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Abstract

Complementation, the inverse of the reduced product operation, is a technique for system-
atically finding minimal decompositions of abstract domains. Filé and Ranzato advanced
the state of the art by introducing a simple method for computing a complement. As an
application, they considered the extraction by complementation of the pair-sharing domain
PS from the Jacobs and Langen’s set-sharing domain SH . However, since the result of this
operation was still SH , they concluded that PS was too abstract for this. Here, we show that
the source of this result lies not with PS but with SH and, more precisely, with the redundant
information contained in SH with respect to ground-dependencies and pair-sharing. In fact,
a proper decomposition is obtained if the non-redundant version of SH , PSD , is substituted
for SH . To establish the results for PSD , we define a general schema for subdomains of SH

that includes PSD and Def as special cases. This sheds new light on the structure of PSD

and exposes a natural though unexpected connection between Def and PSD . Moreover, we
substantiate the claim that complementation alone is not sufficient to obtain truly minimal

decompositions of domains. The right solution to this problem is to first remove redundancies
by computing the quotient of the domain with respect to the observable behavior, and only
then decompose it by complementation.

KEYWORDS: Abstract interpretation, domain decomposition, complementation, sharing
analysis

1 Introduction

Complementation (Cortesi et al., 1997), which is the inverse of the well-known

reduced product operation (Cousot & Cousot, 1979), can systematically obtain

minimal decompositions of complex abstract domains. It has been argued that these

ã This work was partly supported by EPSRC under grant GR/M05645.
† The work of the first and third authors has been partly supported by MURST project “Certificazione

automatica di programmi mediante interpretazione astratta.”
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decompositions would be useful in finding space saving representations for domains

and to simplify domain verification problems.

Filé & Ranzato (1996) presented a new method for computing the complement,

which is simpler than the original proposal by Cortesi et al. (1995, 1997) because it

has the advantage that, to compute the complement, only a relatively small number

of elements (namely the meet-irreducible elements of the reference domain) need be

considered. As an application of this method, the authors considered the Jacobs &

Langen’s (1992) sharing domain, SH , for representing properties of variables such

as groundness and sharing. This domain captures the property of set-sharing. Filé

and Ranzato illustrated their method by minimally decomposing SH into three

components; using the words of the authors (Filé & Ranzato, 1996, Section 1):

“[. . . ] each representing one of the elementary properties that coexist in the elements of
Sharing, and that are as follows: (i) the ground-dependency information; (ii) the pair-sharing
information, or equivalently variable independence; (iii) the set-sharing information, without
variable independence and ground-dependency.”

However, this decomposition did not use the usual domain PS for pair-sharing. Filé

and Ranzato observed that the complement of the pair-sharing domain PS with

respect to SH is again SH and concluded that PS was too abstract to be extracted

from SH by means of complementation. Thus, in order to obtain their non-trivial

decomposition of SH , they used a different (and somewhat unnatural) definition for

an alternative pair-sharing domain, called PS ′. The nature of PS ′ and its connection

with PS is examined more carefully in Section 6.

We noticed that the reason why Filé and Ranzato obtained this result was not

to be found in the definition of PS , which accurately represents the property of

pair-sharing, but in the use of the domain SH to capture the property of pair-

sharing. Bagnara et al. (1997, 2001) observed that, for most (if not all) applications,

the property of interest is not set-sharing but pair-sharing. Moreover, it was shown

that, for groundness and pair-sharing, SH includes redundant elements. By defining

an upper closure operator ρ that removed this redundancy, a much smaller domain

PSD , which was denoted SH ρ in Bagnara et al. (1997), was found that captured pair-

sharing and groundness with the same precision as SH . We show here that using the

method given in Filé & Ranzato (1996), but with this domain instead of SH as the

reference domain, a proper decomposition can be obtained even when considering

the natural definition of the pair-sharing domain PS . Moreover, we show that PS

is exactly one of the components obtained by complementation of PSD . Thus the

problem exposed by Filé and Ranzato was, in fact, due to the ‘information preserving’

property of complementation, as any factorization obtained in this way is such that

the reduced product of the factors gives back the original domain. In particular, any

factorization of SH has to encode the redundant information identified in Bagnara

et al. (1997, 2001). We will show that such a problem disappears when PSD is used

as the reference domain.

Although the primary purpose of this work is to clarify the decomposition of

the domain PSD , the formulation is sufficiently general to apply to other properties

that are captured by SH . The domain Pos of positive Boolean functions and its

subdomain Def , the domain of definite Boolean functions, are normally used for
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capturing groundness (Armstrong et al., 1998). Each Boolean variable has the value

true if the program variable it corresponds to is definitely bound to a ground term.

However, the domain Pos is isomorphic to SH via the mapping from formulas in

Pos to the set of complements of their models (Codish & Søndergaard, 1998). This

means that any general result regarding the structure of SH is equally applicable to

Pos and its subdomains.

To establish the results for PSD , we define a general schema for subdomains

of SH that includes PSD and Def as special cases. This sheds new light on the

structure of the domain PSD , which is smaller but significantly more involved

than SH .1 Of course, as we have used the more general schematic approach, we

can immediately derive (where applicable) corresponding results for Def and Pos .

Moreover, an interesting consequence of this work is the discovery of a natural

connection between the abstract domains Def and PSD . The results confirm that

PSD is, in fact, the ‘appropriate’ abstraction of the set-sharing domain SH that has

to be considered when groundness and pair-sharing are the properties of interest.

The paper, which is an extended version of Zaffanella et al. (1999), is structured

as follows. In Section 2 we briefly recall the required notions and notations, even

though we assume general acquaintance with the topics of lattice theory, abstract

interpretation, sharing analysis and groundness analysis. Section 3 introduces the

SH domain and several abstractions of it. The meet-irreducible elements of an

important family of abstractions of SH are identified in Section 4. This is required

in order to apply, in Section 5, the method of Filé and Ranzato to this family. In

Section 6 we present some final remarks and we explain what is, in our opinion, the

lesson to be learned from this and other related work. Section 7 concludes.

2 Preliminaries

For any set S , ℘(S) denotes the power set of S and # S is the cardinality of S .

A preorder ‘�’ over a set P is a binary relation that is reflexive and transitive.

If ‘�’ is also antisymmetric, then it is called partial order. A set P equipped with

a partial order ‘�’ is said to be partially ordered and sometimes written 〈P ,�〉.
Partially ordered sets are also called posets.

A poset 〈P ,�〉 is totally ordered with respect to ‘�’ if, for each x, y ∈ P , either

x � y or y � x. A subset S of a poset 〈P ,�〉 is a chain if it is totally ordered with

respect to ‘�’.

Given a poset 〈P ,�〉 and S ⊆ P , y ∈ P is an upper bound for S if and only if

x � y for each x ∈ S . An upper bound y for S is a least upper bound (or lub) of

S if and only if, for every upper bound y′ for S , y � y′. The lub, when it exists, is

unique. In this case we write y = lub S . Lower bounds and greatest lower bounds (or

glb) are defined dually.

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y} exist,

is called a lattice. In this case, lub and glb are also called, respectively, the join

1 For the well acquainted with the matter: SH is a powerset and hence it is dual-atomistic; this is not
the case for PSD .
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and the meet operations of the lattice. A complete lattice is a lattice 〈L,�〉 such

that every subset of L has both a least upper bound and a greatest lower bound.

The top element of a complete lattice L, denoted by ⊤, is such that ⊤ ∈ L and

∀x ∈ L : x � ⊤. The bottom element of L, denoted by ⊥, is defined dually.

As an alternative definition, a lattice is an algebra 〈L,∧,∨〉 such that ∧ and ∨
are two binary operations over L that are commutative, associative, idempotent,

and satisfy the following absorption laws, for each x, y ∈ L: x ∧ (x ∨ y) = x and

x ∨ (x ∧ y) = x.

The two definitions of lattice are equivalent. This can be seen by defining:

x � y
def

⇐⇒ x ∧ y = x
def

⇐⇒ x ∨ y = y

and

glb{x, y}
def
= x ∧ y,

lub{x, y}
def
= x ∨ y.

The existence of an isomorphism between the two lattices L1 and L2 is denoted by

L1 ≡ L2.

A monotone and idempotent self-map ρ : P → P over a poset 〈P ,�〉 is called a

closure operator (or upper closure operator) if it is also extensive, namely

∀x ∈ P : x � ρ(x).

Each upper closure operator ρ over a complete lattice C is uniquely determined by

the set of its fixpoints, i.e. by its image

ρ(C)
def
= { ρ(x) | x ∈ C }.

We will often denote upper closure operators by their images. The set of all upper

closure operators over a complete lattice C , denoted by uco(C), forms a complete

lattice ordered as follows: if ρ1, ρ2 ∈ uco(P ), ρ1 ⊑ ρ2 if and only if ρ2(C) ⊆ ρ1(C).

The reduced product of two elements ρ1 and ρ2 of uco(C) is denoted by ρ1 ⊓ ρ2 and

defined as

ρ1 ⊓ ρ2
def
= glb{ρ1, ρ2}.

For a more detailed introduction to closure operators, the reader is referred elsewhere

(Gierz et al., 1980).

A complete lattice C is meet-continuous if for any chain Y ⊆ C and each x ∈ C ,

x ∧
(

∨

Y
)

=
∨

y∈Y

(x ∧ y).

Most domains for abstract interpretation (Cortesi et al., 1997) and, in particular, all

the domains considered in this paper are meet-continuous.

Assume that C is a meet-continuous lattice. Then the inverse of the reduced

product operation, called weak relative pseudo-complement, is well defined and given

as follows. Let ρ, ρ1 ∈ uco(C) be such that ρ ⊑ ρ1. Then

ρ ∼ ρ1
def
= lub{ ρ2 ∈ uco(C) | ρ1 ⊓ ρ2 = ρ }.

Given ρ ∈ uco(C), the weak pseudo-complement (or, by an abuse of terminology now
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customary in the field of Abstract Interpretation, simply complement) of ρ is denoted

by id C ∼ ρ, where idC is the identity over C . Let Di
def
= ρDi

(C) with ρDi
∈ uco(C) for

i = 1, . . . , n. Then {Di | 1 6 i 6 n } is a decomposition for C if C = D1 ⊓ · · · ⊓ Dn.

The decomposition is also called minimal if, for each k ∈ N with 1 6 k 6 n and

each Ek ∈ uco(C), Dk @ Ek implies

C @ D1 ⊓ · · · ⊓ Dk−1 ⊓ Ek ⊓ Dk+1 ⊓ · · · ⊓ Dn.

Assume now that C is a complete lattice. If X ⊆ C , then Moore(X) denotes the

Moore completion of X, namely,

Moore(X)
def
= {

∧

Y | Y ⊆ X } .

We say that C is meet-generated by X if C = Moore(X). An element x ∈ C is

meet-irreducible if

∀y, z ∈ C :
(

(x = y ∧ z) =⇒ (x = y or x = z)
)

.

The set of meet-irreducible elements of a complete lattice C is denoted by MI(C).

Note that ⊤ ∈ MI(C). An element x ∈ C is a dual-atom if x 6= ⊤ and, for each y ∈ C ,

x 6 y < ⊤ implies x = y. The set of dual-atoms is denoted by dAtoms(C). Note that

dAtoms(C) ⊂ MI(C). The domain C is dual-atomistic if C = Moore
(

dAtoms(C)
)

.

Thus, if C is dual-atomistic, MI(C) = {⊤} ∪ dAtoms(C). The following result

holds (Filé and Ranzato 1996, Theorem 4.1).

Theorem 1

If C is meet-generated by MI(C) then uco(C) is pseudo-complemented and for any

ρ ∈ uco(C)

id C ∼ ρ = Moore
(

MI(C) \ ρ(C)
)

.

Another interesting result is the following (Filé and Ranzato 1996, Corollary 4.5).

Theorem 2

If C is dual-atomistic then uco(C) is pseudo-complemented and for any ρ ∈ uco(C)

id C ∼ ρ = Moore
(

dAtoms(C) \ ρ(C)
)

.

Let Vars be a denumerable set of variables. For any syntactic object o, vars(o)

denotes the set of variables occurring in o. Let TVars be the set of first-order

terms over Vars . If x ∈ Vars and t ∈ TVars \ {x}, then x 7→ t is called a binding.

A substitution is a total function σ : Vars → TVars that is the identity almost

everywhere. Substitutions are denoted by the set of their bindings, thus a substitution

σ is identified with the (finite) set

{ x 7→ σ(x) | x 6= σ(x) }.

If t ∈ TVars , we write tσ to denote σ(t). A substitution σ is idempotent if, for all

t ∈ TVars , we have tσσ = tσ. The set of all idempotent substitutions is denoted by

Subst .

It should be stressed that this restriction to idempotent substitutions is provided

for presentation purposes only. In particular, it allows for a straight comparison of
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our work with respect to other works appeared in the literature. However, the results

proved in this paper do not rely on the idempotency of substitutions and are therefore

applicable also when considering substitutions in rational solved form (Colmerauer,

1982, 1984). Indeed, we have proved (Hill, Bagnara & Zaffanella, 1998) that the usual

abstract operations defined on the domain SH , approximating concrete unification

over finite trees, also provide a correct approximation of concrete unification over a

domain of rational trees.

3 The Sharing domains

In order to provide a concrete meaning to the elements of the set-sharing domain

of Jacobs and Langen (Jacobs & Langen, 1989, 1992; Langen, 1990), a knowledge

of the finite set VI ⊂ Vars of variables of interest is required. For example, in the

PhD thesis of Langen (Langen, 1990) this set is implicitly defined, for each clause

being analyzed, as the finite set of variables occurring in that clause. A clearer

approach has been introduced (Cortesi et al., 1994, 1998) and also adopted (Bagnara

et al., 1997, 2001; Cortesi & Filé, 1999), where the set of variables of interest

is given explicitly as a component of the abstract domain. During the analysis

process, this set is elastic. That is, it expands (e.g. when solving clause’s bodies)

and contracts (e.g. when abstract descriptions are projected onto the variables

occurring in clause’s heads). This technique has two advantages: first, a clear and

unambiguous description of those semantic operators that modify the set of variables

of interest is provided; second, the definition of the abstract domain is completely

independent from the particular program being analyzed. However, since at any

given time the set of variables of interest is fixed, we can simplify the presentation

by consistently denoting this set by VI . Therefore, in this paper all the abstract

domains defined are restricted to a fixed set of variables of interest VI of finite

cardinality n; this set is not included explicitly in the representation of the domain

elements; also, when considering abstract semantic operators having some arguments

in Subst , such as the abstract mgu, the considered substitutions are always taken

to have variables in VI . We would like to emphasize that this is done for ease of

presentation only: the complete definition of both the domains and the semantic

operators can be immediately derived from those given, for instance, in Bagnara

et al. (1997, 2001). Note that other solutions are possible; we refer the interested

reader elsewhere (Cortesi, Filé & Winsborough, 1996, Section 7) (Scozzari, 2001,

Section 10), where this problem is discussed in the context of groundness analysis.

3.1 The set-sharing domain SH

Definition 1

(The set-sharing domain SH .) The domain SH is given by

SH
def
= ℘(SG),

where the set of sharing-groups SG is given by

SG
def
= ℘(VI ) \ {∅}.
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SH is partially ordered by set inclusion so that the lub is given by set union and

the glb by set intersection.

Note that, as we are adopting the upper closure operator approach to abstract

interpretation, all the domains we define here are ordered by subset inclusion. As

usual in the field of abstract interpretation, this ordering provides a formalization

of precision where the less precise domain elements are those occurring higher in

the partial order. Thus, more precise elements contain less sharing groups.

Since SH is a power set, SH is dual-atomistic and

dAtoms(SH ) = { SG \ {S} | S ∈ SG }.

In all the examples in this paper, the elements of SH are written in a simplified

notation, omitting the inner braces. For instance, the set

{{x}, {x, y}, {x, z}, {x, y, z}}

would be written simply as

{x, xy, xz, xyz}.

Example 1

Suppose VI = {x, y, z}. Then the seven dual-atoms of SH are:

s1 = { y, z, xy, xz, yz, xyz},
s2 = {x, z, xy, xz, yz, xyz},
s3 = {x, y, xy, xz, yz, xyz},







these lack a singleton;

s4 = {x, y, z, xz, yz, xyz},
s5 = {x, y, z, xy, yz, xyz},
s6 = {x, y, z, xy, xz, xyz},







these lack a pair;

s7 = {x, y, z, xy, xz, yz }, this lacks VI .

The meet-irreducible elements of SH are s1, . . . , s7, and the top element SG .

Definition 2

(Operations over SH .) The function bin: SH × SH → SH , called binary union, is

given, for each sh1, sh2 ∈ SH , by

bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2}.

The star-union function (·)⋆ : SH → SH is given, for each sh ∈ SH , by

sh⋆ def
=

{

S ∈ SG
∣

∣

∣
∃sh ′ ⊆ sh . S =

⋃

sh ′
}

.

The j-self-union function (·)j : SH → SH is given, for each j > 1 and sh ∈ SH , by

shj def
=

{

S ∈ SG
∣

∣

∣
∃sh ′ ⊆ sh .

(

# sh ′
6 j, S =

⋃

sh ′
)}

.

The extraction of the relevant component of an element of SH with respect to a

subset of VI is encoded by the function rel : ℘(VI ) × SH → SH given, for each

V ⊆ VI and each sh ∈ SH , by

rel(V , sh)
def
= {S ∈ sh | S ∩ V 6= ∅}.
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The function amgu captures the effects of a binding x 7→ t on an element of SH .

Let sh ∈ SH , vx = {x}, vt = vars(t), and vxt = vx ∪ vt. Then

amgu(sh , x 7→ t)
def
=

(

sh \ (rel(vxt, sh)
)

∪ bin
(

rel(vx, sh)⋆, rel(vt, sh)⋆
)

.

We also define the extension amgu: SH × Subst → SH by

amgu(sh , ∅)
def
= sh ,

amgu
(

sh , {x 7→ t} ∪ σ
) def

= amgu
(

amgu(sh , x 7→ t), σ \ {x 7→ t}
)

.

The function proj : SH ×℘(VI ) → SH that projects an element of SH onto a subset

V ⊆ VI of the variables of interest is given, for each sh ∈ SH , by

proj(sh , V )
def
= {S ∩ V | S ∈ sh , S ∩ V 6= ∅} ∪ {{x} | x ∈ VI \ V }.

Together with lub, the functions proj and amgu are the key operations that

make the abstract domain SH suitable for computing static approximations of the

substitutions generated by the execution of logic programs. These operators can be

combined with simpler ones (e.g. consistent renaming of variables) so as to provide

a complete definition of the abstract semantics. Also note that these three operators

have been proved to be the optimal approximations of the corresponding concrete

operators (Cortesi & Filé, 1999). The j-self-union operator defined above is new.

We show later when it may safely replace the star-union operator. Note that, letting

j = 1, 2, and n, we have sh1 = sh , sh2 = bin(sh , sh), and, as # VI = n, shn = sh⋆.

3.2 The tuple-sharing domains

To provide a general characterization of domains such as the groundness and pair-

sharing domains contained in SH , we first identify the sets of elements that have

the same cardinality.

Definition 3

(Tuples of cardinality k.) For each k ∈ N with 1 6 k 6 n, the overloaded functions

tuplesk : SG → SH and tuplesk : SH → SH are defined as

tuplesk(S)
def
= {T ∈ ℘(S) | #T = k},

tuplesk(sh)
def
=

⋃

{tuplesk(S
′) | S ′ ∈ sh}.

In particular, if S ∈ SG and sh ∈ SH , let

pairs(S)
def
= tuples2(S),

pairs(sh)
def
= tuples2(sh).

The usual domains that represent groundness and pair-sharing information will

be shown to be special cases of the following more general domain.

Definition 4

(The tuple-sharing domains TS k .) For each k ∈ N such that 1 6 k 6 n, the function

ρTS k
: SH → SH is defined as

ρTS k
(sh)

def
= {S ∈ SG | tuplesk(S) ⊆ tuplesk(sh)}
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and, as ρTS k
∈ uco(SH ), it induces the lattice

TS k
def
= ρTS k

(SH ).

Note that ρTS k

(

tuplesk(sh)
)

= ρTS k
(sh) and that there is a one to one correspon-

dence between TS k and ℘
(

tuplesk(VI )
)

. The isomorphism is given by the functions

tuplesk : TS k → ℘
(

tuplesk(VI )
)

and ρTS k
: ℘

(

tuplesk(VI )
)

→ TS k . Thus the domain

TS k is the smallest domain that can represent properties characterized by sets of

variables of cardinality k. We now consider the tuple-sharing domains for the cases

when k = 1, 2, and n.

Definition 5

(The groundness domain Con .) The upper closure operator ρCon : SH → SH and the

corresponding domain Con are defined as

ρCon

def
= n ρTS1

,

Con
def
= TS 1(SH ) = ρCon(SH ).

This domain, which represents groundness information, is isomorphic to a domain

of conjunctions of Boolean variables. The isomorphism tuples1 maps each element

of Con to the set of variables that are possibly non-ground. From the domain

tuples1(Con), by set complementation, we obtain the classical domain G (Jones &

Søndergaard, 1987) for representing the set of variables that are definitely ground

(so that we have TS 1
def
= Con ≡ G).

Definition 6

(The pair-sharing domain PS .) The upper closure operator ρPS : SH → SH and the

corresponding domain PS are defined as

ρPS

def
= ρTS2

,

PS
def
= TS 2(SH ) = ρPS (SH ).

This domain represents pair-sharing information and the isomorphism tuples2 maps

each element of PS to the set of pairs of variables that may be bound to terms that

share a common variable. The domain for representing variable independence can

be obtained by set complementation.

Finally, in the case when k = n we have a domain consisting of just two elements:

TS n = {SG , SG \ {VI }}.

Note that the bottom of TS n differs from the top element SG only in that it

lacks the sharing group VI . There is no intuitive reading for the information

encoded by this element: it describes all but those substitutions σ ∈ Subst such that
⋂

{vars(xσ) | x ∈ VI } 6= ∅.

Just as for SH , the domain TS k (where 1 6 k 6 n) is dual-atomistic and:

dAtoms(TS k) =
{

(

SG \ {U ∈ SG | T ⊆ U}
)

∣

∣

∣
T ∈ tuplesk(VI )

}

.
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Thus we have

dAtoms(Con) =
{

(

SG \ {U ∈ SG | x ∈ U}
)

∣

∣

∣
x ∈ VI

}

,

dAtoms(PS ) =
{

(

SG \ {U ∈ SG | x, y ∈ U}
)

∣

∣

∣
x, y ∈ VI , x 6= y

}

.

Example 2

Consider Example 1. Then the dual-atoms of Con are

r1 = s1 ∩ s4 ∩ s5 ∩ s7 = { y, z, yz},

r2 = s2 ∩ s4 ∩ s6 ∩ s7 = {x, z, xz },

r3 = s3 ∩ s5 ∩ s6 ∩ s7 = {x, y, xy };

the dual-atoms of PS are

m1 = s4 ∩ s7 = {x, y, z, xz, yz},

m2 = s5 ∩ s7 = {x, y, z, xy, yz},

m3 = s6 ∩ s7 = {x, y, z, xy, xz }.

It can be seen from the dual-atoms that, for each j = 1, . . . , n, where j 6= k, the

precision of the information encoded by domains TSj and TS k is not comparable.

Also, we note that, if j < k, then ρTSj
(TS k) = {SG} and ρTS k

(TSj) = TSj .

3.3 The tuple-sharing dependency domains

We now need to define domains that capture the propagation of groundness and pair-

sharing; in particular, the dependency of these properties on the further instantiation

of the variables. In the same way as with TS k for Con and PS , we first define a

general subdomain TSDk of SH . This must be safe with respect to the tuple-sharing

property represented by TS k when performing the usual abstract operations. This

was the motivation behind the introduction in Bagnara et al. (1997, 2001) of the

pair-sharing dependency domain PSD . We now generalize this for tuple-sharing.

Definition 7

(The tuple-sharing dependency domains TSDk .) For each k where 1 6 k 6 n, the

function ρTSDk
: SH → SH is defined as

ρTSDk
(sh)

def
=

{

S ∈ SG
∣

∣

∣
∀T ⊆ S : #T < k =⇒ S =

⋃

{U ∈ sh | T ⊆ U ⊆ S}
}

,

and, as ρTSDk
∈ uco(SH ), it induces the tuple-sharing dependency lattice

TSDk
def
= ρTSDk

(SH ).

It follows from the definitions that the domains TSDk form a strict chain.

Proposition 1

For j, k ∈ N with 1 6 j < k 6 n, we have TSD j ⊂ TSDk .

Moreover, TSDk is not less precise than TS k .
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Proposition 2

For k ∈ N with 1 6 k 6 n, we have TS k ⊆ TSDk . Furthermore, if n > 1 then

TS k ⊂ TSDk .

As an immediate consequence of Propositions 1 and 2 we have that that TSDk is

not less precise than TS 1 ⊓ · · · ⊓ TS k .

Corollary 1

For j, k ∈ N with 1 6 j 6 k 6 n, we have TSj ⊆ TSDk .

It also follows from the definitions that, for the TSDk domain, the star-union

operator can be replaced by the k-self-union operator.

Proposition 3

For 1 6 k 6 n, we have ρTSDk

(

shk
)

= sh⋆.

We now instantiate the tuple-sharing dependency domains for the cases when

k = 1, 2, and n.

Definition 8

(The ground dependency domain Def .) The domain Def is induced by the upper

closure operator ρDef : SH → SH . They are defined as

ρDef

def
= ρTSD1

,

Def
def
= TSD1 = ρDef (SH ).

By Proposition 3, we have, for all sh ∈ SH , ρTSD1
(sh) = sh⋆ so that TSD1 is a

representation of the domain Def used for capturing groundness. It also provides

evidence for the fact that the computation of the star-union is not needed for the

elements in Def .

Definition 9

(The pair-sharing dependency domain PSD .) The upper closure operator ρPSD : SH →
SH and the corresponding domain PSD are defined as

ρPSD

def
= ρTSD2

,

PSD
def
= TSD2 = ρPSD(SH ).

Then, it follows from Bagnara et al. (1997, Theorem 7) that PSD corresponds to

the domain SH ρ defined for capturing pair-sharing. By Proposition 3 we have,

for all sh ∈ SH , that ρPSD(sh
2) = sh⋆, so that, for elements in PSD , the star-union

operator sh⋆ can be replaced by the 2-self-union sh2 = bin(sh , sh) without any loss of

precision. This was also proved in Bagnara et al. (1997, Theorem 11). Furthermore,

Corollary 1 confirms the observation made in Bagnara et al. (1997) that PSD also

captures groundness.

Finally, letting k = n, we observe that TSDn = SH . Figure 1 summarizes the

relations between the tuple-sharing and the tuple-sharing dependency domains.

As already discussed at the start of this section, the set of variables of interest

VI is fixed and, to simplify the notation, omitted. In Bagnara et al. (1997, 2001)
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Fig. 1. The set-sharing domain SH and some of its abstractions.

the domains SS and SS ρ (corresponding to SH and PSD , respectively) are instead

obtained by explicitly adding to each domain element a new component, representing

the set of variables of interest. It is shown that SS ρ is as good as SS for both

representing and propagating pair-sharing and it is also proved that any weaker

domain does not satisfy these properties, so that SS ρ is the quotient (Cortesi et al.,

1994, 1998) of SS with respect to the pair-sharing property PS .

We now generalize and strengthen the results in Bagnara et al. (1997, 2001) and

show that, for each k ∈ {1, . . . , n}, TSDk is the quotient of SH with respect to the

reduced product TS 1 ⊓ · · · ⊓ TS k . These results are proved at the end of this section.

Theorem 3

Let sh1, sh2 ∈ SH and 1 6 k 6 n. If ρTSDk
(sh1) = ρTSDk

(sh2) then, for each σ ∈ Subst ,
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each sh ′ ∈ SH , and each V ∈ ℘(VI ),

ρTSDk

(

amgu(sh1, σ)
)

= ρTSDk

(

amgu(sh2, σ)
)

,

ρTSDk
(sh ′ ∪ sh1) = ρTSDk

(sh ′ ∪ sh2),

ρTSDk

(

proj(sh1, V )
)

= ρTSDk

(

proj(sh2, V )
)

.

Theorem 4

Let 1 6 k 6 n for each sh1, sh2 ∈ SH , ρTSDk
(sh1) 6= ρTSDk

(sh2) implies

∃σ ∈ Subst , ∃j ∈ {1, . . . , k} . ρTSj

(

amgu(sh1, σ)
)

6= ρTSj

(

amgu(sh2, σ)
)

.

3.4 Proofs of Theorems 3 and 4

In what follows we use the fact that ρTSDk
is an upper closure operator so that, for

each sh1, sh2 ∈ SH ,

sh1 ⊆ ρTSDk
(sh2) ⇐⇒ ρTSDk

(sh1) ⊆ ρTSDk
(sh2). (1)

In particular, since (·)⋆ = ρTSD1
, we have

sh1 ⊆ sh⋆
2 ⇐⇒ sh⋆

1 ⊆ sh⋆
2. (2)

Lemma 1

For each sh ∈ SH and each V ∈ ℘(VI ),

ρTSDk
(sh) \ rel

(

V , ρTSDk
(sh)

)

= ρTSDk

(

sh \ rel(V , sh)
)

.

Proof

By Definition 7,

S ∈ ρTSDk

(

sh \ rel(V , sh)
)

⇐⇒ ∀T ⊆ S :
(

#T < k =⇒ S =
⋃

{U ∈ sh \ rel(V , sh) | T ⊆ U ⊆ S }
)

⇐⇒ ∀T ⊆ S :
(

#T < k =⇒ S =
⋃

{U ∈ sh | T ⊆ U ⊆ S }
)

∧S ∩ V = ∅

⇐⇒ S ∈ ρTSDk
(sh) \ rel

(

V , ρTSDk
(sh)

)

. q

Lemma 2

For each sh1, sh2 ∈ SH , each V ∈ ℘(VI ) and each k ∈ N with 1 < k 6 n,

ρTSDk
(sh1) ⊆ ρTSDk

(sh2) =⇒ rel(V , sh1)
⋆ ⊆ rel(V , sh2)

⋆.

Proof

We prove that

sh1 ⊆ ρTSDk
(sh2) =⇒ rel(V , sh1) ⊆ rel(V , sh2)

⋆.

The result then follows from equations (1) and (2).

Suppose S ∈ rel(V , sh1). Then, S ∈ sh1 and V ∩ S 6= ∅. By the hypothesis,
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S ∈ ρTSDk
(sh2). Let x ∈ V ∩ S . Then, by Definition 7, we have

S =
⋃

{U ∈ sh2 | {x} ⊆ U ⊆ S}

=
⋃

{U ∈ rel(V , sh2) | {x} ⊆ U ⊆ S}.

Thus S ∈ rel(V , sh2)
⋆. q

Lemma 3

For each sh1, sh2 ∈ SH , each σ ∈ Subst and each k ∈ N with 1 6 k 6 n,

ρTSDk
(sh1) = ρTSDk

(sh2) =⇒ ρTSDk

(

amgu
(

sh1, σ
)

)

= ρTSDk

(

amgu
(

sh2, σ
)

)

.

Proof

If σ = ∅, the statement is obvious from the definition of amgu. In the other cases,

the proof is by induction on the size of σ. The inductive step, when σ has more than

one binding, is straightforward. For the base case, when σ = {x 7→ t}, we have to

show that

sh1 ⊆ ρTSDk
(sh2) =⇒ amgu

(

sh1, {x 7→ t}
)

⊆ ρTSDk

(

amgu
(

sh2, {x 7→ t}
)

)

.

The result then follows from equation (1).

Let vx
def
= {x}, vt

def
= vars(t), and vxt

def
= vx ∪ vt. Suppose

S ∈ amgu
(

sh1, {x 7→ t}
)

.

Then, by definition of amgu,

S ∈
(

sh1 \ rel(vx ∪ vt, sh1)
)

∪ bin
(

rel(vx, sh1)
⋆, rel(vt, sh1)

⋆
)

.

There are two cases:

1. S ∈ sh1 \ rel(vx ∪ vt, sh1). Then, by hypothesis, S ∈ ρTSDk
(sh2). Hence we have

S ∈ ρTSDk
(sh2) \ rel

(

vx ∪ vt, ρTSDk
(sh2)

)

. Thus, by Lemma 1,

S ∈ ρTSDk

(

sh2 \ rel(vx ∪ vt, sh2)
)

.

2. S ∈ bin
(

rel(vx, sh1)
⋆, rel(vt, sh1)

⋆
)

. Then we must have S = T ∪ R where

T ∈ rel(vx, sh1)
⋆ and R ∈ rel(vt, sh1)

⋆.

The proof here splits into two branches, 2a and 2b, depending on whether k > 1

or k = 1.

(2a) We first assume that k > 1. Then, by Lemma 2 we have that T ∈ rel(vx, sh2)
⋆

and R ∈ rel(vt, sh2)
⋆. Hence,

S ∈ bin
(

rel(vx, sh2)
⋆, rel(vt, sh2)

⋆
)

.

Combining case 1 and case 2a we obtain

S ∈ ρTSDk

(

sh2 \ rel(vx ∪ vt, sh2)
)

∪ bin
(

rel(vx, sh2)
⋆, rel(vt, sh2)

⋆
)

.

Hence as ρTSDk
is extensive and monotonic

S ∈ ρTSDk

(

(

sh2 \ rel(vx ∪ vt, sh2)
)

∪ bin
(

rel(vx, sh2)
⋆, rel(vt, sh2)

⋆
)

)

,
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and hence, when k > 1, S ∈ ρTSDk

(

amgu
(

sh2, {x 7→ t}
)

)

.

(2b) Secondly suppose that k = 1. In this case, we have, by Proposition 3:

ρTSD1
(sh2) = sh⋆

2

and that

ρTSD1

(

amgu
(

sh2, {x 7→ t}
)

)

= amgu
(

sh2, {x 7→ t}
)⋆
.

Thus, by the hypothesis,

S ∈ bin
(

rel(vx, sh
⋆
2)

⋆, rel(vt, sh
⋆
2)

⋆
)

,

= bin
(

rel(vx, sh
⋆
2), rel(vt, sh

⋆
2)
)

.

Therefore, we can write

S = T ∪ Tx ∪ R ∪ Rt

where

T ∪ Tx ∈ rel(vx, sh
⋆
2),

R ∪ Rt ∈ rel(vt, sh
⋆
2),

T , R ∈
(

sh2 \ rel(vxt, sh2)
)⋆
,

Tx ∈ rel(vx, sh2)
⋆ \ ∅,

Rt ∈ rel(vt, sh2)
⋆ \ ∅.

Thus

S ∈
(

(

sh2 \ rel(vxt, sh2)
)

∪ bin
(

rel(vx, sh2)
⋆, rel(vt, sh2)

⋆
)

)⋆

= amgu
(

sh2, {x 7→ t}
)⋆
.

Combining case 1 and case 2b for k = 1, the result follows immediately by the

monotonicity and extensivity of (·)⋆. q

Lemma 4

For each sh1, sh2 ∈ SH ,

ρTSDk
(sh1 ∪ sh2) = ρTSDk

(

ρTSDk
(sh1) ∪ ρTSDk

(sh2)
)

.

Proof

This is a classical property of upper closure operators (Gierz et al., 1980). q

Lemma 5

For each sh1, sh2 ∈ SH and each V ⊆ VI ,

ρTSDk
(sh1) = ρTSDk

(sh2) =⇒ ρTSDk

(

proj(sh1, V )
)

= ρTSDk

(

proj(sh2, V )
)

.

Proof

We show that

sh1 ⊆ ρTSDk
(sh2) =⇒ proj(sh1, V ) ⊆ ρTSDk

(

proj(sh2, V )
)

.

The result then follows from equation (1).
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Suppose sh1 ⊆ ρTSDk
(sh2) and S ∈ proj(sh1, V ). Then, as proj is monotonic, we

have S ∈ proj
(

ρTSDk
(sh2), V

)

. We distinguish two cases.

1. There exists x ∈ V such that S = {x}. Then S ∈ proj(sh2, V ) and hence, by

Definition 7, S ∈ ρTSDk

(

proj(sh2, V )
)

.
2. Otherwise, by definition of proj and Definition 7, there exists S ′ ∈ ρTSDk

(sh2)

such that S = S ′ ∩ V and

∀T ⊆ S ′ :
(

#T < k =⇒ S =
⋃

{U ∈ sh2 | T ⊆ U ⊆ S ′} ∩ V
)

.

Hence

∀T ⊆ S :
(

#T < k =⇒ S =
⋃

{U ∈ proj(sh2, V ) | T ⊆ U ⊆ S}
)

,

and thus S ∈ ρTSDk

(

proj(sh2, V )
)

.

q

Proof of Theorem 3

Statements 1, 2 and 3 follow from Lemmas 3, 4 and 5, respectively. q

The following lemma is also proved in Bagnara et al. (1997, 2001), but we include

it here for completeness.

Lemma 6

Let σ
def
= {x1 7→ t1, . . . , xn 7→ tn}, where, for each i = 1, . . . , n, ti is a ground term.

Then, for all sh ∈ SH we have

amgu(sh , σ) = sh \ rel
(

{x1, . . . , xn}, sh
)

.

Proof

If n = 0, so that σ = ∅, the statement can be easily verified after having observed

that rel(∅, sh) = ∅. Otherwise, if n > 0, we proceed by induction on n. For the base

case, let n = 1. Then

amgu(sh , x1 7→ t1) = sh \ rel
(

{x1}, sh
)

∪ bin
(

rel
(

{x1}, sh
)⋆
, rel

(

∅, sh
)⋆
)

= sh \ rel
(

{x1}, sh
)

.

For the inductive step, let n > 1 and let

σ′ def
= {x1 7→ t1, . . . , xn−1 7→ tn−1}.

By definition of amgu we have

amgu(sh , σ) = amgu
(

sh , {xn 7→ tn} ∪ σ′
)

= amgu
(

amgu
(

sh , {xn 7→ tn}
)

, σ′
)

= amgu
(

sh \ rel
(

{xn}, sh
)

, σ′
)

=
(

sh \ rel
(

{xn}, sh
)

)

\ rel
(

{x1, . . . , xn−1}, sh \ rel
(

{xn}, sh
)

)

= sh \

(

rel
(

{xn}, sh
)

∪ rel
(

{x1, . . . , xn−1}, sh \ rel
(

{xn}, sh
)

)

)

= sh \ rel
(

{x1, . . . , xn}, sh
)

. q
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Proof of Theorem 4

We assume that S ∈ ρTSDk
(sh1) \ ρTSDk

(sh2). (If such an S does not exist we simply

swap sh1 and sh2.)

Let C denote a ground term and let

σ
def
= { x 7→ C | x ∈ VI \ S }.

Then, by Lemma 6, for i = 1, 2, we define amgu(sh i, σ)
def
= shS

i where

shS
1

def
= {T ⊆ S | T ∈ sh1},

shS
2

def
= {T ⊂ S | T ∈ sh2}.

Now, if # S = j and j 6 k, then we have S ∈ sh1 \ sh2. Hence S ∈ shS
1 \ shS

2 and

we can easily observe that S ∈ ρTSj
(shS

1 ) but S /∈ ρTSj
(shS

2 ).

On the other hand, if # S = j and j > k, then by Definition 7 there exists T with

#T < k such that

S =
⋃

{U ∈ shS
1 | T ⊆ U}

but

S ⊃
⋃

{U ∈ shS
2 | T ⊆ U}

def
= S ′.

Let x ∈ S \ S ′. We have h
def
= #

(

T ∪ {x}
)

6 k and thus we can observe that

T ∪ {x} ∈ ρTSh
(shS

1 ) but T ∪ {x} /∈ ρTSh
(shS

2 ). q

4 The meet-irreducible elements

In Section 5, we will use the method of Filé & Ranzato (1996) to decompose the

dependency domains TSDk . In preparation for this, in this section, we identify the

meet-irreducible elements for the domains and state some general results.

We have already observed that TS k and TSDn = SH are dual-atomistic. However,

TSDk , for k < n, is not dual-atomistic and we need to identify the meet-irreducible

elements. In fact, the set of dual-atoms for TSDk is

dAtoms(TSDk) = {SG \ {S} | S ∈ SG ,# S 6 k}.

Note that # dAtoms(TSDk) =
∑k

j=1

(

n
j

)

. Specializing this for k = 1 and k = 2,

respectively, we have

dAtoms(Def ) = {SG \ {{x}} | x ∈ VI },

dAtoms(PSD) = {SG \ {S} | S ∈ pairs(VI )} ∪ dAtoms(Def ),

and we have # dAtoms(Def ) = n and # dAtoms(PSD) = n(n + 1)/2. We present as

an example of this the dual-atoms for Def and PSD when n = 3.

Example 3

Consider Example 1. Then the 3 dual-atoms for Def are s1, s2, s3 and the 6 dual-

atoms for PSD are s1, . . . , s6. Note that these are not all the meet-irreducible

elements since sets that do not contain the sharing group xyz such as {x} and
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⊥ = ρDef (⊥) = ∅ cannot be obtained by the meet (which is set intersection) of a set

of dual-atoms. Thus, unlike Con and PS , neither Def nor PSD are dual-atomistic.

Consider next the set Mk of the meet-irreducible elements of TSDk that are

neither the top element SG nor dual-atoms. Mk has an element for each sharing

group S ∈ SG such that # S > k and each tuple T ⊂ S with #T = k. Such

an element is obtained from SG by removing all the sharing groups U such that

T ⊆ U ⊆ S . Formally, for 1 6 k 6 n,

Mk
def
= {SG \ {U ∈ SG | T ⊆ U ⊆ S} | T , S ∈ SG , T ⊂ S,#T = k}.

Note that, as there are
(

n
k

)

possible choices for T and 2n−k − 1 possible choices for

S , we have #Mk =
(

n
k

)

(2n−k − 1) and # MI(TSDk) =
∑k−1

j=0

(

n
j

)

+
(

n
k

)

2n−k .

We now show that we have identified precisely all the meet-irreducible elements

of TSDk .

Theorem 5

If k ∈ N with 1 6 k 6 n, then

MI(TSDk) = {SG} ∪ dAtoms(TSDk) ∪ Mk .

The proof of this theorem is included at the end of this section. Here, we illustrate

the result for the case when n = 3.

Example 4

Consider again Example 3. First, consider the domain Def . The meet-irreducible

elements which are not dual-atoms, besides SG , are the following (see Figure 2):

q1 = { y, z, xz, yz, xyz} ⊂ s1,

q2 = { y, z, xy, yz, xyz} ⊂ s1, r1 = { y, z, yz} ⊂ q1 ∩ q2,

q3 = {x, z, xz, yz, xyz} ⊂ s2,

q4 = {x, z, xy, xz, xyz} ⊂ s2, r2 = {x, z, xz } ⊂ q3 ∩ q4,

q5 = {x, y, xy, yz, xyz} ⊂ s3,

q6 = {x, y, xy, xz, xyz} ⊂ s3, r3 = {x, y, xy } ⊂ q5 ∩ q6.

Next, consider the domain PSD . The only meet-irreducible elements that are not

dual-atoms, beside SG , are the following (see Figure 3):

m1 = {x, y, z, xz, yz } ⊂ s4

m2 = {x, y, z, xy, yz } ⊂ s5

m3 = {x, y, z, xy, xz } ⊂ s6.

Each of these lack a pair and none contains the sharing group xyz.

Looking at Examples 2 and 4, it can be seen that all the dual-atoms of the

domains Con and PS are meet-irreducible elements of the domains Def and PSD ,

respectively. Indeed, the following general result shows that the dual-atoms of the

domain TS k are meet-irreducible elements for the domain TSDk .
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Fig. 2. The meet-irreducible elements of Def for n = 3, with dual-atoms emphasized.

Corollary 2

Let k ∈ N with 1 6 k 6 n. Then

dAtoms(TS k) = {sh ∈ MI(TSDk) | VI /∈ sh}.

For the decomposition, we need to identify which meet-irreducible elements of

TSDk are in TSj . Using Corollaries 1 and 2 we have the following result.

Corollary 3

If j, k ∈ N with 1 6 j < k 6 n, then MI(TSDk) ∩ TSj = {SG}.

By combining Proposition 1 with Theorem 5 we can identify the meet-irreducible

elements of TSDk that are in TSD j , where j < k.

Corollary 4

If j, k ∈ N with 1 6 j < k 6 n, then

MI(TSDk) ∩ TSD j = dAtoms(TSD j).
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Fig. 3. The meet-irreducible elements of PSD for n = 3, with dual-atoms emphasized.

4.1 Proof of Theorem 5

Proof of Theorem 5.

We prove the two inclusions separately.

1. MI(TSDk) ⊇ {SG} ∪ dAtoms(TSDk) ∪ Mk .

Let m be in the right-hand side. If m ∈ {SG}∪dAtoms(TSDk) there is nothing to

prove. Therefore we assume m ∈ Mk . We need to prove that if sh1, sh2 ∈ TSDk

and

m = sh1 ∧ sh2
def
= sh1 ∩ sh2

then m = sh1 or m = sh2. Obviously, we have m ⊆ sh1 and m ⊆ sh2. Moreover,

by definition of Mk , there exist T , S ∈ SG where #T = k and T ⊂ S such

that

m = SG \ {U ∈ SG | T ⊆ U ⊆ S }.

Since S /∈ m, we have S /∈ sh1 or S /∈ sh2. Let us consider the first case (the
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other is symmetric). Then, applying the definition of TSDk , there is a T ′ ⊂ S

with #T ′ < k such that
⋃

{U ′ ∈ sh1 | T ′ ⊆ U ′ ⊆ S } 6= S.

Since #T ′ < #T , there exists x such that x ∈ T \ T ′. Thus T ′ ⊂ S \ {x} and

S \ {x} ∈ m. Hence, as m ⊆ sh1, we have S \ {x} ∈ sh1. Consider an arbitrary

U ∈ SG where T ⊆ U ⊆ S . Then x ∈ U. Thus, since S =
(

S \ {x}
)

∪ U and

S /∈ sh1, U /∈ sh1. Thus, as this is true for all such U, sh1 ⊆ m.

2. MI(TSDk) ⊆ {SG} ∪ dAtoms(TSDk) ∪ Mk .

Let sh ∈ TSDk . We need to show that sh is the meet of elements in the

right-hand side. If sh = SG then there is nothing to prove. Suppose sh 6= SG .

For each S ∈ SG such that S /∈ sh , we will show there is an element mS in the

right-hand side such that S /∈ mS and sh ⊆ mS . Then sh =
⋂

{mS | S /∈ sh }.
There are two cases.

(2a) # S 6 k; Let mS = SG \ {S}. Then mS ∈ dAtoms(TSDk) and sh ⊆ mS .

(2b) # S > k; in this case, applying the definition of TSDk , there must exist a

set T ′ ⊂ S with #T ′ < k such that
⋃

{U ′ ∈ sh | T ′ ⊂ U ′ ⊆ S } ⊂ S.

However, since T ′ ⊂ S , we have S =
⋃

{T ′ ∪ {x} | x ∈ S \ T ′ }. Thus, for

some x ∈ S \ T ′, if U is such that T ′ ∪ {x} ⊆ U ⊆ S then U /∈ sh . Choose

T ∈ SG so that T ′ ∪ {x} ⊆ T and #T = k and let mS = SG \ {U ∈ SG |
T ⊆ U ⊆ S }. Then mS ∈ Mk , S /∈ mS , and sh ⊆ mS .

q

5 Decomposition of the domains

5.1 Removing the tuple-sharing domains

We first consider the decomposition of TSDk with respect to TSj . It follows from

Theorem 1 and Corollaries 1 and 3 that, for 1 6 j < k 6 n, we have

TSDk ∼ TSj = Moore
(

MI(TSDk) \ ρTSj
(TSDk)

)

= Moore
(

MI(TSDk) \ TSj

)

= TSDk . (3)

Since SH = TSDn, we have, using equation (3) and setting k = n, that, if j < n,

SH ∼ TSj = SH . (4)

Thus, in general, TSj is too abstract to be removed from SH by means of comple-

mentation. (Note that here it is required j < n, because we have SH ∼ TS n 6= SH .)

In particular, letting j = 1, 2 (assuming n > 2) in equation (4), we have

SH ∼ PS = SH ∼ Con = SH , (5)
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showing that Con and PS are too abstract to be removed from SH by means of

complementation. Also, by equation (3), letting j = 1 and k = 2 it follows that the

complement of Con in PSD is PSD .

Now consider decomposing TSDk using TS k . It follows from Theorem 1, Propo-

sition 2 and Corollary 2 that, for 1 6 k 6 n, we have

TSDk ∼ TS k = Moore
(

MI(TSDk) \ ρTS k
(TSDk)

)

= Moore
(

MI(TSDk) \ TS k

)

= {sh ∈ TSDk | VI ∈ sh}. (6)

Thus we have

TSDk ∼ (TSDk ∼ TS k) = TS k . (7)

We have therefore extracted all the domain TS k from TSDk . So by letting k = 1, 2

in equation (6), we have found the complements of Con in Def and PS in PSD:

Def ∼ Con = {sh ∈ Def | VI ∈ sh},

PSD ∼ PS = {sh ∈ PSD | VI ∈ sh}.

Thus, if we denote the domains induced by these complements as Def ⊕ and PSD⊕,

respectively, we have the following result.

Theorem 6

Def ∼ Con = Def ⊕, Def ∼ Def ⊕ = Con ,

PSD ∼ PS = PSD⊕, PSD ∼ PSD⊕ = PS .

Moreover, Con and Def ⊕ form a minimal decomposition for Def and, similarly, PS

and PSD⊕ form a minimal decomposition for PSD .

5.2 Removing the dependency domains

First we note that, by Theorem 5, Proposition 1, and Corollary 4, the complement

of TSD j in TSDk , where 1 6 j < k 6 n, is given as follows:

TSDk ∼ TSD j = Moore
(

MI(TSDk) \ ρTSDj
(TSDk)

)

= Moore
(

MI(TSDk) \ TSD j

)

= {sh ∈ TSDk | ∀S ∈ SG : # S 6 j =⇒ S ∈ sh}. (8)

It therefore follows from equation (8) and setting k = n that the complement of ρTSDj

in SH for j < n is:

SH ∼ TSD j = {sh ∈ SH | ∀S ∈ SG : # S 6 j =⇒ S ∈ sh} (9)

def
= SH +

j .



Decomposing non-redundant sharing by complementation 255

In particular, in equation (9) when j = 1, we have the following result for Def , also

proved in Filé and Ranzato (1996, Lemma 5.4):

SH ∼ Def = {sh ∈ SH | ∀x ∈ VI : {x} ∈ sh}
def
= SH +

Def
.

Also, in Eq. (9) when j = 2, we have the following result for PSD:

SH ∼ PSD = {sh ∈ SH | ∀S ∈ SG : # S 6 2 =⇒ S ∈ sh}
def
= SH +

PSD
.

We next construct the complement of PSD with respect to Def . By equation (8),

PSD ∼ Def = {sh ∈ PSD | ∀x ∈ VI : {x} ∈ sh}
def
= PSD+.

Then the complement factor Def − def
= PSD ∼ PSD+ is exactly the same thing as

SH ∼ SH +
Def

so that PSD and SH behave similarly for Def .

5.3 Completing the decomposition

Just as for SH , the complement of SH +
Def

using PS (or, more generally, TSj where

1 < j < n) is SH +
Def

. By Corollary 2 and Theorem 1, as PS is dual-atomistic, the

complement of PS in PSD+ is given as follows.

Theorem 7

PSD‡ def
= PSD+ ∼ PS

= {sh ∈ PSD | VI ∈ sh , ∀x ∈ VI : {x} ∈ sh},

PSD+ ∼ PSD‡ = PS .

So, we have extracted all the domain PS from PSD+ and we have the following

result (see Figure 4).

Corollary 5

Def −, PS , and PSD‡ form a minimal decomposition for PSD .

6 Discussion

By studying the sharing domain SH in a more general framework, we have been

able to show that the domain PSD has a natural place in a scheme of domains based

on SH . Since the well-known domain Def for groundness analysis is an instance of

this scheme, we have been able to highlight the close relationship between Def and

PSD and the many properties they share. In particular, it was somehow unexpected

that these domains could both be obtained as instances of a single parametric

construction. As another contribution, we have generalized and strengthened the

results in Cortesi et al. (1994, 1998) and Bagnara et al. (1997, 2001) stating that
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Fig. 4. A non-trivial decomposition of PSD .

• Def is the quotient of SH with respect to the groundness domain G ≡ Con;

and

• PSD is the quotient of SH with respect to the reduced product Con ⊓ PS of

groundness and pair-sharing.

In the view of recent results on abstract domain completeness (Giacobazzi &

Ranzato, 1997), these points can be restated by saying that Def and PSD are the

least fully-complete extensions (lfce’s) of Con and Con ⊓ PS with respect to SH ,

respectively.

From a theoretical point of view, the quotient of an abstract domain with respect

to a property of interest and the least fully-complete extension of this same property

with respect to the given abstract domain are not equivalent. While the lfce is defined

for any semantics given by means of continuous operators over complete lattices, it

is known (Cortesi et al., 1994, 1998) that the quotient may not exist. However, it is

also known (Giacobazzi, Ranzato & Scozzari, 1998b) that when the quotient exists

it is exactly the same as the lfce, so that the latter has also been called generalized

quotient. In particular, for all the domains considered in this paper, these two

approaches to the completeness problem in abstract interpretation are equivalent.

In Bagnara et al. (1997, 2001), we wrote that PSD ∼ PS 6= PSD . This paper now

clarifies that statement. We have provided a minimal decomposition for PSD whose

components include Def − and PS . Moreover, we have shown that Def and PSD are

not dual-atomistic and we have completely specified their meet-irreducible elements.

Our starting point was the work of Filé and Ranzato. Filé & Ranzato (1996) noted,

as we have, that SH +
Def

∼ PS = SH +
Def

so that nothing of the domain PS could be

extracted from SH +
Def

. They observed that ρPS maps all dual-atoms that contain the

sharing group VI to the top element SG and thus lose all pair-sharing information.

To avoid this, they replaced the classical pair-sharing domain PS with the domain

PS ′ where, for all sh ∈ SH +
Def

,

ρPS ′ (sh) = ρPS (sh) \
(

{VI } \ sh
)

,

and noted that SH +
Def

∼ PS ′ = {sh ∈ SH +
Def

| VI ∈ sh}. To understand the nature of

this new domain PS ′, we first observe that,

PS ′ = PS ⊓ TS n.
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This is because TS n = MI(TS n) = {SG \ {VI }, SG}. In addition,

SH +
Def

∼ TS n = {sh ∈ SH +
Def

| VI ∈ sh},

which is precisely the same as SH +
Def

∼ PS ′. Thus, since SH +
Def

∼ PS = SH +
Def

, it is

not surprising that it is precisely the added component TS n that is removed when

we compute the complement for SH +
Def

with respect to PS ′.

We would like to point out that, in our opinion, the problems outlined above

are not the consequence of the particular domains considered. Rather, they are

mainly related to the methodology for decomposing a domain. As shown here,

complementation alone is not sufficient to obtain truly minimal decompositions of

domains. The reason being that complementation only depends on the domain’s

data (i.e. the domain elements and the partial order relation modeling their intrinsic

precision), while it is completely independent from the domain operators that

manipulate that data. In particular, if the concrete domain contains elements that

are redundant with respect to its operators (because the observable behavior of these

elements is exactly the same in all possible program contexts) then any factorization

of the domain obtained by complementation will encode this redundancy. However,

the theoretical solution to this problem is well known (Cortesi, Filé & Winsborough,

1994, Cortesi, Filé & Winsborough, 1998, Giacobazzi and Ranzato 1997, Giacobazzi

et al., 1998b) and it is straightforward to improve the methodology so as to obtain

truly minimal decompositions: first remove all redundancies from the domain (this

can be done by computing the quotient of the domain with respect to the observable

behavior) and only then decompose it by complementation. This is precisely what

is done here.

We conclude our discussion about complementation with a few remarks. It is

our opinion that, from a theoretical point of view, complementation is an ex-

cellent concept to work with: by allowing the splitting of complex domains into

simpler components, avoiding redundancies between them, it really enhances our

understanding of the domains themselves.

However, as things stand at present, complementation has never been exploited

from a practical point of view. This may be because it is easier to implement a single

complex domain than to implement several simpler domains and integrate them to-

gether. Note that complementation requires the implementation of a full integration

between components (i.e. the reduced product together with its corresponding best

approximations of the concrete semantic operators), otherwise precision would be

lost and the theoretical results would not apply.

Moreover, complementation appears to have little relevance when trying to design

or evaluate better implementations of a known abstract domain. In particular, this

reasoning applies to the use of complementation as a tool for obtaining space

saving representations for domains. As a notable example, the GER representation

for Pos (Bagnara & Schachte, 1999) is a well-known domain decomposition that

does enable significant memory and time savings with no precision loss. This is not

(and could not be) based on complementation. Observe that the complement of G

with respect to Pos is Pos itself. This is because of the isomorphisms Pos ≡ SH

(Codish and Søndergaard 1998) and G ≡ Con
def
= TS 1 so that, by equation (5),
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Pos ∼ G = Pos . It is not difficult to observe that the same phenomenon happens

if one considers the groundness equivalence component E, i.e. Pos ∼ E = Pos .

Intuitively, each element of the domain E defines a partition of the variable of

interest VI into groundness equivalence classes. In fact, it can be shown that two

variables x, y ∈ VI are ground-equivalent in the abstract element sh ∈ SH ≡ Pos

if and only if rel
(

{x}, sh
)

= rel
(

{y}, sh
)

. In particular, this implies both {x} /∈ sh

and {y} /∈ sh . Thus, it can be easily observed that in all the dual-atoms of Pos no

variable is ground-equivalent to another variable (because each dual-atom lacks just

a single sharing group).

A new domain for pair-sharing analysis has been defined in Scozzari (2000) as

Sh
PSh = PSD+ ⊓ A,

where the A component is a strict abstraction of the well-known groundness domain

Pos . It can be seen from the definition that Sh
PSh is a close relative of PSD .

This new domain is obtained, just as in the case for PSD , by a construction that

starts from the set-sharing domain SH ≡ Sh and aims at deriving the pair-sharing

information encoded by PS ≡ PSh. However, instead of applying the generalized

quotient operator used to define PSD , the domain Sh
PSh is obtained by applying

a new domain-theoretic operator that is based on the concept of optimal semantics

(Giacobazzi, Ranzato & Scozzari, 1998a).

When comparing Sh
PSh and PSD , the key point to note is that Sh

PSh is neither

an abstraction nor a concretization of the starting domain SH . On the one hand

Sh
PSh is strictly more precise for computing pair-sharing, since it contains formulas

of Pos that are not in the domain SH . On the other hand SH and PSD are strictly

more precise for computing groundness, since Sh
PSh does not contain all of Def : in

particular, it does not contain any of the elements in Con .

While these differences are correctly stated in Scozzari (2000), the informal dis-

cussion goes further. For instance, it is argued in Scozzari (2000, Section 6.1) that

“in [(Bagnara, Hill & Zaffanella, 2001)] the domain PSD is compared to its proper
abstractions only, which is a rather restrictive hypothesis . . . ”

This hypothesis is not one that was made in Bagnara et al. (2001), but is a distinctive

feature of the generalized quotient approach itself. Moreover, such an observation

is not really appropriate because, when devising the PSD domain, the goal was to

simplify the starting domain SH without losing precision on the observable PS .

This is the objective of the generalized quotient operator and, in such a context, the

‘rather restrictive hypothesis’ is not restrictive at all.

The choice of the generalized quotient can also provide several advantages that

have been fully exploited in Bagnara et al. (2001). Since an implementation for SH

was available, the application of this operator resulted in an executable specification

of the simpler domain PSD . By just optimizing this executable specification it was

possible to arrive at a much more efficient implementation: exponential time and

space savings have been achieved by removing the redundant sharing groups from

the computed elements and by replacing the star-union operator with the 2-self-

union operator. Moreover, the executable specification inherited all the correctness
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results readily available for that implementation of SH , so that the only new result

that had to be proved was the correctness of the optimizations.

These advantages do not hold for the domain Sh
PSh. In fact, the definition of a

feasible representation for its elements and, a fortiori, the definition of an executable

specification of the corresponding abstract operators seem to be open issues.2 Most

importantly, the required correctness results cannot be inherited from those of SH .

All the above reasons indicate that the generalized quotient was a sensible choice

when looking for a domain simpler than SH while preserving precision on PS .

Things are different if the goal is to improve the precision of a given analysis with

respect to the observable, as was the case in Scozzari (2000). In this context the

generalized quotient would be the wrong choice, since by definition it cannot help,

whereas the operator defined in Scozzari (2000) could be useful.

7 Conclusion

We have addressed the problem of deriving a non-trivial decomposition for ab-

stract domains tracking groundness and sharing information for logic languages

by means of complementation. To this end, we have defined a general schema of

domains approximating the set-sharing domain of Jacobs and Langen, and we have

generalized and strengthened known completeness and minimality results. From a

methodological point of view, our investigation has shown that, in order to obtain

truly minimal decompositions of abstract interpretation domains, complementation

should be applied to a reference domain already enjoying a minimality result with

respect to the observable property.
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Cortesi, A. and Filé, G. (1999) Sharing is optimal. J. Logic Programming, 38(3), 371–386.
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Cortesi, A., Filé, G. and Winsborough, W. (1998) The quotient of an abstract interpretation
for comparing static analyses. Theoretical Computer Science, 202(1&2), 163–192.
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