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2 for 1 on PDT DOI: 10.1002/anie.200((will be filled in by the editorial staff)) 

 Homo- and heteroleptic phototoxic dinuclear metallo-intercalators based 
on Ru

II
(dppn) intercalating moieties: synthesis, optical and biological 

studies. 

Hiwa K. Saeed, Paul J. Jarman, Stuart Archer, Sreejesh Sreedharan, Ibrahim Q Saeed, Luke K. 
Mckenzie, Julia A Weinstein, Niklaas J Buurma, Carl G. W. Smythe, and Jim A. Thomas* 

((Dedication----optional))

Abstract: Using a new mononuclear “building block,” for the first 

time, a dinuclear Ru
II
(dppn) complex and a heteroleptic system 

containing both Ru
II
(dppz) and Ru

II
(dppn) moieties are reported. 

The complexes, including the mixed dppz/dppn system, are 
1
O2 

sensitizers. However, unlike the homoleptic dppn systems, the mixed 

dppz/dppn complex also displays a luminescence “switch on” DNA 

light-switch effect. In both cisplatin sensitive and resistant human 

ovarian carcinoma lines the dinuclear complexes show enhanced 

uptake compared to their mononuclear analogue. Thanks to a 

favorable combination of singlet oxygen generation and cellular 

uptake properties all three of the new complexes are phototoxic and 

display potent activity against chemotherapeutically resistant cells. 
 

Kinetically inert luminescent metal complexes that interact with 
biomolecules are now much studied. [1-5] In this context, the 
photophysics and biomolecular recognition properties of polypyridyl 
complexes containing the RuIIdppz unit have attracted particular 
attention, as many of the complexes display a “DNA light-switch” 
effect, in which Ru→dppz-based 3MLCT emission is “switched on” 
through DNA intercalation. [6-9] Although the parent complex, 
[Ru(N-N)2(dppz)]2+ (where N-N = 2,2’-bipyridyl, 1,10-
phenanthroline), displays poor cellular uptake, derivatives that are 
potential cell imaging probes for optical microscopy have 
consequently been developed, through increasing lipophilicity or by 
adding appropriate targeting ligands.[10,11] 

Oligonuclear complexes containing RuIIdppz units have also 

been investigated. In pioneering work, the Nordén and Lincoln 
groups have reported on the synthesis and biophysical properties of 
chirally resolved dinuclear complexes tethered through linkers 
attached to the intercalation site.[12] Due to their distinctive 
connectivity, these systems are “DNA staples”, threading into DNA 
in a manner similar to naturally occurring molecules such as 
nogalamycin.[13] Again, these complexes are not spontaneously 
taken up by live cells, unless their membrane structure is 
disrupted.[14] The enhanced DNA binding of dinuclear complexes 
has also been shown by Aldrich-Wright and co-workers, when two 
optically unresolved [RuII(dpq)2(phen)] units (where dpq = 
dipyrido[3,2-d:2’,3’-f]quinoxaline) are joined together through a 
flexible 2-mercapto-ethyl ether attached to their non-intercalative 
phen ligands, which gave DNA binding affinities up to three orders 
of magnitude higher than their mononuclear analogues.[15] Although 
subsequent studies on similar systems have been reported, [16] 
oligonuclear complexes incorporating more extended intercalating 
moieties are rare, whilst systems containing sites containing 
different intercalating ligands have not yet been explored. 

Photoactive metal complexes have also been investigated as 
sensitizers for photodynamic therapy, PDT. [17-20] Although RuIIdppz 
systems for such applications have been reported, [21,22] work on 
related M(dppn)-based complexes (M= ReI, RuII, OsII) has gained in 
significance. [23-26] [27] [28] Unlike their dppz analogues, dppn-based 
complexes commonly display a dppn-based π→π* excited state that 
has a lifetime of tens of microseconds and are thus very efficient 
singlet oxygen sensitizers. [29] 

In the context of such studies, we have investigated the 
properties of achiral [Ru(tpm)(L)(dppz)]2+ complexes (where tpm = 
tris(pyrazolyl)methane, L = a monodentate N-donor ligand). [30,31] 
These units have provided more facile methods toward the synthesis 
of oligomeric metallo-intercalators. [32-34] Given the proven 
therapeutic potential of the RuIIdppn-moiety, we set out to 
synthesize dinuclear systems that incorporate this unit and, for the 
first time, the syntheses of both dinuclear homoleptic (RuIIdppn) and 
heteroleptic (RuII(dppz)/RuII(dppn)) complexes are described. In the 
initial studies reported herein we also compare the photophysical 
and cell-based biological properties of these new complexes with 
their RuIIdppz analogues. These studies reveal that the new dppn 
systems are promising therapeutic and theranostic leads. 

Using the complex [(tpm)Ru(dppn)(Cl)]+ and the dipyridyl 
tether ligand, both prepared using published procedures, [31,34] 
monomer complex 1

2+ is readily accessed. Bimetallic complex 2
4+

 

could then be prepared through an addition of excess monomer 12+ 
to a solution of [(tpm)Ru(dppn)(Cl)+ - Fig. 1. In a similar manner, 
the first dinuclear heteroleptic RuIIdppz/RuIIdppn complex, 34+, was 
synthesized using the previously reported mono nuclear complex 
[(tpm)Ru(dppz)(L1)]2+, which was reacted with 
[(tpm)Ru(dppn)(Cl)]+  to yield the required product.  
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Figure 1. Complexes relevant to this report: 1
2+

 is the mononuclear 

building block for the synthesis of complexes 2
4+

 and 3
4+

. The 

synthesis of 4
4+

 has been reported previously. 

The photophysical properties of new complexes 12+, 24+ and 34+ 
as their hexafluorophosphate salts in acetonitrile are summarized in 
the SI. Apart from intense intraligand (IL) π → π* transitions at 250 
–320 nm, the complexes displayed double humped absorption 
between ~390 and ~420 nm, which – in comparison to the free 
ligand – can also be assigned to dppn-based IL transitions.  
Similarly, since the UV−Vis spectrum of the dppz ligand in 
acetonitrile displays a moderately intense IL band with two principal 
maxima at λ = 358 and 376 nm, the intense band at 361 nm 
observed in the spectrum of complex 3

4+ is assigned to a 
π→π*(dppz) transition. Bands observed at 450 - 490 nm are 
assigned as MLCT transitions as these typically occur at this energy 
in these complexes. As expected from previous studies, complexes 
1

2+ and 2
4+ - which only contain RuIIdppn units - are not 

luminescent. In contrast, complex 34+ does display a broad emission 
centered at 644 nm, which is typical of Ru→dppz 3MLCT-based 
luminescence. 

To investigate the photo-excited state of the new dinuclear 
complexes in more detail, transient absorption studies in acetonitrile 
were carried out. The transient difference spectra obtained in flash 
photolysis experiments for 24+ and 34+ are shown in Figure 2 where 
they are compared to the data obtained with homoleptic dinuclear 
complex RuIIdppz complex 4

4+. For completeness, mononuclear 
complexes 1

2+ and its RuIIdppz analogue were also studied using 
this technique (see SI Fig 1). 

Excitation of all three complexes using a 7 ps laser pulse at 355 
nm, measured over a time window of 3.5 nanoseconds, leads to the 
formation of several transient bands due to ground state bleaching – 
Fig 2. The transient spectra for the three complexes are unmatched, 
implying that the excited state accessed on the picosecond time scale 
is not the same in each case. As expected, the observed transient 

spectrum of complex 4
4+

 (Fig 2A) and mononuclear analogue (see 
SI), shows a broad absorption at ̴600 nm, indicating occupation of 
the Ru→dppz-based 3MLCT state. However, the transient 
absorption spectrum of complex 2

4+ (Fig 2B) differs significantly 
from that of 4

2+ and is consistent with an expected dppn-based 
3
ππ*state, which displays an absorption at   ̴540 nm; [29] comparable 

to its mononuclear analogue 12+, which displays a similar trace (see 
SI). 

Interestingly, the transient absorption spectrum of complex 3
4+ 

(Fig 2C), which contains both dppz/dppn ligands, is a combination 
of the individual excited states observed for 2

4+ and 4
4+. The 

structured 3
ππ* absorption grows in at 540 nm accompanied by the 

broad 3MLCT absorption around  ̴600 nm, indicating that – at least 
on this timescale – both excited states are occupied. 

 

Figure 2. Transient absorption spectra for dinuclear complexes 4
4+

 

(A), 2
4+

 (B), 3
4+

 (C) recorded in acetonitrile at selected time delays. 

The normalised excited states at 100 ps for all complexes is shown in 

panel D for comparison - 2 and 3 are shown at 100 ps, the spectrum 

for 4 has been summed between 30-200 ps to improve signal-to-

noise, as no spectral changes are observe during this timescale. 

Photoexcitation of complexes containing the RuIIdppn unit have 
been found to sensitize singlet oxygen, with yields of >70 % being 
achieved. Consequently, the sensitization properties of the three new 
complexes were assessed by the direct measurement of O2(

1
Δg) → 

3O2 phosphorescence at 1270 nm and compared to data obtained for 
complex 44+ - Table 1. 

Table 1. Singlet oxygen yield on irradiation of complexes 1
2+

, 2
4+

 and 

3
4+

 and 4
4+[a]

 

Complex 
1
O2 yield % 

1
2+ 

59.3 

2
4+ 

67.2 

3
4+ 

15.7 

4
4+ 

4.9 

[a] Recorded in acetonitrile using hexafluorophosphate salts. 
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The data for the complexes clearly illustrate that access to the 
3
ππ* state of the dppn ligand does increase sensitization. Dinuclear 

complex 44+ is a poor 1O2 sensitizer, displaying properties that are 
comparable to many mononuclear RuIIdppz systems. [35] In contrast, 
complexes 1

2+ and 2
4+ are efficient sensitizers, so that their 1O2 

quantum yields are up to 13-fold higher than 44+. Although complex 
3

4+ incorporates the RuIIdppn unit and does photo-generate 1O2 at 
higher levels than 44+, it is a poorer sensitizer than 12+ and 24+. This 
observation is again consistent with occupation and equilibration 
between the 3

ππ* state and the shorter lived RuIIdppz 3MLCT state. 
Indeed we have observed a similar phenomenon in a related 
heteronuclear RuIIdppz/ReIdppz system, in which the 3MLCT of the 
RuII centre interacts with the 3

ππ* dppz-based excited state of the 
ReIdppz unit. 

Water-soluble chloride salts of all three new complexes were 
obtained via anion metathesis of their respective PF6

- salts using 
[nBu4N]Cl in acetone. Their interaction with CT-DNA in aqueous 
buffer (25 mM NaCl, 5 mmol tris, pH 7.0) was first investigated 
using UV–visible spectroscopic titrations. Addition of CT-DNA 
results in characteristically large hypochromicity in both MLCT and 
π→π* absorption bands, producing typical saturation binding curves 
- see Fig. 4. As previously reported for systems such as 44+, attempts 
to fit titration data to the well-known McGhee-Von Hippel model[36] 
for non-cooperative binding proved unsuccessful. As in previous 
studies, despite the sequence heterogeneity of CT-DNA, absorption 
spectroscopic titrations could be reproduced by a multiple 
independent binding sites, MIS, model, [37] which explicitly takes 
the ligand concentration into account, and thus avoids the need to 
keep the ligand concentration constant upon addition of DNA – See 
SI. The binding parameters derived from these fits are summarized 
in Table 2. To aid comparisons, the binding affinity for 4

4+ 
estimated using the same methods are included. 

Table 2. Estimates of binding constants for complexes relevant to this 

study obtained from fits the MIS model to UV-Visible titrations 
[a]

 

Complex Kb 

/ 10
5
 M

-1 
binding site  

/ b.p. 
ε MLCT 

/ 10
4
 M

-1
 cm

-1
 

Δε MLCT 

/ 10
4
 M

-1
 cm

-1
 

1
2+ 

12.2±3.5 0.99±0.03 3.48±0.02 -1.62±0.03 

2
4+ 

1.1±0.3 1.0±0.1 3.46±0.02 -1.66±0.04 

3
4+ 

1.7±0.7 2.6±0.1 9.04±0.02 -7.1±0.7 

4
4+ 

8.9 0.85 6.43 -3.77 

[a] Fit of the MIS model (described in Ref 37) to data from UV-visible 

titrations. Conditions: 25mM NaCl, 5mM Tris-HCl, pH 7.4, 25°C. 

In fluorescence titrations, as expected, both 12+, and 24+ showed 
no emission in aqueous solution, even upon addition of CT-DNA. 
These observations are consistent with previous reports, and with 
our studies on the hexafluorophosphate salts, indicating that the 
lowest excited state of the RuIIdppn moiety is the non-emissive 
dppn-based π→π* state.  In contrast, 3

4+
 displays increasing 

emission upon progressive addition of CT‐DNA. The fact that a 
distinctive DNA light switch effect is observed is in agreement with 
the transient absorption studies and confirms that the Ru(dπ)→dppz 
(π*)  3MLCT excited state of complex 34+ is occupied. 

For all new complexes, binding thermodynamics with DNA at 
25 °C were determined by ITC. Their heat of dilutions were found 
to be constant, indicating that they do not aggregate under the 
experimental conditions; consequently, titrations with CT-DNA 
were then carried out. Typical enthalpograms for these titrations are 
shown in the SI. Potential binding models were explored by fitting a 
model involving two different DNA-ligand binding events to the 

calorimetric data using the I2CITC software package[38,39] with the 
corresponding parameters KA, ΔHA, nA, (for equilibrium A), KB, 
ΔHB and nB (for equilibrium B) all optimised without restrictions. 
The merit of these binding models was evaluated through analysis of 
the covariance between the stoichiometries nA and nB, in 
combination with whether suggested binding site sizes are 
reasonable (See SI for details). This analysis highlighted a common 
binding event involving a binding site of six to seven base pairs for 
all complexes three complexes. The calorimetry data were therefore 
re-analysed, restricting the first binding site size to 7.5 basepairs and 
6.2 basepairs for 12+ and 24+, respectively. For 34+, the data were re-
analysed in terms of a model involving one binding site. The 
resulting thermodynamic parameters as summarized in Table 3 
shows that the high affinity binding modes of complexes are very 
similar in binding site and affinity. The stoichiometry for the 
secondary binding events suggests that this involves non-specific 
binding, potentially through electrostatic interactions. Remarkably, 
3

4+ does not seem to display a secondary binding event of sufficient 
strength to be noticeable in the calorimetric data. Any differences in 
affinity and binding site size according the UV-visible titrations and 
ITC experiments is likely the result of the presence of different 
types of binding sites on the DNA, which is not reproduced by the 
MIS model. 

Table 3. Estimates of binding constants for complexes relevant to this 

study obtained from fits the MIS model to UV-Visible titrations 
[a,b]

 

parameter  1
2+

 2
4+

 3
4+

 

KA / M
-1

  1.8×10
6
  2.8×10

6 
 1.5×10

6 
 

nA / b.p.  7.5
[c]

 6.2
 [c]

 5.9 

ΔHA / kJ mol
-1

  -0.5  2.1  10.6  

KB / M
-1

  1.2×10
5
  1.6×10

5
  --- 

nB / b.p.  2.17  2.43  --- 

ΔHB / kJ mol
-1

  2.8  4.8  --- 

[a] Conditions: 25mM NaCl, 5mM Tris-HCl, pH 7.4, 25°C. [b] For 

confidence intervals, see the SI [c] Binding site size restricted 

following binding model exploration. 

Although 1
2+ and 2

4+ are non-emissive, since complex 3
4+

 is 
luminescent its cell uptake properties were investigated using wide-
field fluorescence microscopy. It was found that after just 15 
minutes exposure to [3]Cl4, even at concentrations as low as 20 µM, 
uptake into live A2780 cells could be clearly observed through its 
characteristic 3MLCT-based emission. Although the complex binds 
to DNA in cell free conditions, it is clear that, within live cells, 34+ 

produces negligible nuclear staining; however, bright emission from 
specific regions within the cytoplasm is observed. To investigate 
this issue further, cells were co-stained with organelle specific 
luminescent probes.  

Lipophilic cations often accumulate within mitochondria,[40] 
therefore initial co-localisation experiments involved the 
commercial probe mitotracker deep red, MTDR. As observed in Fig 
3A, although it is clear that there is some overlap between the 
emission of MTDR and 3

4+ - confirming that it partly localizes 
within mitochondria on live cell uptake - a greater correlation is 
observed with lysotracker deep red (LTDR), a probe used to label 

and track acidic lysosomes in live cells, Fig 3B.  
Since 1

2+ and 2
4+ are non-emissive their uptake in the human 

ovarian cancer cell line, A2780cis over a 24 hours period was also 
directly measured and compared to that of 3

4+ using inductively 
coupled plasma mass spectrometry (ICP-MS). This analysis 
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revealed that, even allowing for the fact that 2
4+ and 3

4+ are 
dinuclear, the intracellular accumulation of both dinuclear 
ruthenium complexes are notably higher than that of 12+. Moreover, 
homoleptic complex 24+ is taken up into cells with an almost tenfold 
increase in terms of molarity over heteroleptic complex 3

4+, 
producing intracellular concentrations that are considerably higher 
than the external exposure concentration – Table 5. The higher 
uptake of the dinuclear complexes is consistent from our previous 
studies on photo-active metallomacrocycles,{Walker:2016fl} which 
indicated that overall charge density/lipophilicity of the oligonuclear 
systems can be lower than that of analogous mononuclear complex. 
The difference in uptake between 2

4+ and 3
4+ is also explained by 

this trend as, overall, 24+ has a larger total aromatic surface relative 
to 34+. 

 

Figure 3. Colocalisation studies involving [3]Cl4. A. Co-localisation 

study using mitotracker deep red (MTDR). Top left: emission from 

[[3]Cl4, Top right: emission from MTDR, Top middle: merged images. 

Bottom Right: colocalised pixels Bottom Left: overlap micrograph. B. 

Co-localisation study using lysotracker deep red (LTDR). Top left: 

emission from [3]Cl4, Top right: emission from LTDR, Top middle: 

merged images. Bottom Right: colocalised pixels Bottom Left: overlap 

micrograph. 

Table 5. Intracellular metal content (ruthenium) data from ICP-MS 

analysis.
[a]

  

Complex Intracellular concentration (µM/L, 24 hours) 

1
2+ 8.6 

2
4+ 1.1 x 10

3 

3
4+ 1.2 x 10

2 

[a] Conditions: A2780cis treated with 50 µM concentrations of each 

complex. 

In terms of possible therapeutic applications of these complexes, 
localization within these organelles rather than the nucleus is 

particularly advantageous. PDT sensitizers localized in both 
mitochondria[41,42] and lysosomes[43,44] have been shown to rapidly 
and efficiently induce apoptosis; [45] indeed, it has been pointed out 
that 1O2 sensitizers that target nuclear DNA may potentially produce 

deleterious mutations in any cells that survive treatment. [44] 

Therefore, given their attractive combination of biomolecular 
recognition properties and singlet oxygen sensitization, the in 

cellulo phototoxicity of the new complexes were investigated 
The potential of the new complexes as PDT sensitizers was 

investigated using the cisplatin sensitive human ovarian cancer cell 
line, A2780 and its treatment resistant analogue A2780cis. Cells 
were exposed to broad-spectrum irradiation in the absence and 
presence of each complex. A concentration range of 1 – 100 µM of 
each complex was used resulting in distinct phototoxic effects that 
are summarized in Table 6. In the A2780 cell line, even at low 
concentrations (10 µM) and light fluences (7.5 Jcm-2), both 
complexes 1

2+ and 2
4+ produce rapid decreases in cell viability, 

leading to nearly total cell death. Comparing dark IC50 values to 
those obtained at 15 Jcm-2 light fluence reveals a considerable 
phototoxic response, particularly for dinuclear complex 2

4+, which 
displays a phototoxic index, PI, of >200. Interestingly, although the 
mixed dppz/dppn system complex 3

4+ does not show such a large 
effect, it does still induce a noticeable decrease in cell viability at 
higher concentrations and light exposure. 

Table 6. IC50 (µM) for A2780 and A2780cis (in brackets) cells 

exposed to complexes 1
2+

, 2
4+

, and 3
4+

 as chloride salts upon 

photoirradiation
 [a]

  

 Fluence (J cm
-2

)  

Complex 0 7.5 15 PI 

1
2+ 32(>100) 4(1.6) 2(<0.1) 16 (≥1000) 

2
4+ 20(50) 3(3) <0.1(<0.1) ≥200(≥500) 

3
4+ 60(100) 50(25) 20(7) 3(≥14) 

[a] Phototoxic index for irradiation with 15 Jcm
-2

. 

Strikingly, the therapeutically resistant A2780cis cell-line 
displays greater photosensitivity towards all three complexes 
compared to its cisplatin sensitive analogue, with PIs up to and over 
x1000 being observed. Although complex 3

4+ again induces lower 
phototoxic effects compared to 12+ and 24+, an appreciable PI of >14 
is observed, even with fluences as low as 15 Jcm-2.  

In conclusion, the first reported dinuclear homoleptic (RuIIdppn) 
and heteroleptic (RuII(dppz)/RuII(dppn)) complexes display 
considerable capacity to photogenerate singlet oxygen. Although 
cell-free studies showed the new complexes bind to DNA and 
biological studies revealed that - unlike their homoleptic RuII(dppz) 
analogue - the complexes were taken up live cells, imaging of 
luminescent complex 34+ show that it accumulates in mitochondria 
and especially lysosomes and not in the nucleus. Both mononuclear 
complex 12+ and homoleptic dinuclear complex 24+ are particularly 
phototoxic against therapeutically resistant A2780cis cells, and 
display high phototoxic indices; given the increased phototoxicity 
against drug resistant cells these complexes are particularly 
promising therapeutic leads. Although complex 3

4+ shows a 
comparatively lower PI, it is still active whilst also displaying 
luminescence, suggesting that it is a lead for the development of 
theranostics that could both image and treat solid cancers. Further 
studies into the therapeutic potential of these complexes and their 
derivatives will be outlined in future studies. 



 5 

Experimental Section 

See SI for details of experimental and synthetic methods. 
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