At high concentrations of quercetin, pregnane X receptor,
constitutive androstane receptor, and the aryl hydrocarbon
receptor were activated in HepG2 cells (134). Quercetin at 10
and 50 lM did not change the mRNA levels of b-catenin, c-
fos, c-jun, GADD45, IL-1b, IL-1R, LBP, p21CIP1, and
STAT3 in human hepatocytes, but quercetin at 10 lM (but
not at 50 lM) modulated c-fos and LBP in HepaRG cells.
There appeared to be no changes in transcriptomic profile in
human hepatocytes by 10 and 50 lM quercetin, but only one
donor was used (250).

In human hepatocytes, quercetin (20 lM) protected against
formation of 14C-labeled PhIP-DNA adducts, but with sub-
stantial inter-individual variation in the extent of protection
in the four donors tested. In HepG2 cells, quercetin also
protected and the effect was dose dependent up to 20 lM. The
number of PhIP-DNA adducts was dose dependent over a
wide range of PhIP concentrations, and there were *30-fold
more adducts in hepatocytes compared with HepG2 cells, due
at least, in part, to higher CYP1A2 activity in hepatocytes
(Fig. 2) (14). In HepG2 cells, quercetin at low concentrations
(0.1 lM and above) inhibited activity of cytochrome P450,
but it did not induce glutathione S-transferase, CYP1A1, c-
fos, heat shock protein 70, tumor suppressor p53, transcrip-
tion factor NF-jB nor DNA damage (171), and at 10 lM, did
not increase NF-jB binding activity nor DNA strand break-
age, but protected against hydrogen peroxide-induced in-
crease in NF-jB activity and DNA strand breakage (170).
NF-jB can be glutathionylated (186), and quercetin
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transiently decreased glutathione concentration in human
aortic endothelial cells (132).

Interaction of quercetin with intestinal tissue and cells

The intestine is the primary site of interaction with orally
consumed flavonoids. The concentration in the gut lumen to
which the enterocytes are exposed can reach mM levels
(261). Green tea catechins are present in their active forms,
such as EGCG and epicatechin, but many other flavonoids
such as quercetin are glycosylated (198), and experiments
in vivo and in vitro need to be designed to take these factors
into consideration (Fig. 1). When treated with quercetin in the
aglycone form, some effects on the intestine are comparable
both in vitro and in vivo. For example, quercetin enhanced
barrier function in rat ileum and distal colon, and it also
attenuated TNF-a- and interferon-c-induced damage to HT-
29/B6 cell monolayers (7). Using Caco-2 monolayers, the
mechanism may be through the assembly of the tight junction
proteins, ZO-2, occludin, and claudin-1 by inhibiting PKCd
(231). When a low dose of quercetin was given to BALB/c
mice, changes in the small intestine gene expression involved
downregulation of genes related to calcium signaling and
lipid metabolism, and upregulation of genes related to ribo-
somal protein and xenobiotic metabolism (176). In human
colonic LS180 cells and Caco-2 cells, quercetin suppressed
endoplasmic reticulum stress caused by calcium dynamics
dysregulation by the inhibition of PI3K (175). Quercetin
inhibited TNF-induced interferon-c-inducible protein 10
(IP-10) and macrophage inflammatory protein 2 (MIP-2) pro-
inflammatory gene expression in murine small intestinal
epithelial Mode-K cells. In comparison, quercetin given or-
ally to heterozygous TNFdARE/WT mice, a model of ex-
perimental ileitis, inhibited IP-10 and MIP-2 gene expression
in ileal epithelial cells without affecting tissue pathology
(208).

In C57BL/6 mice fed quercetin, transcriptomic analysis
showed that genes involved in fatty acid metabolism and
glutathione metabolism were modulated in the small intestine
(172). In the distal colon of rats fed quercetin chronically,
transcriptomic analysis showed that the MAPK pathway was
downregulated, tumor suppressor genes, including phospha-
tase and tensin homolog (PTEN), Tp53, and Msh2, cell cycle
inhibitors, including MUTYH, a DNA glycosylase involved
in DNA repair, and genes involved in phase I and II metab-
olism, including the flavin-containing dimethylaniline
monooxygenase 5, epoxide hydrolase, and glutathione per-
oxidase, were upregulated, together with PPARa target
genes, and enhanced expression of genes involved in mito-
chondrial fatty acid degradation. Transcriptome changes
were poorly correlated with the proteome, but both indicated
altered energy metabolism, and showed that quercetin
evoked changes contrary to those observed in colorectal
carcinogenesis. In vivo, tumor-protective mechanisms and a
shift in energy production pathways indicated decreased
cytoplasmic glycolysis and increased mitochondrial fatty
acid degradation (59). In contrast, when Caco-2 cells were
treated with quercetin (stabilized by ascorbate against deg-
radation; see Fig. 6), genes involved in cell survival and
proliferation were affected, genes involved in tumor sup-
pression were downregulated, and oncogenes were upregu-
lated (58). There are many studies on the interaction of

quercetin with HT29 cells, but, in general, quercetin is much
more toxic to proliferating cancer cells during replication
compared with cells post-differentiation when the culture
model is more representative of the established tissue phe-
notypic functionalities (3).

Effect of flavonoids on pancreas and pancreatic cells

Effect of quercetin on pancreas and pancreatic cells
in vivo. Numerous in vitro studies on quercetin and pan-
creatic cells have been reported, and some of these have also
been supported by studies on animal models in vivo. Quer-
cetin given orally significantly attenuated the severity of
cerulein-induced acute pancreatitis in mice as shown by re-
duction in pancreatic weight, pro-inflammatory cytokines,
myeloperoxidase activity, increased anti-inflammatory cy-
tokine IL-10, and suppression of pancreatic edema (34).
Streptozotocin induces pancreatic damage via uptake into b
cells via GLUT2 (67). Streptozotocin-treated rats can be a
model for hyperglycemia, type 1 diabetes, or type 2 diabetes
depending on the dose used (67); in the type 1 model, quer-
cetin protected and preserved pancreatic b cell architecture,
attenuated the increase in plasma glucose (2), and prevented
islet cell degeneration (45). In rats fed a high-fat diet to in-
duce hypertriglyceridemia with acute pancreatitis induced by
an intraperitoneal injection of cerulein, quercetin reduced
plasma amylase, attenuated pancreatic histopathological
damage, reduced the mRNA and protein expression of in-
flammatory mediators NF-jB, IL-1b, IL-6, and TNF-a, and
downregulated gene and protein expression levels of IRE1a,
sXBP1, C/EBPa, and C/EBPb (281).

Quercetin reduced serum insulin and leptin, blocked islet
hyperplasia in fructose-fed rats, a model of type 2 diabetes,
and also prevented fructose-induced b cell proliferation and
insulin hypersecretion in INS-1 b-cells (133). Quercetin
counteracted the cholesterol-induced activation of the NF-jB
pathway in the pancreas of rats fed high cholesterol, nor-
malizing the expression of pro-inflammatory cytokines (33).
Dietary supplementation of quercetin attenuated the growth
of transplanted pancreatic tumor xenografts in a nude mouse
model (10). Many of these studies indicate a protective effect
of quercetin against pancreatic cancer development, but the
doses used in these studies were mostly pharmacological
rather than dietary. In a study on 76 patients suffering acute
pancreatitis, pre-operative treatment with quercetin sub-
stantially reduced the organ dysfunction rate as well as
polyorgan insufficiency (50).

Effect of quercetin on pancreas and pancreatic cells
in vitro. There is a scarcity of human cell lines available for
studying pancreatic b cells and the most commonly used cell
line, INS-1, is derived from mice. In this cell line and in isolated
pancreatic islets from rats, quercetin stimulated insulin secretion
by increasing Ca2+ influx through an interaction with L-type
Ca2+ channels (15). Quercetin induces the microRNA let-7c in
cells, and in vivo, xenotransplantation of PDAC cells with an
intravenous injection of let-7c decreased tumor mass in the fer-
tilized chick egg model (180). Quercetin downregulated cellular
FLICE-like inhibitory protein, whose overexpression was able to
rescue pancreatic cancer cells from TNF-related apoptosis-
inducing ligand/quercetin-induced apoptosis (120). In Min6
cells, quercetin counteracted cholesterol-induced activation of
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the NF-jB pathway, normalized expression of pro-inflammatory
cytokines (33), and inhibited the growth of two human pancre-
atic cancer cell lines by inducting apoptosis (10).

Interaction of epicatechin and green tea with pancreas and
pancreatic cells. Epicatechin protected INS-1E pancreatic
b cells from tert-butylhydroperoxide-induced damage, by
preventing increased ROS, carbonyl groups, p-JNK expres-
sion, and cell death, and recovering insulin secretion (148). A
combination of sulforaphane, quercetin, and green tea cate-
chins inhibited PDAC progression by inducing the micro-
RNA let7-a and inhibiting the proto-oncogene K-ras in two
established, one primary PDAC cell line, and in nonmalig-
nant pancreatic ductal cells (11). In premalignant and ma-
lignant K-ras-activated PDAC cells, epicatechin decreased
proliferation, GTP-bound Ras protein, Akt phosphorylation,
and NF-jB transcriptional activity, but it had no observable
effect on normal pancreatic ductal epithelial cells. Further,
oral administration of epicatechin-containing cocoa poly-
phenols inhibited the growth of K-ras-PDAC cell-originated
tumors in a xenograft mouse model (219). In another in vitro
study in human PDAC cells, the two minor green tea cate-
chins, epicatechin gallate and catechin gallate, had much
stronger anti-proliferative and anti-inflammatory effects, in-
cluding inhibition of NF-jB, IL-8, and uPA, than EGCG
(126). Epicatechin inhibited IL-1b-induced inducible nitric
oxide synthase (iNOS) expression by downregulating NF-jB
activation, and protecting RINm5F b cells and islets from the
effects of IL-1b (122). In streptozotocin-treated rats, epica-
techin protected from hyperglycemia and weight loss, and it
preserved islet morphology and insulin release (121).

Effect of flavonoids on breast cancer tissue and cells

Effect of quercetin on breast cancer tissues and
cells. The effect of quercetin on various cell models for
breast cancer has been extensively studied. Most in vitro
studies have been performed on estrogen receptor (ER)-
positive MCF-7 and on ER-negative MDA-MB-231 cells,
and a comparison between the two cell lines provides infor-
mation on the role of the ER. Quercetin inhibited the growth
of MCF-7 cells, promoted apoptosis by inducing G0/G1
phase arrest, and regulated the mRNA expression of survivin
(56). At a very high concentration, quercetin at 150 lM in-
duced apoptosis by direct activation of the caspase cascade
through the mitochondrial pathway (40). Quercetin induced
partial co-localization of phospho-Akt and phospho-AMPK
in the nucleus of MCF-7 breast cancer cells (130). Quercetin-
3-O-glucuronide, one of the main human phase II metabolites
of quercetin in blood, showed ERa- and ERb-dependent es-
trogenic activity in MCF-7 cells (209). Quercetin can reverse
tamoxifen resistance in breast cancer MCF-7Ca/TAM-R
cells, involving upregulation of ERa and downregulation of
Her-2 (receptor tyrosine-protein kinase erbB-2), an epider-
mal growth factor receptor and oncogene target in breast
cancer (252). In MDA-MB-453 cells, high concentrations of
quercetin (100 lM) increased the number of sub-G1 phase
cells, increased apoptosis, increased Bax expression, de-
creased Bcl-2 expression, and increased cleaved caspase-3
and poly[ADP-ribose]polymerase 1 expression (39). Quer-
cetin (100 lM) showed cytotoxicity in MCF-7 cells, but not
in MDA-MB-231, by suppressing expression of cyclin D1,

p21, Twist, and phospho-p38MAPK, which induced apo-
ptosis in MCF-7 cells (202). Quercetin-3-O-glucuronide at a
very low concentration (0.1 lM) suppressed invasion of
MDA-MB-231 breast cancer cells and MMP-9 induction, by
controlling b2-adrenergic signaling (271). Quercetin with
vitamin C decreased Nrf2 mRNA and protein levels and of
endogenous ROS in MDA-MB 231, MDA-MB 468, A549,
and MCF-7 breast cancer cells (164). Quercetin and EGCG
concentration dependently inhibited deoxy-d-glucose uptake
by both MCF-7 and MDA-MB-231 cells, and both com-
pounds blocked lactate production by MCF-7 cells (163).
Quercetin can also increase the sensitivity of breast cancer
cells to doxorubicin through downregulation of phospho-Akt
expression arising from increased expression of PTEN; this
protein functions as a tumor suppressor by negatively regu-
lating the Akt/Protein Kinase B signaling pathway (135).

Quercetin has been studied in animal models for anti-
breast cancer activity. After 3 weeks, it decreased tumor
growth, limited oncocyte proliferation, promoted tumor ne-
crosis in female BALB/c nude mice injected with MCF-7
cells into the mammary fat, inhibited tumor calcineurin
(calcium- and calmodulin-dependent serine/threonine pro-
tein phosphatase) activities, and inhibited angiogenesis.
In vitro, it also inhibited calcineurin activity (280). Quercetin
dose dependently decreased tumor number and volume in a
transgenic C3(1)/SV40 Tag breast cancer mouse model of
human breast cancer, and at the lowest dose of 0.2% of diet,
31 genes were downregulated and 9 genes were upregulated
more than twofold (227). Quercetin improved the therapeutic
index of the anthracycline antibiotic doxorubicin by its op-
posing effects on HIF-1a in 4T1 tumor cells and in murine
normal spleen cells evaluated in BALB/c mice with 4T1
breast cancer. It suppressed intratumoral HIF-1a in a
hypoxia-dependent manner in tumor cells, but in contrast
increased its accumulation in normal cells (62). However, a
study has claimed that quercetin does not confer protection
against breast cancer, does not inhibit endogenous estrogen
17b-estradiol E(2)-induced oxidant stress, and may even
exacerbate breast carcinogenesis in E(2)-treated female ACI
rats (224).

Effect of epicatechin and green tea on breast cancer tis-
sue and cells. MMPs play an important role in tissue re-
construction near proliferating cells of malignant neoplasms
during cancer metastasis, whereas, significantly, low levels
of tissue inhibitor of matrix metalloproteinase-3 (TIMP-3)
protein expression in breast cancer have been reported to be
correlated with an aggressive cancer phenotype. EGCG at
20 lM was reported to mediate epigenetic activation of
TIMP-3 levels, resulting in suppression of invasiveness and
gelatinolytic activity of MMP-2 and MMP-9 in MDA-MB-
231 and MCF-7 breast cancer cells (54, 173). Although both
EGCG and EGC at 30 lM inhibited heregulin-1-induced
migration and invasion of MCF-7 cells, EGCG action was
shown to be due to downregulation of the ErbB2/ErbB3/
PI3K/Akt signaling, whereas (-)-epigallocatechin (EGC)
exerted these effects through pathways involved in the inhi-
bition of ErbB2/ErbB3 but not Akt (127). These data suggest
that EGCG and EGC reduce MMP-9 expression through
different signaling pathways and are in agreement with an
indirect mechanism of action on MMPs as direct binding of
EGCG to MMP-2 was very weak (210).
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Inhibition of NF-jB activity is believed to disrupt the
metastatic potential of mammary epithelial cells in a model
system through regulation of genes linked to cell motility,
invasion, and metastasis, including the genes encoding
MMPs. The inhibitory effect of epicatechin at 10 lM on in-
vasion of cancer cells into embryonic stem cell-derived,
vascularized tissues was attributed to downregulation of
MMP-9 expression (91). Finally, the inhibitory activity of
EGCG in cancer progression and invasion was also seen in
mouse mammary cancer cells through activation of Forkhead
box O transcription factor, the major regulator of ERa sig-
naling. This led to repression of epithelial-to-mesenchymal
transformation, halting the generation of the mesenchymal
phenotype that has highly invasive characteristics, causing
the primary cancer to emigrate (17). The presence of ERa is
considered a good prognostic factor and correlates with a
higher degree of cancer differentiation (47), whereas recent
research has shown that high levels of MMP-9 were nega-
tively correlated with ER (267).

Synergistic Effects of Polyphenols in Chemotherapy

Green tea catechins have been tested as an adjuvant in
chemotherapy. Some studies have reported beneficial effects
of EGCG or green tea extract with anticancer drugs, such
as bleomycin in cervical cancer cells, cisplatin in vitro in
various cancer cell lines and in mouse models in vivo, ta-
moxifen in human breast cancer cells in vitro, and negative
effects with bortezomib, diminishing its antitumor effects
in CWR22 xenograft-bearing breast cancer mice (30). The
positive reported outcomes of green tea catechins and
mainly of EGCG were related to induction of apoptosis
and ROS, caspase activity, and in the case of cisplatin re-
duction of drug resistance and amelioration of cisplatin
treatment side effects. EGCG was found to inhibit the
transport activity of P-glycoprotein (ABCB1) and may be an
effective P-glycoprotein modulator, one of the main trans-
porters conferring drug resistance, while it also increased
chemotherapy drug accumulation in multidrug-resistant
cells (259).

However, such interactions could also unexpectedly af-
fect the pharmacokinetics and bioavailability of co-
administered chemotherapeutic agents in cancer patients
and, as such, influence its efficacy and toxicity profile. A
total of 80 clinical trials involving both green tea and cancer
are listed in clinicalTrials.gov focusing on treatment, pre-
vention, or risk reduction of reoccurrence of breast, prostate,
colon, and lung cancer and many other conditions. Inter-
estingly, a study in progress focuses on patients with pre-
malignant lesions of the head and neck after treatment with
erlotinib and EGCG. In in vitro work treatment of squamous
cell carcinoma of the head and neck cell lines with erlotinib
activated p53. This activation had a critical role in the
synergistic growth inhibition by erlotinib and EGCG via the
NF-jB signaling pathway (8). Erlotinib is a tyrosine ki-
nase inhibitor that targets the receptor of epidermal growth
factor. However, when used as a ‘‘monotherapy,’’ it is
known to increase vascular endothelial growth factor pro-
duction by mechanisms involving CYP1A2, oxidative
stress, and MEK1/2, thereby possibly favoring angiogenesis
and growth of early hepatocellular tumors, and so limiting
the therapeutic and chemopreventive effects of erlotinib

(206). A previous clinical trial showed a significant reduc-
tion in serum levels of prostate-specific antigen, hepatocyte
growth factor, and vascular endothelial growth factor in men
with prostate cancer after brief treatment with EGCG (154).
In that light, the potential of EGCG to restrict such adverse
effects of erlotinib through combined mechanisms remains
to be seen.

In comparison, a total of eight studies are listed in clin-
icalTrials.gov involving quercetin in patients undergoing
chemotherapy. In an ongoing study, for example, quercetin
is explored for its potential to activate AMPK and overcome
the fatigue side effects of sunitinib in patients with kidney
cancer.

Although studies in healthy volunteers are usually con-
ducted in a randomized, placebo-controlled, cross-over, or
parallel design depending on the power of the study, clinical
trials on cancer patients are mainly open labeled and single-
group assignment, the endpoint being closely relevant to the
drug treatment and cancer condition. Although these pa-
rameters are dictated by the ethical aspects of the study when
dealing with patients, nonetheless, they can compromise the
significance of the effects.

Conclusions

The interplay between oxygen availability and metabolism
is key to a detailed understanding of how a tissue responds
to hypoxia, especially in the case of cancer. The orchestrated
activities of related kinase cascades, nuclear factors, and
transcriptional modifications define the fate of the cell whe-
ther activating antioxidant responses or entering the apo-
ptotic phase. Phytochemicals and flavonoids, as such, are
believed to have a role to play in maintaining the overall
cellular redox balance, and evidence points to a beneficial
impact through interactions with specific high-affinity mo-
lecular targets as described here. However, natural com-
pounds cannot be seen as a panacea, especially when taking
into account differences between biological settings in health
and disease.

Given that quercetin, for example, is known to partly ac-
cumulate in mitochondria (72), there is no doubt that in
compromised, damaged mitochondria with lower capacity
for stress responses, potential bioactivities will be magnified.
Although quercetin aglycone plasma levels are usually low,
due to its extensive metabolism, circulating glucuronides,
sulfates, and O-methylated forms of quercetin may also
produce beneficial effects as both the flavonoid and the O-
methylated flavonoid glucuronides may be de-conjugated
by b-glucuronidases present in human tissues, in particular
at the inflammatory sites (106, 113, 191). However, taking
into account the fact that solid tumors usually have de-
creased blood flow and that the metabolic modifications
in vivo to the quercetin structure restrict its bioavailability,
together with the inhomogeneous nature of cancers, the
window for clinical efficacy of quercetin in cancer seems
to be narrow in the established tumor, not excluding pos-
sible beneficial effects on chemoprevention at the initial
stages of cancer progression. Although green tea catechins
have been widely studied for cancer chemoprevention, and
epidemiology strongly supports a beneficial role, research
outcomes summarized here highlight key activities in revers-
ing root-and-cause inflammatory excursions and, therefore,
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improving the overall clinical symptoms of cancer. Intra-
person variability and cancer type are also expected to impact
the beneficial clinical potential of polyphenols considering
changes in phase II detoxifying enzymes affecting hepato-
biliary excretion.

Nonetheless, synergistic interactions of flavonoids with
standard chemotherapeutics are becoming the objective of
further research in the area as both in vitro and in vivo studies
have indicated that both quercetin and EGCG could enhance
their bioavailability and accumulation while sensitizing
cancer cells to their actions and reversing side effects. From
a clinical perspective, this would allow potential dose re-
duction of drug toxicity and help prevent severe side effects
in the clinic, while providing another avenue to maximize
outcomes at minimal cost.
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Abbreviations Used

ABC¼ATP-binding cassette
ACC¼ acetyl-CoA carboxylase

ADME¼ absorption, disposition, metabolism,
excretion

AMPK¼AMP-activated protein kinase
Bax¼B-cell lymphoma-2-like protein 4

CAMK¼Ca2+/calmodulin-regulated serine/threonine
kinase

cFLIP¼ cellular FLICE-like inhibitory protein
COMT¼ catechol-O-methyltransferase

COX¼ cyclooxygenase
CPT¼ carnitine palmitoyl transferase
CYP¼ cytochrome P450

DAPK1¼ death-associated protein kinase 1
DRAK2¼ serine/threonine kinase 17B

EGC¼ (-)-epigallocatechin
EGCG¼ (-)-epigallocatechin gallate

ER¼ estrogen receptor
ERK¼ extracellular signal-regulated kinase
ETC¼ electron transport chain

FASN¼ fatty acid synthase
G6PC¼ glucose-6-phosphatase
GLUT¼ glucose transporter

HIB¼ 3-hydroxyisobutyryl-CoA
HIF-1a¼ hypoxia-inducible factor-1a

HLE¼ human leucocyte elastase
HO-1¼ heme oxygenase 1

HUVEC¼ human umbilical vein endothelial cell
IL¼ interleukin

IP-10¼ inducible protein 10
IRS-1¼ insulin receptor substrate-1

JNK¼ c-jun-N-terminal kinase
LOA¼ loss of attachment
LPH¼ lactase phlorizin hydrolase

MAPK¼mitogen-activated protein kinase
MCT¼monocarboxylate transporter
MEK¼mitogen-activated protein kinase kinase

MIP-2¼macrophage inflammatory protein 2
MMP¼matrix metalloproteinase
MRP¼multidrug resistance-associated protein

NF-jB¼ nuclear factor kappa-light-chain-enhancer
of activated B cells

NO¼ nitric oxide
NOX1¼NADPH oxidase 1
NQO1¼ quinone reductasequinone oxidoreductase

Nrf2¼ nuclear factor (erythroid-derived 2)-like 2
OAT¼ organic anion transporter

OATP¼ organic anion-transporting polypeptide
OXPHOS¼ oxidative phosphorylation

PDAC¼ pancreatic ductal adenocarcinoma
PDC¼ pyruvate dehydrogenase complex
PDK¼ pyruvate dehydrogenase kinase

PGC1a¼ PPARc coactivator 1a
PhIP¼ 2-amino-1-methyl-6-phenylimidazo[4,5-b]

pyridine
PI3K¼ phosphatidylinositol-4,5-bisphosphate

3-kinase
PI3K¼ phosphoinositide 3-kinase
PKC¼ protein kinase C

PPAR¼ peroxisome proliferator-activated receptor
PTEN¼ phosphatase and tensin homolog

PTK¼ protein tyrosine kinase
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

SIRT1¼NAD+-dependent histone/protein deacetylase
sirtuin 1

SULT¼ sulfotransferase
TCA¼ tricarboxylic acid

TIMP-3¼ tissue inhibitor of matrix metalloproteinase-3
TNF¼ tumor necrosis factor
UGT¼ uridine diphosphate glucuronosyl transferase
XOR¼ xanthine oxidoreductase
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