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Motor Imagery Classification based on Bilinear

Sub-Manifold Learning of Symmetric

Positive-Definite Matrices

Xiaofeng Xie, Zhu Liang Yu, Haiping Lu, Zhenghui Gu and Yuanqing Li

Abstract

In motor imagery brain-computer interfaces (BCIs), the symmetric positive-definite (SPD) covariance

matrices of electroencephalogram (EEG) signals carry important discriminative information. In this

paper, we intend to classify motor imagery EEG signals by exploiting the fact that the space of SPD

matrices endowed with Riemannian distance is a high-dimensional Riemannian manifold. To alleviate

the overfitting and heavy computation problems associated with conventional classification methods on

high-dimensional manifold, we propose a framework for intrinsic sub-manifold learning from a high-

dimensional Riemannian manifold. Considering a special case of SPD space, a simple yet efficient bilinear

sub-manifold learning (BSML) algorithm is derived to learn the intrinsic sub-manifold by identifying

a bilinear mapping that maximizes the preservation of the local geometry and global structure of the

original manifold. Two BSML-based classification algorithms are further proposed to classify the data on

a learned intrinsic sub-manifold. Experimental evaluation of the classification of EEG revealed that the

BSML method extracts the intrinsic sub-manifold approximately 5× faster and with higher classification

accuracy compared with competing algorithms. The BSML also exhibited strong robustness against a

small training dataset, which often occurs in BCI studies.
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I. INTRODUCTION

BRAIN-computer interfaces (BCIs) provide a new way to translate human intentions into external

device commands. BCIs can be used as communication tools for the disabled or as man-machine interface

games for healthy people [1]. Many BCI systems have been designed to exploit different types of

electroencephalogram (EEG) modalities. In this paper, we will focus on a motor imagery BCI system,

in which a trained subject can voluntarily produce an EEG by imagining movements of different parts

of the body. Two of the major challenges in motor imagery BCIs are the efficient extraction and correct

classification of EEG features.

For the classification of motor imagery signals, common spatial pattern (CSP) [2] is used most

frequently as the spatial filter for feature extraction. Taking left/right hand motor imagery as an example,

CSP maximizes the variance of one-hand trials while minimizing the variance of the others. Covariance

matrices are utilized to obtain the spatial filter. Because the space of symmetric positive-definite (SPD)

covariance matrices endowed with Riemannian distance is a Riemannian manifold [3], EEG classification

on high-dimensional Riemannian manifolds has recently received increasing attention to improve the

performance of the EEG classification [4], [5]. For example, in [5], two algorithms are proposed.

One algorithm compares the minimum Riemannian distance between an unlabeled data point and the

Riemannian means of labeled data points using the concept of Riemannian geodesic distance. The other

algorithm maps all data points in the Riemannian manifold into its tangent space, which is known as the

best hyper-plane [6] for classification, and then applies classification methods developed in Euclidean

space to the tangent space.

In general, classification in high-dimensional space is subject to overfitting and bias in statistical

estimations, particularly for a small training dataset [7], which often occurs in BCI research. The

computational cost of these algorithms is another serious limitation. Dimensionality reduction is a promis-

ing means of addressing these problems. The goal of dimensionality reduction is to identify a more

compact representation of the high-dimensional space. One of the most important nonlinear dimensionality

reduction techniques, manifold learning [8], learns the potential intrinsic low-dimensional embedding of

the high-dimensional data space. Most manifold learning algorithms attempt to obtain low-dimensional

embedding such that proximal data points in high-dimensional space remain proximal and distant data

points in high-dimensional space remain distant.

Two canonical approaches in manifold learning are globally mapping methods and locally preserving

methods. Global methods, such as isometric feature mapping (Isomap) [9], diffusion maps [10] and
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Riemannian manifold learning (RML) [11], tend to identify the global representations of high-dimensional

space by preserving the geodesic distance, which is the shortest distance between data points on manifold.

One of the earliest global methods, Isomap, uses the shortest path in the graph to approximate the real

geodesic, and then uses a multi-dimensional scaling (MDS) [12] algorithm to reduce dimensionality

while preserving the approximated geodesic distance. Because the distance between nearby points is

calculated as the Euclidean distance, local information of neighbors is lost for sparsely sampled data. Many

extensions of Isomap have been proposed to address this limitation, such as incremental Isomap [13],

conformal Isomap and landmark Isomap [14]. Diffusion maps [10] replaces the geodesic distance with

the diffusion distance and reduces the dimensionality by selecting the first several non-trivial eigenvalues

of the transition probability matrix. RML [11] computes a Riemannian normal coordinate chart using

PCA projection and then represents the data point in the low-dimensional normal coordinate chart by

solving a quadratically constrained linear least squares problem. The low-dimensional representation is

computed by preserving radial geodesic distances and angles. Because the shortest paths are exploited

to approximate geodesic curves, the RML may have a large error, particularly when the data points are

sparsely sampled.

By contrast, local methods, such as locally linear embedding (LLE) [15], Laplacian eigenmaps [16],

Hessian eigenmaps [17], manifold charting [18], local tangent space alignment (LTSA) [19] and adaptive

manifold learning [20], attempt to preserve the local information of high-dimensional space based on

the assumption that each data point and its neighbors are homomorphic to an open subset of Euclidean

space. One type of local method is designed to preserve the relationship among proximal data points.

LLE [15] characterizes the local geometry in the neighborhood of each data point by linear reconstruction

of the data point from its neighbors. Laplacian eigenmaps [16] and Hessian eigenmaps [17] both seek

a map in which proximal points in the high-dimensional space are mapped close together in the low-

dimensional embedding. These local methods use the eigenfunctions of different operators, the Laplace

Beltrami operator and Hessian matrix. The other type of local method is designed to obtain more simple

coordinate systems. The manifold chart [18] decomposes the sampled data space into locally linear low-

dimensional patches and merges these patches into a single low-dimensional coordinate system. LTSA

[19] identifies the tangent space for each locally linear patch of manifold and then aligns those tangent

spaces to obtain a parameterization of manifold. An extension of the LTSA algorithm, adaptive manifold

learning [20], modifies the minimization model in LTSA and adaptively selects the neighbors of each

data point. The local methods capture information only from the local patch and ignore the information

of the global structure of data in processing.
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Although many global and local methods have been proposed to identify low-dimensional embedding,

they are mainly designed for a general manifold and few of these methods use the information of

the manifold from which the original data were sampled. Without information on the geodesic of the

unknown manifold, most global methods learn the low-dimensional embedding by approximating the

geodesic distance, which results in a representation bias. In many applications of pattern recognition, the

data can be represented by covariance matrices, which are SPD matrices. Because the space of the SPD

matrices endowed with Riemannian distance is a Riemannian manifold [3], in this paper, we focus on

examining a type of Riemannian manifold, in which the space of SPD matrices is endowed with explicit

geodesic distance.

Considering the space of SPD matrices in motor imagery BCIs, we propose a novel dimensionality

reduction method, bilinear sub-manifold learning (BSML). The main difference between BSML and other

manifold learning methods is that BSML directly preserves the pairwise Riemannian geodesic distance

between data points instead of approximating the geodesic distance, as shown in Fig. 1. Bilinear learning

algorithms have been recently proposed for BCI applications. In motor imagery systems, popular bilinear

methods include discriminative filter bank CSP (DFBCSP) [21], which simultaneously optimizes the

spatial and temporal filters, and the more recent method of separable common spatio-spectral pattern

(SCSSP) [22], which seeks the spatio-spectral features by matrix-variate Gaussian model. In particular,

bilinear methods are also used for event-related potential (ERP) classification [23], [24], where the

discriminant information of ERP signal is obtained by learning a spatial matrix and a temporal matrix

collaboratively. Most of these studies have achieved great success in BCI applications. However, the

above bilinear methods identify two projection matrices on Euclidean space and ignore that the covariance

matrix lies on a Riemannian manifold. BSML algorithm learns two projection matrices using Riemannian

geometry.

The major contributions of this paper are threefold.

1) A novel BSML is proposed for dimensionality reduction of the SPD matrices space in motor imagery

BCIs. Calculation of the intrinsic sub-manifold is formulated as an eigenvalue problem. The sub-

manifold is efficiently extracted by minimizing the Riemannian geodesic distance loss between any

pair of data points on the original manifold and its intrinsic sub-manifold. Our method is specifically

designed for the space of SPD matrices, and differs from the RML [11], which addresses arbitrary

data space. The BSML can be considered as an extension of CSP on covariance matrices in measure

of Riemannian distance.

2) Two classification algorithms, minimum distance to sub-manifold mean (MDSM) and tangent space
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Figure 1. Related work and proposed framework. a) the framework of general manifold learning; b) classification on a high-

dimensional Riemannian manifold; c) the framework of Bilinear Sub-Manifold Learning, classification on a low-dimensional

sub-manifold.

of sub-manifold (TSSM), are proposed to function on the extracted Riemannian sub-manifold. Higher

classification performance is obtained for motor imagery BCIs.

3) For small sample sizes, i.e., when the ratio of the number of training samples to the number of

features is small, the BSML algorithm can efficiently alleviate the overfitting problem, as supported

by experimental results.

The remainder of the paper is organized as follows. In Section II, some basic concepts of SPD matrices

space are briefly reviewed. In Section III, we derive a framework for intrinsic mapping for the problem

of dimensionality reduction. Based on this framework, we propose a simple method for intrinsic sub-

manifold learning for the SPD matrices space, i.e., the BSML method. Two classification algorithms

are proposed on the intrinsic manifold. Extensive experimental results are provided in Section IV to

demonstrate the effectiveness of the proposed method. Finally, some conclusions are provided in Section

V.
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II. DATA MODEL AND BASIC CONCEPTS OF SPD MATRICES SPACE

A. Data Model of BCI

The recorded EEG signal of motor imagery BCIs is a multi-lag/multi-channel signal

X(t) = [x(t), ..., x(t+ L− 1)] ∈ R
N×L (1)

where N and L indicate the number of channels and sampled points, respectively. The vector x(t) =

[x1(t), ..., xN (t)]T ∈ R
N is the snapshot vector. In motor imagery BCIs, the second order statistical

information of X(t) often provides discriminative information for brain states. Among the second order

statistical information [25], the spatial covariance matrix of EEG data is widely used in motor imagery

BCIs [26]. In this paper, the spatial covariance matrix of EEG data P(t), which is represented by its

sample covariance matrix (SCM), is defined as

P(t) =
1

L− 1
X(t)XT (t). (2)

Generally, the classification of P(t) is always directly performed in Euclidean space [27], where the

Euclidean distance of SCM is used. The SCM is a SPD matrix. Because the space of SPD matrices

endowed with Riemannian distance is a differentiable Riemannian manifold, Riemannian geometry can

be used to analyze SCM. Many concepts and tools, such as Riemannian distance, tangent space and

Riemannian mean, which are briefly reviewed in the following section, can be readily applied in the

classification of SCM.

B. Basic Concepts of SPD Matrices Space

Denoting the space of symmetric matrices

S(N) =
{

P ∈ R
N×N ,P = PT

}
(3)

and the space of positive-definite matrices

P(N) =
{

P ∈ R
N×N , uTPu > 0, ∀u ∈ R

N
}
, (4)

the space of SPD matrices is defined as

SPD(N) = S(N) ∩ P(N). (5)

The SPD matrix lies on a differentiable Riemannian manifold [3]. Thus, many of the mathematical

concepts defined in Riemannian geometry can be applied to SPD(N).
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The Riemannian distance δR(P1,P2) is the minimum length of the curve connecting P1 and P2 on a

Riemannian manifold [27]. There are many possible mathematical definitions of the Riemannian distance

[28]. In this paper, we adopt the Riemannian distance between two matrices P1,P2 ∈ SPD(N) as [3]

δR(P1,P2) =
∥∥log(P1

−1P2)
∥∥
F
=

[
N∑

i=1

log2βi

] 1

2

(6)

where || · ||F is the Frobenius norm of a matrix and βi is the i-th real eigenvalue of P1
−1P2. The

Riemannian distance poses three fundamental properties of metric space: positivity, symmetry and triangle

inequality [3]. One of the most important properties of the Riemannian distance is the invariance of linear

transformation [3]

δR(P1,P2) = δR(W
TP1W,WT P2W) (7)

where the transformation matrix W ∈ R
N×N is invertible.

The tangent space, as a Euclidean space, is an important space in the analysis of a Riemannian manifold.

Before defining the tangent space, we first introduce the logarithmic mapping operator and exponential

mapping operator

LogP(Pi) = Si = P
1

2 log(P−
1

2 PiP
−

1

2 )P
1

2 ,

ExpP(Si) = Pi = P
1

2 exp(P−
1

2 SiP
−

1

2 )P
1

2 .
(8)

LogP(·) is a mapping from the manifold to the tangent space at P, whereas ExpP(·) is a mapping

from the tangent space at P to manifold. These two operators are a pair of one-to-one mapping opera-

tors between the Riemannian manifold and the tangent space. The logarithm log(P) and exponential

exp(P) of a SPD matrix P in (8) are defined as follows. If the eigenvalue decomposition of P is

P = Udiag(σ1, ...σn)U
T , where σ1, ...σn are the eigenvalues of P and U is the eigenvector matrix,

then log(P) = Udiag(log(σ1), ... log(σn))U
T and exp(P) = Udiag(exp(σ1), ... exp(σn))U

T .

Because the tangent space TP(N) = {LogP(Pi),Pi ∈ SPD(N)} is a space of symmetric matrices,

there are only N(N + 1)/2 independent elements. We can find a minimal representation of the tangent

space TP(N) at P as a vector space [6]

T (N) =
{

si = upper(P−
1

2LogP(Pi)P
−

1

2 ) ∈ R
N(N+1)/2

}
(9)

where upper(·) operator retains the upper triangular portion of the symmetric matrix and vectorizes it.

An important property of the tangent space is that the Riemannian distance from any point Pi to the

point P can be calculated as the Euclidean distance on the tangent space at P [5]

δR(P,Pi) = ∥si − 0∥2 (10)
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Figure 2. An illustration of the Riemannian manifold and tangent space.

where si ∈ T (N) is the vector in tangent space corresponding to Pi ∈ SPD(N). The Riemannian

manifold and tangent space are illustrated in Fig. 2.

The mean of SPD matrices plays an important role in classification and is defined as the point PR ∈

SPD(N), which has a minimum sum of the squared distances to all SPD matrices in dataset C

PR = arg min
P∈SPD(N)

∑

Pi∈C

δ2R(P,Pi). (11)

In the literature [29], the mean PR is also referred to as the Riemannian mean. Directly calculating the

Riemannian mean is not easy, and an alternative method is to calculate it using the relationship between

the Euclidean distance and Riemannian distance [30]. While the Riemannian mean is calculated, the

tangent space at the Riemannian mean is the best hyperplane in which the distance loss is minimal for

classification [6].

III. PROPOSED METHODS

Similar to the classification on Euclidean space, the classification on the Riemannian manifold (see

[31]) also suffers from longstanding problems of high-dimensionality, such as overfitting and bias in

June 5, 2016 DRAFT
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statistical estimations, particularly in the case of a small sample setting. To address these problems, we

introduce a dimensionality reduction approach to identify a low-dimensional intrinsic sub-manifold that

maximizes the preservation of the local geometry and global structure of the original manifold.

A. Framework of Intrinsic Mapping

Suppose operator f is a smooth mapping that maps a data point on a Riemannian manifold of N

dimensions to a Riemannian manifold of M dimensions:

f : ΩN → ΩM (N > M). (12)

If ΩM is a subset of ΩN , then ΩM is an embedded sub-manifold of ΩN [28]. The embedded sub-

manifold is modeled locally on the standard embedding of RM into R
N , identifying R

M with the subset

{(x1, ...xM , xM+1, ...xN )|xM+1 = ... = xN = 0} of RN .

With different choices of f , there exist many sub-manifolds. Our target is to identify the intrinsic sub-

manifold, which is the sub-manifold that maximizes the preservation of the local geometry and global

structure of the original manifold. Because the local geometry and global structure can be represented

by the metric structure of the manifold, we define the intrinsic mapping by minimizing the Riemannian

geodesic distance loss between any pair of data points on the original manifold and its intrinsic sub-

manifold as

fopt = argmin
f

∫

Ω

|δR(ρi, ρj)− δR(f(ρi), f(ρj))|dΩ (13)

where ρi is a point on the manifold and f(ρi) is the mapped point on its sub-manifold. The sub-manifold

learned from (13) is defined as the intrinsic Riemannian sub-manifold, as illustrated in Fig. 3.

With different types of original manifolds, the optimal intrinsic mapping f of (13) has many variations,

such as complicated nonlinear mapping and linear mapping. In this paper, considering the SPD matrices

space, based on simple geometric intuition and to facilitate implementation, we characterize the intrinsic

mapping operator f as a bilinear mapping with mapping matrix Ws ∈ R
M×N . Once P ∈ R

N×N and the

mapping matrix Ws are given, we can directly obtain the mapped SPD matrix, Pc = WsPWs
T ∈ R

M×M .

This mapped SPD matrices space is also a differentiable Riemannian sub-manifold [3].

The intrinsic mapping matrix Ws can be obtained by minimizing the distance loss as

Wsopt = argmin
Ws

∑

Pi,Pj∈C

∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣ (14)

where C is the experimental dataset of matrices in SPD(N).

It should be noted that (14) is a non-convex problem and is difficult to solve. In this paper, (14) is

approximated as a simple eigenvalue optimization problem.

June 5, 2016 DRAFT



10

Figure 3. An illustration of the Riemannian manifold (larger one) and intrinsic Riemannian sub-manifold (smaller one).

B. Bilinear Sub-Manifold Learning Algorithm

Normally, (14) is an intractable problem and the optimal solution is difficult to identify. In this section,

considering the two-class classification problem, i.e., left/right motor imagery problem in BCI, the BSML

algorithm is proposed to solve (14) approximately. As shown in Appendix I, (14) can be approximated

as

Wsopt = argmin
Ws

∣∣δR(PR1,PR2)− δR(WsPR1Ws
T ,WsPR2Ws

T )
∣∣. (15)

where PR1,PR2 are the Riemannian means of two-class datasets

PR1 = argmin
P

∑
Pi∈C1

δ2R(P,Pi)

PR2 = argmin
P

∑
Pi∈C2

δ2R(P,Pi)
(16)

and C1, C2 represent the datasets of class 1 and class 2, respectively. Because the Riemannian mean

generalizes naturally to a finite set of SPD matrices, the approximated problem (15) attempts to preserve

Riemannian distance between the Riemannian means of two-class datasets instead of the entire set of

data points.

As shown in Appendix II, we can identify an invertible matrix W that jointly diagonalizes PR1,PR2

and satisfies

WPR1WT + WPR2WT = I. (17)
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The corresponding eigenvalues λj1, λj2(j = 1, · · · , N) of the diagonal matrices WPR1WT and WPR2WT

are subject to λj1 + λj2 = 1 [2], [32]. After obtaining the transformation matrix W, the mapping

matrix Ws ∈ R
M×N can be constructed by choosing different combination of row vectors from the

transformation matrix W. According to the invariance of linear transformation and the definition of the

Riemannian distance, the optimization problem (15) is expressed as

{λ}opt = argmin
{λi}

∣∣∣∣∣∣

√√√√
N∑

j=1

log2(
λj1

1− λj1

)−

√√√√
M∑

i=1

log2(
λi

1− λi

)

∣∣∣∣∣∣
(18)

where {λi, i ∈ [1,M ]} is subset of {λj1, j ∈ [1, N ]} . For different dimensions M , the solution of

(18) can be obtained by choosing the first M eigenvalues that are far from 0.5. Each combination of

corresponding row vectors from the transformation matrix W is a mapping matrix Ws ∈ R
M×N .

The problem remaining here is the selection of the dimension M of the intrinsic sub-manifold. Similar

to [9], we estimate M from the elbow of the relative error of the Riemannian distances before-and-after

mapping for different dimensions of sub-manifold. The relative error Er is defined as

Er = 1−

(
δR
(
WsPR1Ws

T ,WsPR2Ws
T
)

δR (PR1,PR2)

)
. (19)

The intrinsic dimensionality is located at the largest curvature of the error curve at which the error curve

ceases to decrease significantly with increasing dimensionality [9]. The pseudo-code of the BSML is

given in Algorithm 1.

Algorithm 1 Bilinear sub-manifold learning (BSML)

Input: The training SPD matrix samples PTr ∈ R
N×N ;

Output: The optimal dimensionality Ms, and intrinsic mapping matrix Ws ∈ R
Ms×N ;

1: Calculate the Riemannian means PR1, PR2 from the training data as (16);

2: Calculate the N ×N normalization matrix W

(PR1 + PR2)
−1PR1 = WΣ1WT ,W ∈ R

N×N (See Append. II);

3: For different numbers M , select M eigenvalues {λi, i ∈ [1,M ]} far from 0.5 from {λj1, j ∈ [1, N ]},

and construct mapping matrix Ws ∈ R
M×N as the corresponding submatrix of W;

4: Select the optimal dimensionality Ms of the intrinsic sub-manifold based on the error curve (19);

C. Classification on the Intrinsic Riemannian Sub-manifold

Two classification algorithms, e.g., minimum distance to Riemannian mean (MDRM) and tangent

space linear discriminant analysis (TS+LDA), have been proposed on the high-dimensional Riemannian
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manifold by utilizing the concepts of geodesic distance and tangent space [5]. The intrinsic sub-manifold

learned by BSML captures the information of high-dimensional Riemannian manifold. Because classifica-

tion on the low-dimensional sub-manifold can alleviate the overfitting and heavy computation problems, in

this paper, we propose two classification algorithms for the sub-manifold based on MDRM and TS+LDA.

The first proposed algorithm is named minimum distance to sub-manifold mean (MDSM) and is based

on MDRM [5]. Once training datasets are mapped to the Ms ×Ms intrinsic sub-manifold by the BSML

algorithm, the Riemannian mean of each class on the intrinsic sub-manifold can be calculated. For the

testing SPD matrices mapped onto the intrinsic sub-manifold, the minimum distance of the testing matrix

to all Riemannian means is calculated and the label of the testing matrix can be assigned according the

minimum distance. MDSM is presentd in Algorithm 2.

Algorithm 2 Minimum distance to sub-manifold mean (MDSM)

Input: Training and testing SPD datasets PTr,PTe;

Output: Label of testing data;

1: Obtain the optimal dimensionality and intrinsic mapping matrix by BSML, [Ms,Ws] = BSML(PTr).

2: Map data onto the intrinsic sub-manifold of size Ms×Ms as PcTr = WsPTrWT
s ,PcTe = WsPTeWT

s ;

3: Calculate the Riemannian mean of each class,

PcTr1 = argmin
P

∑
Pi∈C1

δ2R(P,Pi)

PcTr2 = argmin
P

∑
Pi∈C2

δ2R(P,Pi)

where C1, C2 are the subsets of PcTr of different classes;

4: Assign a label to the testing data according to the minimum distance to the Riemannian means. For

each testing data Pj ∈ PcTe, we obtain

Label=1 if δR(Pj ,PcTr1) ≤ δR(Pj ,PcTr2)

Label=2 if δR(Pj ,PcTr1) > δR(Pj ,PcTr2);

The second proposed algorithm is named tangent space of sub-manifold (TSSM). Suppose PR is the

Riemannian mean of all data points, including training and testing data points on the intrinsic Riemannian

sub-manifold. We could obtain a particular tangent space at the Riemannian mean. Each point on the

intrinsic sub-manifold can be projected onto the tangent space. Because the tangent space is a Euclidean

vector space, two classical classification algorithms, linear discriminant analysis (LDA) [33] and support

vector machine (SVM) [34], are applied for classification. According to the classification used, the two

methods are called TSSM+LDA and TSSM+SVM, respectively. The pseudo-code of TSSM is given in

Algorithm 3.
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Algorithm 3 Tangent space of sub-manifold (TSSM)

Input: Training and testing SPD datasets PTr,PTe;

Output: Label of testing data;

1: Obtain the optimal dimensionality and intrinsic mapping matrix by BSML, [Ms,Ws] = BSML(PTr).

2: Map data onto the intrinsic sub-manifold of size Ms×Ms as PcTr = WsPTrWT
s ,PcTe = WsPTeWT

s ;

3: Calculate the Riemannian mean of all data points as

PR = argmin
P

∑
Pi

δ2R(P,Pi) , Pi ∈ PcTr
∪

PcTe;

4: Project data onto the tangent space

sTr= upper(P
−

1

2

R Log(PcTr)P
−

1

2

R ) ∈ R
Ms(Ms+1)

2

sTe= upper(P
−

1

2

R Log(PcTe)P
−

1

2

R ) ∈ R
Ms(Ms+1)

2 ;

5: Apply the LDA or SVM classifier to the tangent space and for si ∈ sTe,

Label=LDA(si,sTr) or Label=SVM(si,sTr).

Table I

COMPARISON OF THE CONFIGURATIONS OF COMPETITION DATA AND IN-HOUSE BCI DATA.

Dataset IIa of BCI competition IV In-house dataset

Number of subjects 9 12

Number of channels 22 64

Number of classes 4 2

Trials per class 144 234

Number of training/testing trials 288/288 234/234

Sampling rate 250Hz 250Hz

Filter bank bandpass 8-30Hz bandpass 8-30Hz

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed algorithms on EEG signals from motor

imagery BCIs.

A. Experimental Setup

Data description: The n-channel EEG data used in the experiments are BCI competition IV motor

imagery data [35] and our in-house experimental data. The major experimental configurations of these

two datasets are shown in Table I.

1) Dataset IIa of BCI competition IV was recorded from 9 subjects who performed four types of motor

imagery tasks (right hand, left hand, foot and tongue imagined movements). The recorded signals
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consisted of 22 EEG channels with channel configuration as shown in Fig. 4 (a). The protocol of

the experiment was given as follows. In the initial time (0− 2s), a short acoustic warning tone was

presented. After two seconds (2s), a cue in the form of an arrow pointing left, right, down or up

appeared and remained on the screen from 2s to 3.25s. This prompted the subjects to perform the

motor imagery task until the fixation cross disappears from the screen at 6s. Lastly, there was a short

break that lasted for 1.5s. The paradigm is illustrated in Fig. 4 (c). The time interval of processed

data was restricted to the time segment between 3.75s and 5.75s during which the subject performed

the mental tasks. For each subject and mental task, there were 72 training and 72 testing trials. Thus,

the overall number of training/testing trials for each subject was 288/288. The EEG signals were

sampled with a sampling rate 250Hz and filtered by a 8−30Hz bandpass filter to analyze the µ and

β rhythms.

2) Our in-house EEG data were recorded from 12 subjects with 64 EEG channels. The configuration

of the 64 EEG channels is shown in Fig. 4 (b). The protocol of the in-house experiment was given

as follows. Two mental tasks, i.e., left/right hand imaged movements, were required to perform the

in-house BCIs. In the initial interval (0 − 2.25s), the screen remained blank. A cross appeared on

the screen to attract the subject’s visual fixation from 2.25s to 4s. From 4s to 8s, a left/right arrow

cue was shown and the subject performed the required task. The paradigm is illustrated in Fig. 4

(d). The time interval for the processed data was restricted to the time segment between 5s and 7s.

For each subject and each task, there were 117 training and testing trials. The overall number of

training/testing trials for each subject was 234/234. The EEG signals were sampled with a sampling

rate of 250Hz and filtered by a 8− 30Hz bandpass filter.

Algorithms evaluated: We evaluated the proposed algorithms, MDSM, TSSM+LDA and TSSM+SVM

against the following four competing algorithms.

1) CSP+LDA: CSP [36] followed by LDA [33] was applied for motor imagery classification.

2) CSP+SVM: CSP [36] followed by SVM [34] was applied for motor imagery classification.

3) MDRM: Minimum distance to Riemannian mean was used for classification on the high-dimensional

Riemannian manifold [5].

4) TS+LDA: LDA was applied to high-dimensional tangent space for classification [5].

Parameter setting: The number of selected variables of TS+LDA was set to 10 as suggested in [5]. The

number of CSP spatial filter was set to 8 as suggested in [36]. The kernel of SVM was selected as radial

basis function (RBF) and the regularization parameter of SVM was set as 0.8 [34]. Electrooculography
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Figure 4. The configuration of EEG sensors. a) BCI competition IV (#1,#2,#3 are the positions of EOG channels.); b) In-house

BCI system ; c) timing scheme of the paradigm for dataset II of competition IV; d) timing scheme of the paradigm for in-house

dataset.

(EOG) artifact was removed by linear regression method [37] as Y(t) = X(t) − KU(t), where X(t) ∈

R
22×L is the EOG-contaminated EEG signal, Y(t) ∈ R

22×L is EEG signal with EOG removed, U(t) ∈

R
3×L is the EOG signal and K ∈ R

22×3 is weighting matrix which is estimated by K = CXUC−1
UU [38],

where CXU is the cross-covariance matrix of X(t) and U(t), and CUU is the auto-covariance matrix of

the EOG signal U(t).

B. Experimental Results

Three experiments were performed to evaluate the algorithms. Experiment I had a normal setting and

Experiment II had a small sample data setting. Experiment III studied the computational load of each

algorithm.

1) Results of Experiment I: Because cross-validation can test the model in the training phase and

provide insights on how the model will generalize an independent test dataset, in this paper, we first tested
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Table II

COMPARISON OF CLASSIFICATION ACCURACIES ON DATASET IIA VIA 30-FOLD CROSS-VALIDATION.

Subject
Method

TSSM+LDA TSSM+SVM MDSM TS+LDA[5] MDRM[5] CSP+LDA[33] CSP+SVM[34]

S01 81.8 80 82.2 80.5 77.8 78.3 76.3

S02 62.5 58.7 57.4 51.3 44.1 44.7 50.7

S03 88.8 86.3 84.8 87.5 76.8 82.2 85.1

S04 63.7 68.2 62.2 59.3 54.9 59.1 52.9

S05 62.9 60.3 62.5 45 43.8 39.7 48.8

S06 58.5 59.2 58.5 55.3 47.1 50.1 49.2

S07 86.6 84.4 83.7 82.1 72 81 78.1

S08 85.1 84.0 80.3 84.8 75.2 68.5 77.4

S09 90 89.6 85.1 86.1 76.6 77.4 82.2

mean±std 75.5±13.2 74.5±12.7 73.0±12.3 70.2±17.1 63.2±15.2 64.6±16.6 66.7±15.7

the performance of the proposed algorithms on dataset IIa of BCI competition IV and in-house dataset

with a 30-fold cross-validation procedure [5]. No parameters need to be set for the proposed methods.

The training dataset of competition IV and in-house BCI were randomly divided into 30 subsets of equal

size. In each run, 29 subsets were used as training data and a single subset was used as the validation

data.

Because dataset IIa of BCI competition IV is a four-class problem, in this paper, the one-versus-one

strategy was used to extend the two-class classification algorithms for such a case. A total of 4(4-1)/2=6

binary classifiers and 6 mapping matrices Ws were learned from the training dataset. The simple majority

voting scheme was applied to obtain the final label. Table II presents the accuracies of classification of all

studied algorithms. The proposed methods, MDSM, TSSM+LDA and TSSM+SVM not only have higher

mean accuracy on classification, but also have lower standard deviations on classification accuracy. These

lower standard deviations indicate that the proposed methods are more robust against the variance of

subjects than the other methods.

Table III shows the results of 30-fold cross-validation on the in-house dataset. It indicates that the

proposed methods have better performance, e.g., higher mean accuracies and lower standard deviations,

than the others. Since the standard deviation values are relatively large compared with the difference

between mean performances in Table II and III, it is necessary to provide statistical significance analysis

on the cross-validation results.
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Table III

COMPARISON OF CLASSIFICATION ACCURACIES ON IN-HOUSE DATASET VIA 30-FOLD CROSS-VALIDATION.

Subject
Method

TSSM+LDA TSSM+SVM MDSM TS+LDA[5] MDRM[5] CSP+LDA[33] CSP+SVM[34]

A01 100 100 100 98.1 98.1 97.7 100

A02 95.5 93.3 93.3 93.3 94.6 81.6 80.0

A03 100 100 100 100 87.8 95.6 100

A04 94.8 94.8 94.9 86.1 84.6 84.6 90.3

A05 97.7 95.5 95.6 94.0 93.3 85.0 76.6

A06 92.3 94.8 94.8 86.1 81.5 80.7 80.7

A07 90.9 87.8 93.6 89.1 87.2 72.7 84.1

A08 87.8 84.8 93.9 87.2 85.4 81.8 84.1

A09 93.9 93.9 93.9 83.6 81.8 84.1 86.3

A10 84.8 90.9 84.8 83.1 89.1 88.6 88.6

A11 96.9 96.9 100 92.7 92.7 97.7 90.9

A12 84.0 82.6 79.7 75.8 69.5 68.4 80.4

mean±std 93.3±5.4 92.9±5.5 93.7±6.0 89.1±6.8 87.1±7.5 84.9±9.1 86.8±7.5

For the results in Table II and III, the analysis of variance (ANOVA) was first used to show the

significant difference of the studied methods. The paired T-tests were then adopted to further prove the

significant performance improvement of the proposed methods, compared to the other methods with the

same classifier but different feature extractor. The one-way ANOVA results for Table II (p = 2.0e−11 <

0.05) and Table III (p = 2.1e−7 < 0.05) indicates that the performances of the studied methods are

significantly different. From the paired T-test results shown in Table IV, it is clear that the proposed

methods yield significantly higher performance than the competing methods.

To obtain a more sophisticated analysis of the 30-fold cross-validation experiment, we calculated

the confusion matrix of all studied algorithms corresponding to the results in Table II. A graphical

representation of the confusion matrix is also shown in Fig. 5. For a fair comparison, we used the

average of the confusion matrices of all subjects. Compared with TS+LDA and MDRM, MDSM and

TSSM have larger diagonal elements and smaller non-diagonal elements of the confusion matrix. This

result indicates that the proposed methods greatly improve the classification performance of each class.

The Kappa coefficient is commonly used as a performance measure for the dataset IIa of competition

IV [39]. Kappa coefficient scales from 0 to 1 linearly onto the range between random and perfect
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Figure 5. Comparison of the confusion matrices of the studied algorithms on dataset IIa of BCI competition IV. The diameter

(size) of the circle indicates the magnitude of the corresponding entry in the confusion matrix.
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Table IV

PAIRED T-TEST RESULTS FOR THE PROPOSED METHODS VERSUS COMPETING METHODS BASED ON TABLE II AND TABLE

III.

Paired T-test
Dataset IIa (Table II) In-house BCI (Table III)

p-value p-value

TSSM+LDA vs. TS+LDA * (0.0227) † (0.0015)

TSSM+LDA vs. CSP+LDA † (0.0014) † (0.0013)

TSSM+SVM vs. CSP+SVM †† (5.1e-4) ** (0.0057)

MDSM v.s. MDRM †† (1.7e-4) † (0.0021)

Note: ∼ nonsignificant, * p ≤ 0.05, ** p ≤ 0.01, † p ≤ 0.005, †† p ≤ 0.001

classification. Kappa coefficient [39] is defined as

Kappa =
(po − pe)

(1− pe)
(20)

where po is the proportion of observed agreement (equivalent to the average classification accuracy rate

over all the classes), pe is the proportion of chance expected agreement (defined as pe = mc×mT
r ×Σ2,

where mc and mr represent row vectors containing elements as the sums of columns and the sums of the

rows of the confusion matrix, respectively, and Σ are the sums of all elements in the confusion matrix).

In Table V, we also reported the results using the Kappa coefficient as a performance index for dataset

IIa of BCI competition IV. The performances of the top three winners of competition IV (1st, 2nd and

3rd of Competition IV) are included in the comparison. In particular, TSSM+LDA achieved a mean value

of 0.593 and the TSSM+SVM method achieved a mean value of 0.571. The MDSM method achieved a

mean value of 0.568, thus ranking sixth in Table V. Moreover, to show the robustness against artifacts,

the performance of the proposed algorithms without EOG removal are also presented in Table V. These

results reveal that EOG removal is important for BCI system to improve classification performance.

However, the proposed methods demonstrate strong robustness against artifacts. Without EOG removal,

they have slight performance degradation but still produce superior performance.

In Table VI, to enrich the performance comparison, we presented the classification accuracies of the

studied methods on our in-house BCI dataset. The proposed algorithm, MDSM, exhibits approximately 4%

improvement on classification compared to MDRM. Similarly, TSSM+LDA exhibits approximately 2%

improvement compared to TS+LDA. From the paired T-test results, e.g., MDSM vs. MDRM (p = 0.003),

TSSM+LDA vs. TS+LDA (p = 0.07), TSSM+SVM vs. CSP+SVM (p = 0.014) and TSSM+LDA vs.
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Table V

COMPARISON OF THE KAPPA VALUES OF DIFFERENT METHODS ON DATASET IIA OF BCI COMPETITION IV FOR

PREDICTION.

Method Mean Kappa
Subject

S01 S02 S03 S04 S05 S06 S07 S08 S09

TSSM+LDA 0.593 0.77 0.33 0.77 0.51 0.35 0.36 0.71 0.72 0.83

TSSM+LDA(without EOG removal) 0.584 0.76 0.32 0.77 0.50 0.34 0.35 0.70 0.70 0.81

TSSM+SVM 0.571 0.70 0.32 0.75 0.54 0.32 0.34 0.70 0.69 0.77

1st of Competition IV 0.570 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61

TS+LDA[5] 0.567 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76

MDSM 0.568 0.72 0.34 0.74 0.49 0.34 0.34 0.71 0.70 0.73

TSSM+SVM(without EOG removal) 0.564 0.70 0.31 0.74 0.54 0.31 0.34 0.69 0.68 0.75

MDSM(without EOG removal) 0.562 0.71 0.33 0.73 0.49 0.34 0.33 0.70 0.70 0.73

MDRM[5] 0.521 0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68

2nd of Competition IV 0.520 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69

3rd of Competition IV 0.310 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44

CSP+LDA (p = 0.015), it is clear that only the performance improvement of TSSM+LDA vs. TS+LDA

is not significant. However, the p = 0.07 is very close to 0.05. Based on the results for the competition

and in-house datasets, we can conclude that the proposed methods significantly improved classification

performance compared to the other algorithms. These improvements might be attributable in part to the

ability of the intrinsic sub-manifold learned by BSML to capture the major geometric information of the

original manifold and relief of the overfitting problem to some extent by the dimensionality reduction.

We also compared the dimensionality reduction performance of BSML and the state-of-the-art manifold

learning algorithms. The 2-dimensional embeddings learned by Isomap, LLE, CSP and BSML are shown

in Fig. 6. The distributions of learned features in Fig. 6 clearly indicate that the features learned by

BSML have high separability, supporting the possibility of high classification performance for BSML

based methods.

The proposed BSML method can be considered as an extension of CSP. The BSML also learned

spatial patterns form the experimental covariance matrices. In Fig. 7, the topographic maps of spatial

filters learned by the CSP and BSML are shown. We can see that the spatial filters learned by BSML

have larger difference between electrodes C3 and C4, which cover the area dedicated to the right-hand

and left-hand imagery movements. The major difference between BSML and CSP is the Riemannian
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Table VI

COMPARISION OF CLASSIFICATION ACCURACIES ON IN-HOUSE BCI DATASET FOR PREDICTION.

Method Mean accuracy
Subject

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12

TSSM+SVM 90.0 100 98.7 100 95.1 98.7 87.0 92.9 87.7 83.9 78.5 78.9 78.6

TSSM+LDA 89.8 100 100 100 95.1 98.7 87.0 92.9 94.7 83.9 73.2 70.1 82.0

MDSM 90.3 100 96.1 97.5 91.9 98.7 100 89.4 85.9 87.5 78.5 80.7 77.7

TS+LDA[5] 88.0 100 97.4 100 88.7 97.4 85.5 91.2 84.2 82.1 71.4 75.4 79.4

MDRM[5] 86.6 100 96.1 95.0 85.4 93.5 85.4 87.7 80.7 82.1 75.0 71.9 76.9

CSP+LDA[33] 82.6 96.4 96.1 100 74.1 96.1 83.8 82.4 68.4 75.0 66.0 73.6 79.4

CSP+SVM[34] 85.2 98.2 93.5 100 77.4 98.7 87.0 89.4 78.9 82.1 67.8 70.1 79.4
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Figure 6. Comparison of 2-dimensional embedding learned from Isomap, LLE, CSP and BSML for subject 1 of dataset IIa of

BCI competition IV. The features corresponding to the right hand and foot imaged movements are shown in the top row, and

the features corresponding to the left hand and tongue imaged movements are shown in the bottom row.

distance used in BSML. Since Riemannian distance can better represents the relationship of covariance

matrices, hence, the BSML is possible to learn a more precise pattern.
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Figure 7. Topographic map of the CSP and BSML methods for the left/right hand motor imagery data from the subject 3 of

dataset IIa of BCI competition IV. a) the first and last spatial filters of CSP; b) two row of normalization matrix W corresponding

to the largest and smallest eigenvalues on {λj1, j ∈ [1, N ]} .

2) Results of Experiment II: For many reasons, the training sets available in BCI applications are

frequently small [40]. Reducing the number of training trials required for a specific task is an important

objective in BCI feedback applications. Dimension reduction is a potential means of alleviating the

problem of small training dataset. We performed experiments to evaluate the performance of BSML for a

small training dataset. In this experiment, we only used 1/2,1/3 and 1/6 (i.e., 144, 96 and 48 trials) training

samples of dataset IIa of competition IV. The average of 20 repeated experiments versus different sizes

of training datasets are reported in Table VII. As the training sample size decreased from 1/2 to 1/6, the

performances of all algorithms decreased. However, the proposed methods exhibited smaller performance
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Table VII

COMPARISON OF CLASSIFICATION PERFORMANCE ON DATASET IIA WITH TRAINING DATA OF DIFFERENT SIZES FOR

PREDICTION.

Number of sample Method Mean Kappa
Subject

S01 S02 S03 S04 S05 S06 S07 S08 S09

1/2 training
TSSM+LDA 0.534 0.71 0.28 0.75 0.40 0.30 0.30 0.67 0.61 0.79

sample
TSSM+SVM 0.540 0.72 0.32 0.75 0.42 0.26 0.26 0.73 0.61 0.74

(144 trials)
MDSM 0.538 0.74 0.28 0.72 0.40 0.32 0.31 0.68 0.65 0.75

TS+LDA[5] 0.512 0.71 0.22 0.72 0.36 0.30 0.34 0.57 0.61 0.78

MDRM[5] 0.490 0.74 0.27 0.63 0.37 0.28 0.30 0.56 0.58 0.68

1/3 training
TSSM+LDA 0.513 0.65 0.31 0.74 0.42 0.16 0.24 0.64 0.66 0.76

sample
TSSM+SVM 0.515 0.63 0.30 0.77 0.40 0.24 0.29 0.66 0.59 0.72

(96 trials)
MDSM 0.519 0.71 0.35 0.72 0.49 0.20 0.22 0.65 0.62 0.67

TS+LDA[5] 0.487 0.66 0.31 0.75 0.38 0.19 0.19 0.55 0.61 0.68

MDRM[5] 0.478 0.68 0.31 0.63 0.50 0.18 0.22 0.53 0.58 0.62

1/6 training
TSSM+LDA 0.499 0.62 0.29 0.78 0.34 0.21 0.23 0.62 0.55 0.80

sample
TSSM+SVM 0.494 0.63 0.27 0.75 0.37 0.21 0.23 0.63 0.55 0.76

(48 trials)
MDSM 0.493 0.66 0.29 0.73 0.42 0.24 0.22 0.61 0.54 0.69

TS+LDA[5] 0.416 0.56 0.17 0.72 0.34 0.20 0.10 0.43 0.46 0.73

MDRM[5] 0.410 0.58 0.21 0.64 0.40 0.12 0.15 0.44 0.49 0.64

degradation compared to the other methods. The paired T-tests of TSSM+LDA vs. TS+LDA (p = 0.003)

and MDSM vs. MDRM (p = 0.0005) indicates that the performance improvement of the proposed

methods in small sample sizes (1/6 size setting) is significant.

In Table VIII, the results for the in-house BCI dataset with only 1/6 of the training samples are shown. In

each experiment, 39 trials randomly selected from 234 training trials were used as the training dataset. The

reported results were the average of 20 repeated experiments. Compared with the results of the full training

sample case in Table VI, MDSM exhibited 13.3% accuracy degradation, whereas MDRM exhibited 19%

accuracy degradation. Similarly, TSSM+LDA exhibited approximately smaller performance degradation,

11.3% , compared to TS+LDA (15.9%). Compared to the other methods, the proposed methods also had

smaller performance degradation. Thus, the proposed BSML-based classification methods are more robust

for the small training dataset problem. Similar as the four paired comparison in Table IV, all the p-values

of paired T-tests are smaller than 0.05, which reveals that the proposed methods have significantly high

performance in small sample sizes.
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Table VIII

COMPARISON OF CLASSIFICATION ACCURACIES ON IN-HOUSE BCI DATASET WITH 1/6 OF THE TRAINING DATASET FOR

PREDICTION.

Method Mean accuracy
Subject

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12

TSSM+SVM 76.5 89.4 84.4 100 83.8 79.2 93.5 73.6 70.1 69.6 62.5 59.6 52.1

TSSM+LDA 78.5 94.2 80.1 100 97.4 89.2 53.5 88.9 64.3 72.5 65.3 73.1 63.8

MDSM 77.0 100 87.0 100 93.5 77.9 96.7 64.9 56.1 60.7 53.5 80.7 52.9

TS+LDA[5] 62.1 79.4 77.0 87.5 75.4 64.0 65.8 40.8 46.1 70.3 38.2 56.6 44.7

MDRM[5] 67.6 92.9 81.8 85.0 50.0 55.8 95.1 56.1 56.1 57.1 60.7 57.8 62.3

CSP+LDA[33] 63.3 77.1 48.0 95.0 53.2 61.0 64.5 75.4 57.8 55.3 57.1 50.8 64.1

CSP+SVM[34] 65.7 92.9 63.6 97.5 58.0 61.0 51.6 70.1 49.1 55.3 67.8 59.6 62.3

3) Results for Experiment III: Finally, to demonstrate the efficiency of the proposed methods, we

compared the computational loads of the algorithms on the intrinsic sub-manifold with those of methods

on the high-dimensional original manifold. The computational loads contain training and testing times.

As shown in Fig. 8-9, the training times of MDSM and TSSM were shorter than those of MDRM and

TS+LDA on both BCI competition IV and the in-house datasets because calculation of the Riemannian

mean requires more time for high-dimensional manifolds. The testing times of MDSM and TSSM were

nearly 5 times shorter than those of MDRM and TS+LDA.

V. CONCLUSIONS

Dimensionality reduction methods for high-dimensional Riemannian manifold are important to address

the over-fitting problem of classification. Most proposed dimension reduction methods are derived for

general manifolds, and few exploit the structural information of the manifold from which the original

data are sampled. Considering applications with SPD matrices, a BSML method was proposed to identify

a linear sub-manifold of SPD data by maximizing the preservation of the Riemannian distance between

data points. Three classification algorithms, i.e., MDSM, TSSM+LDA and TSSM+SVM, were proposed

for the extracted intrinsic sub-manifold. Experimental results for EEG signals demonstrated that the

proposed BSML can capture useful geometric information of the original manifold. The performance

of the proposed MDSM and TSSM methods is superior to those of MDRM and TS+LDA, particularly

when the training dataset is small. The proposed methods can also be applied to many other pattern

recognitions with input data in the form of SPD matrices. Our future work will focus on constructing
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Figure 8. Comparison of the training and testing times of the studied algorithms on dataset IIa of BCI competition IV.
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Figure 9. Comparison of the training and testing time of the studied algorithms on the in-house dataset.
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nonlinear mapping, such as isometric mapping, instead of the bilinear mapping used in BSML.

APPENDIX

I. APPROXIMATION OF (14)

For the two-class classification problem, the cost function of (14) is expressed as

∑

Pi∈C1,Pj∈C2

∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣

+
∑

Pj∈C1,Pi∈C2

∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣

+
∑

Pi,Pj∈C1

∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣

+
∑

Pi,Pj∈C2

∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣ (21)

where the first two items measure the mapping error among between-class samples, and the last

two items measure the mapping error among within-class samples. According to the invariance of

linear transformation (7), we have δR(Pi,Pj) ≥ δR(WsPiWs
T ,WsPjWs

T ) for all Ws. Considering

the classification problem, if we can guarantee the between-class distance, then the compression of

within-class variance can be anticipated. Thus, the last two items can be ignored in optimization and the

optimization problem (14) can be approximated as

min
Ws

∑

Pi∈C1,Pj∈C2

∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣ (22)

As shown in Fig. 10, we regard Pa as the Riemannian mean of C1 and Pb as Riemannian mean of

C2. Applying the triangular inequalities

δR(Pi,Pb)− δR(Pj ,Pb) ≤ δR(Pi,Pj) ≤ δR(Pi,Pb) + δR(Pj ,Pb) (23)

we have

∑

Pi∈C1,Pj∈C2

δR(Pi,Pj),

≤ |C2|
∑

Pi∈C1

δR(Pi,Pb) + |C1|
∑

Pj∈C2

δR(Pj ,Pb),

≤ |C1||C2|δR(Pa,Pb) + |C2|
∑

Pi∈C1

δR(Pi,Pa) + |C1|
∑

Pj∈C2

δR(Pj ,Pb) (24)
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Figure 10. Approximation of between-class distance.

where |C| is the cardinality of set C and

∑

Pi∈C1,Pj∈C2

δR(Pi,Pj),

≥ |C2|
∑

Pi∈C1

δR(Pi,Pb)− |C1|
∑

Pj∈C2

δR(Pj ,Pb),

≥ |C1||C2|δR(Pa,Pb)− |C2|
∑

Pi∈C1

δR(Pi,Pa)− |C1|
∑

Pj∈C2

δR(Pj ,Pb) (25)

In summary,
∣∣∣∣∣∣

1

|C1||C2|

∑

Pi∈C1,Pj∈C2

δR(Pi,Pj)− δR(Pa,Pb)

∣∣∣∣∣∣
,

≤
1

|C1|

∑

Pi∈C1

δR(Pi,Pa) +
1

|C2|

∑

Pj∈C2

δR(Pj ,Pb). (26)

If we select P1 = argminPb

∑
Pj∈C2

δ2R(Pj ,Pb) and P2 = argminPa

∑
Pi∈C1

δ2R(Pi,Pa), in other words, the

Riemannian means of datasets, the between-class distance can be approximated as the distance between

the means of two datasets, particularly when the within-class variance is much smaller compared with

the between-class distance. Thus, for easy processing, we approximate the optimization problem (14) as

min
Ws

∣∣δR(Pa,Pb)− δR(WsPaWs
T ,WsPbWs

T )
∣∣. (27)

II. SOLUTION OF JOINT DIAGONALIZATION

Suppose P1 and P2 are two symmetric positive-definite matrices. Essentially, the normalization

of P1 and P2 is a problem of joint diagonalization which has been studied extensively. The joint
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diagonalization problem can be resolved by the following procedures:

1) Obtain a whitening matrix by Eigenvalue decomposition of P1 + P2

(P1 + P2) = UΣUT . (28)

The whitening matrix is given as Ũ = Σ−
1

2 UT . Then, we have

ŨP1Ũ
T
+ ŨP2Ũ

T
= I. (29)

2) Diagonalize of ŨP1Ũ
T

. Because it cannot be ensured that ŨP1Ũ
T

is a diagonal matrix, we can

find a diagonalization matrix U1 for ŨP1Ũ
T

by applying eigenvalue decomposition as

ŨP1Ũ
T
= U1Σ1U1

T . (30)

3) Construct the transformation matrix as W = U1
T Ũ .

It is easy to prove that the transformation matrix W is subject to WP1WT + WP2WT = I and that

both WP1WT and WP2WT are diagonal matrices.

An alternative method to obtain transformation matrix W is to apply eigenvalue decomposition to

(P1 + P2)
−1P1 as (P1 + P2)

−1P1 = WΣ1WT . The obtained transformation matrix can be proven to be

identical to the above method as follows:

P1Ũ
T

U1 = Ũ
−1

U1Σ1 (31)

(P1 + P2)
−1 = Ũ

T
Ũ (32)

Ũ
−1

=(P1 + P2)Ũ
T (33)

(P1 + P2)
−1P1 = U1

T ŨΣ1U1Ũ
T
= WΣ1WT . (34)
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[35] C. Brunner, R. Leeb, G. Müller-Putz, A. Schlögl, and G. Pfurtscheller, “BCI competition 2008 - graz data set a,” graz University of

Technology, Austria.

[36] M. Grosse-Wentrup and M. Buss, “Multiclass common spatial patterns and information theoretic feature extraction,” IEEE Trans. Biomed.

Eng., vol. 55, no. 8, pp. 1991–2000, Aug. 2008.

[37] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E. Birch, “EMG and EOG artifacts in brain computer interface systems: A survey,”

Clin. Neurophysiol., vol. 118, no. 3, pp. 480–494, Mar. 2007.
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