
This is a repository copy of Private API Access and Functional Mocking in Automated Unit
Test Generation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/120346/

Version: Accepted Version

Proceedings Paper:
Arcuri, A., Fraser, G. and Just, R. (2017) Private API Access and Functional Mocking in
Automated Unit Test Generation. In: Proceedings of 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST). 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), 13-17 Mar 2017,
Tokyo, Japan. IEEE , pp. 126-137. ISBN 10.1109/ICST.2017.19

https://doi.org/10.1109/ICST.2017.19

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Private API Access and Functional Mocking in

Automated Unit Test Generation

Andrea Arcuri

Westerdals Oslo ACT

Oslo, Norway,

and SnT,

University of Luxembourg

Gordon Fraser

University of Sheffield

Sheffield, UK

René Just

University of Massachusetts

Amherst, MA, USA

Abstract—Not all object oriented code is easily testable:
Dependency objects might be difficult or even impossible to
instantiate, and object-oriented encapsulation makes testing po-
tentially simple code difficult if it cannot easily be accessed.
When this happens, then developers can resort to mock objects
that simulate the complex dependencies, or circumvent object-
oriented encapsulation and access private APIs directly through
the use of, for example, Java reflection. Can automated unit test
generation benefit from these techniques as well? In this paper
we investigate this question by extending the EvoSuite unit test
generation tool with the ability to directly access private APIs
and to create mock objects using the popular Mockito framework.
However, care needs to be taken that this does not impact the
usefulness of the generated tests: For example, a test accessing a
private field could later fail if that field is renamed, even if that
renaming is part of a semantics-preserving refactoring. Such a
failure would not be revealing a true regression bug, but is a
false positive, which wastes the developer’s time for investigating
and fixing the test. Our experiments on the SF110 and Defects4J
benchmarks confirm the anticipated improvements in terms of
code coverage and bug finding, but also confirm the existence of
false positives. However, by ensuring the test generator only uses
mocking and reflection if there is no other way to reach some
part of the code, their number remains small.

I. INTRODUCTION

To support developers in the task of producing test suites

for object-oriented code, tests can be generated automatically.

Developers can then keep these tests for regression testing and

execute them during continuous integration after every new

code change, or they can manually inspect the tests to check

if the behavior they capture represents incorrect behavior of

the class under test (CUT). In both use cases, an essential

prerequisite is that the automated test generation tool achieves

sufficient coverage of all parts of the CUT. Although modern

test generation tools can achieve an average code coverage

ratio of 70% or more [13], there remain challenging aspects in

object-oriented code, where even human testers have to resort

to supportive technology when writing their unit tests.

Consider the simple code example in Figure 1: The class

PAFM has one public method example, which takes as input

an instance of the interface AnInterface. This interface

defines one method isOK, which returns a boolean. Although

the example seems very simple and small, it poses two

challenges for testing class PAFM: First, the interface has no

concrete class implementing it. This could happen if none

1public interface AnInterface {

2 boolean isOK();

3}

4

5public class PAFM {

6

7 public void example(AnInterface x) {

8 if(System.getProperty("user.name").equals("root")) {

9 checkIfOK(x);

10 }

11 }

12

13 private boolean checkIfOK(AnInterface x){

14 if(x.isOK()){

15 return true;

16 } else {

17 return false;

18 }

19 }

20}

Fig. 1. Source code example that cannot be tested without the use of mock
objects and reflection.

has been developed yet, or if the interface represents a web

service or RMI object that is not part of the classpath. Second,

the x parameter object is passed to the private checkIfOK

method only if the user executing the code is the root user

(which is an artificial example, of course), which may be out

of control of the tester, resulting in checkIfOK never being

called. These are challenges that many state-of-the-art unit test

generation tools (e.g., all tools participating in recent editions

of a unit testing tool competition for Java [8], [28]) cannot

overcome. The only possible test that these tools generated

for the example above consists of passing a null value to the

method example.

In order to overcome these problems, we consider two ex-

tensions to automated unit test generation, based on techniques

used during manual testing as well as by commercial tools like

Agitar One1: First, we allow the unit test generator to not only

instantiate and manipulate regular objects, but also to generate

mock objects using the Mockito framework, and to determine

what values method calls on the mock objects should return.

Second, we allow the unit test generator to directly access

private methods and fields by using Java reflection. Figure 2

1http://www.agitar.com/solutions/products/automated_junit_generation.
html, accessed September 2016

@Test(timeout = 4000)

public void test0() throws Throwable {

PAFM pAFM_0 = new PAFM();

AnInterface anInterface0 = mock(AnInterface.class, new ViolatedAssumptionAnswer());

doReturn(true).when(anInterface0).isOK();

Boolean boolean0 = (Boolean)PrivateAccess.callMethod((Class<PAFM>) PAFM.class, pAFM_0, "checkIfOK", (Object) anInterface0,

(Class<?>) AnInterface.class);

assertTrue(boolean0);

}

@Test(timeout = 4000)

public void test1() throws Throwable {

PAFM pAFM_0 = new PAFM();

AnInterface anInterface0 = mock(AnInterface.class, new ViolatedAssumptionAnswer());

doReturn(false).when(anInterface0).isOK();

Boolean boolean0 = (Boolean)PrivateAccess.callMethod((Class<PAFM>) PAFM.class, pAFM_0, "checkIfOK", (Object) anInterface0,

(Class<?>) AnInterface.class);

assertFalse(boolean0);

}

Fig. 2. Tests generated by EvoSuite on the target class in Figure 1: Mock objects are created for the AnInterface interface, and reflection is used to access
the private method checkIfOK.

shows two resulting tests cases: test0 covers the true branch

in method checkIfOK, test1 covers the false branch.

However, mock objects and reflection are known to be

susceptible to creating false positives [30]; i.e., tests that fail

erroneously. For example, if a private method is renamed or

removed, then a test accessing that method would fail at run

time as the name of the method would be encoded as a string in

the reflection call. Similarly, a mock object may lead to a false

positive due to an invalid or outdated assumption about the

implementation, which is encoded in the mock object. In order

to avoid these problems, we introduce several optimizations to

reduce the number of false positives, by avoiding known causes

of false positives, and by minimizing the usage of mocking

and reflection.

In detail, the contributions of this paper are as follows:

● A technique to integrate mock object generation in search-

based unit test generation, where the configuration of the

mocks becomes part of the search problem.

● A technique to integrate reflection on private methods and

fields in search-based unit test generation, while ensuring

that API changes do not lead to false positives.

● An exploration study to determine the optimal parameter

settings for these techniques.

● An empirical study on the performance of these techniques

in terms of their effects on code coverage and fault

detection, using the SF110 and Defects4J benchmarks.

● An empirical study on the effects of these techniques on

false positives and code evolution.

II. BACKGROUND

A. Unit Test Generation

Unit tests are an essential part of software development, and

to support developers with their creation various techniques

have been proposed to automatically generate tests. A common

approach is to generate random sequences of method calls, for

example implemented for Java in tools such as Randoop [24],

JTExpert [29], GRT [21] or T3 [26]. To reduce the number of

tests and to increase the code coverage achieved, techniques

based on search-based software testing (SBST) [1], [17] cast

test generation as an optimization problem, which then can

be addressed with techniques like Genetic Algorithms (GAs).

Examples of SBST tools for Java are eToc [34], EvoSuite [12]

and TestFul [7]. Alternatively, approaches based on dynamic

symbolic execution (DSE) (e.g., Pex [32]) use constraint solvers

to generate test data and to explore the possible paths through

a program, although they often require the tester to manually

write test drivers [11].

We implemented the techniques presented in this paper as

extensions to the search-based EvoSuite unit test generation

tool; a similar integration into random or DSE-based tools

would be possible. The search-based approach to unit test

generation is very flexible and makes it easy to integrate

alternative objectives, such as to limit the application of

mocking and reflection to only cases that cannot be covered

otherwise.

B. Private API Access

In the Java programming language, instance fields and meth-

ods have four different possible kinds of visibility modifiers:

public, protected, private or package-private (the

default if no modifier is specified). A test case that is located

in the same package as the CUT (as is usually the case)

can directly access all public, protected, and package-private

methods and fields. However, it cannot access the private ones.

One goal in test data generation is to maximize coverage

on the CUT, which includes also all of its private methods.

Consider the checkIfOk method in Figure 1. If a test generation

tool fails to generate a test whose execution evaluates the if-

condition in Line 8 to true, then the checkIfOk method might

never be tested. A possible solution to exercise checkIfOK is

to use Java’s reflection API to directly call the private method.

False Positives: Consider, for example, a refactoring

(i.e., a semantics-preserving change) in which the name of

checkIfOK is changed into foo. As the invocation of private

methods with reflection will typically include the method name

explicitly as a string (see Figure 2) it will not be renamed,

even if the developer uses an automated refactoring tool to

perform the method renaming. Unless the developer manually

modifies the strings representing the private method name in

every single generated test, any test case that uses reflection

to access checkIfOK would now fail, even though the CUT

has no regression defect. Such reflection-related changes are

out of scope of current automated refactoring tools, and hence

a developer could end up spending a lot of time investigating

all those failing tests.

C. Functional Mocking

Mocking is a common approach in unit testing to isolate

a class from its dependencies by using a replacement of a

dependency class instead of the original one. Consider the

example and checkIfOK methods in Figure 1. Depending

on the complexity of a class that implements AnInterface,

it might not be possible for a test data generation tool to

configure an instance of that class such that a call to its method

isOK returns true. Even worse, it may even be the case that no

concrete class for AnInterface is available to instantiate.

This could, for example, happen when dealing with remote

method invocations (RMI), or Java Enterprise Edition (JEE)

code that needs to be run in a JEE container (e.g., WildFly2

or GlassFish3). In such a case, a human tester can create a

mock object to allow unit-testing of a method that expects an

argument of type AnInterface.

When manually writing tests, it is common for developers to

use a mocking framework [23] to simplify some of the input

parameters. For example the mocking framework Mockito4 is

among the top-10 most used Java libraries, hosted on GitHub5.

When open-source software has test cases, 23% of the times

a mocking framework is used [23], where the JEE interface

HttpServletRequest is the most mocked class.

There are several different approaches to mocking, depending

on the functionality of the replacement class: A stub is a

replacement with a fixed (usually default) behavior, while a

mock not only replaces the original class, it also has some

partial behavior (mimicking the intended behavior of the class)

that needs to be configured, usually during the preparation

of the test execution. This paper uses the term “mock” as a

synonym for some common terms like fake, dummy, or test

double. Generally, a mock M for a class/interface X can be seen

as an implementation of X, where the return values of each

method invocation can be controlled directly in the test.

Since our implementation uses the Mockito framework to

create mock objects, we provide some background about this

framework. Consider the following example:

public static void foo(X x) {

if(x.isFoo()){

//...

}

}

2http://wildfly.org, accessed January 2016.
3https://glassfish.java.net, accessed January 2016.
4http://mockito.org, accessed January 2016.
5http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-

top-100-libraries-in-java-js-and-ruby, accessed January 2016.

To test the method foo, using Mockito, a tester could write:

X x = mock(X.class);

when(x.isFoo()).thenReturn(true);

foo(x);

In this example, mock and when are static methods of the

class org.mockito.Mockito. The method mock creates

a mocked instance of type X, whereas when specifies what

should happen when its input (and latest method call on the

instance x) is called in the test. In this particular case, it is

specified that x.isFoo() should return the value true.

A mock object can be used even when a method is called

several times, and each time a different value is needed. For

example, consider the following code to test:

public static void doubleCall(X x) {

if(x.next()==5 && x.next()==42){

//...

}

}

Using Mockito, a test case could be written as follows:

X x = mock(X.class);

when(x.next()).thenReturn(5,42);

doubleCall(x);

This specifies that the first time next() is called the value 5

should be returned, whereas the second time (and all successive

times) the value 42 will be returned.

False Positives: Mock objects can be used to verify the

order of calls performed on them. For example, Agitar’s

mocking framework expects calls on mock objects to be

performed in the same order as recorded, and thus swapping the

operands of a commutative operation (e.g., getX()+getY()

⇒ getY()+getX()) leads to a false positive [30], even

though this is a semantics-preserving change. Similarly, mock

objects are often used to verify that only expected methods are

invoked. This can be too restrictive and cause false positives

(e.g., replacing a field access with a call to a corresponding

getter method).

D. False Positives in Unit Test Generation

There are at least two possible scenarios for the use of

automatically generated tests: (1) manually inspecting the tests

to check whether any of them is capturing an incorrect behavior

of the CUTs or (2) using the tests for regression testing (e.g., to

run them at every new code change in a continuous integration

system such as Jenkins6). While there is no precise definition of

when a test failure is a false positive, we can loosely distinguish

two possible reasons for these scenarios: First, a test might

represent an unrealistic execution or use of the CUT. For

example, Gross et al. [16] showed that all 181 failures reported

by a test generator on an example application violated implicit

preconditions, and were thus false positives of this type. Second,

a test that makes wrong or overly restrictive assumptions might

fail later during regression testing, even if a CUT has only

been changed in a semantics-preserving way (e.g., refactoring).

Both types of false positives are harmful: software engineers

6https://jenkins-ci.org/, accessed September 2016.

need to manually inspect them, which represents a waste of

time and resources.

Reflection and mocking can cause both types of false

positives. In particular, in a prior study we showed that 46% of

generated regression tests that involved reflection or mocking

failed due to false positives [30] of the second type. For this

paper, we further analyzed these false positives and identified

that 65% were caused by unexpected method calls on mock

objects, and 35% failed to changes in the private API. Our

goal is to integrate private API access and mocking into unit

test generation; when doing so, we address both types of

false positives by minimizing the occurrences of reflection and

mocking, and we provide techniques to prevent the second

type by construction.

III. PAFM: INTEGRATING PRIVATE API ACCESS AND

FUNCTIONAL MOCKING INTO UNIT TEST GENERATION

We integrated private API access (PA) and functional mock-

ing (FM) into EvoSuite. This section details our implementation

choices and how they reduce false positives.

A. Search-based Test Generation in EvoSuite

The integration of reflection and mocking into EvoSuite’s

search algorithm uses two points of access that influence which

sequences of calls are constructed during the search. First, there

are the search operators that insert new objects and calls into

a test case, and second, there is the static analysis that informs

the modification operators with the possible choices.

EvoSuite uses a GA to evolve sets of candidate unit test cases,

in an optimization process that aims to maximize the code

coverage. Fitness functions based on code coverage determine

which individuals in a population of candidate test suites are

selected for reproduction in the GA. Selected individual are

susceptible to crossover, where tests are exchanged between two

parent test sets, and mutation, whereby tests are added, deleted,

or modified. These modifications are the first entry point for

integrating mocking and reflection: Each unit test is represented

as a sequence of statements, and modifications of such a test

include replacing values or adding and deleting statements.

EvoSuite defines different types of statements, for example for

calls to constructors or methods, to generate primitive objects

and arrays, or to assign values to fields.

The modifications are guided by additional information about

the available calls. In particular, EvoSuite statically collects

information about which method and constructor calls are part

of the SUT, which calls are available to generate dependency

objects, and which methods can alter the state of instances of

these classes; this information is sometimes referred to as the

test cluster. For example, when appending a new statement to

a test, EvoSuite will select one of the methods of the CUT,

and when inserting a call on an existing object, EvoSuite will

select a modifier and insert a call somewhere before a usage

of the object. Any dependencies of the new statement (e.g.,

parameters of the method call, receiver object of the method

call, instance for the field, etc.) are resolved by either selecting

existing values in the test, or by recursively adding calls that

generate appropriate objects.

B. Integrating Private API Access

Using reflection might lead to undesirable boilerplate code

in a test case, but this complexity can be hidden away in

auxiliary libraries, such that in the tests one only gets to see

calls to support methods. For our extension to EvoSuite we have

created a helper class PrivateAccess, which is part of the

runtime library that needs to be available during test execution.

This class provides static methods such as callMethod:

PrivateAccess.callMethod(Bar.class, bar, "aPrivateMethod",

42, int.class);

Here, the private method aPrivateMethod of class Bar

is called on an instance bar, with 42 as input parameter.

For each parameter of the called method the helper method

callMethod also requires the parameter types (int.class

in this case). This is in order to identify the correct method in

the case of overloading. Internally, callMethod uses Java

reflection to retrieve a method object from class Bar.class,

and then directly invokes it. For methods with more parameters,

the PrivateAccess class provides additional overloaded

versions of callMethod, for example to provide all parameter

objects and their declared types in arrays.

To make EvoSuite consider calls to private API, we have

extended its static analysis that creates the test cluster, such

that, for each private method, a call to the callMethod

method of the PrivateAccess class is added, where only

the parameters (receiver object and parameter objects) are

susceptible to mutation. Internally, this is realized by new

types of statements representing access to private methods and

private fields. During regular mutation of tests, for example

when deciding which new statement to add to the test, EvoSuite

will as a consequence also consider all the private API contained

in the test cluster.

Similarly to calling private methods, to set the CUT in a

suitable state, private fields can be accessed in the same way

using reflection and the helper method setVariable, which

again takes a class, the instance object, the field name, and the

value and type to assign to the field.

C. Integrating Functional Mocking

To integrate mocks into test generation, we defined a further

new type of statement (mock statement) in EvoSuite, which

represents the creation and configuration of a specific mock

object. To distinguish this kind of mock object from the

environment mocks [5] used in EvoSuite, we use the term

functional mocks (FM).

During insertion of new statements, EvoSuite tries to resolve

dependencies (e.g., parameter objects) either by re-using objects

declared in earlier statements of the same test, or by recursively

inserting new calls to generate new instances of the required

dependency objects. When EvoSuite needs to instantiate an

input object of type X, with probability PFM a mock object

will be instantiated. This means that a mock statement is

inserted into the test before the call for which dependencies

are resolved. The mock statement assigns the mock object to a

variable, which in turn is then used as the concrete parameter

for the new call.

Initially, the mock statement has no parameters itself, it

simply is responsible to call the mock method with an

appropriate type. Thus, the first time a mock object is created

in a test, it will have no when methods defined, and this means

that when the test is executed as part of fitness evaluation, the

mock object will return default values when its methods are

called (e.g., 0 for methods returning numbers and null for

the ones returning objects). However, each mock is run with

a listener, which keeps track of which methods were called

during a test case execution. After a test is executed, we add to

it a when method for each mock invocation, with one or more

random values in the thenReturn methods based on how

many times the methods were called. To avoid very large test

cases, each thenReturn invocation will have a maximum

of n inputs (e.g., in this paper we used n = 5). Recall that if a

mocked method is called more times than the number of inputs

in the thenReturn method, then the last input is returned.

Although the representation as Java code consists of several

lines for the call to mock and all calls to when/thenReturn,

these are all part of the same mock statement internally in

EvoSuite. Each of the thenReturn entries represents one

additional parameter of the mock statement. Thus, during the

search the search operators that modify the test cases will

be applied as well on the inputs of thenReturn methods.

However, the calls to when will not be modified by the search

operators (e.g., delete, add new ones, or change their inputs),

as they would not bring any benefit. For the same reason, no

search operator will add functional calls to any mock instance,

and a mock instance will not be re-used more than once as

input parameter for the CUT.

During the search, it might happen that a mock object will

be used differently based on how the test is modified. Some of

its methods might not be called any more, and other new ones

might be called. For example, consider the following case:

public static void foo(boolean b, X x){

if(b){

doSomething(x.first());

} else {

doSomething(x.second());

doSomething(x.second());

}

}

For this example, we might have a test like the following:

X x = mock(X.class);

when(x.first()).thenReturn(1);

foo(true, x);

Then, in successive generations EvoSuite might mutate the

true value in foo into false. As a result, the call

when(x.first()) will be redundant, as x.first()

would not be called any more in the test inside foo. In this

case, after a test is run and evaluated, EvoSuite will remove

all when calls that are no longer needed. Furthermore, before

a test will be mutated in the next generations of the search,

any needed when method (e.g., when(x.second())) will

be added with random inputs. Similarly, if a mock method is

called less or more times, the cardinalities of the thenReturn

methods will be modified as well (i.e., remove no longer needed

inputs and add new needed ones at random).

D. Avoiding False Positives

1) Private API Access: A special case is given when PA

injects null values to private fields, which would in many cases

lead to null pointer exceptions (NPEs) when the methods of the

CUT are called. Because EvoSuite explicitly aims to trigger

unexpected exceptions [14], the underlying fitness function

would reward those tests, and so the final generated test suites

could be just rigged of pointless test cases throwing NPEs. To

avoid this issue, during the search we explicitly prevent the

use of PA with null arguments.

Recall that removing an obsolete private method or renaming

a private method inevitably causes a test that reflectively calls

it to fail. Each such failing test represents a false positive that

a developer needs to investigate. To overcome this problem, we

use a simple yet effective approach: our implementation relies

on JUnit’s AssumptionViolatedException7 (AVE). If

a method in our PrivateAccess library tries to access a

field or method that does not exist any more, then it throws an

AssumptionViolatedException. This will not fail the

test (and so it will not become an expensive false positive),

but it will cause JUnit to skip the remainder of the test,

potentially causing lower coverage. However, new tests can be

automatically recreated [9].

2) Functional Mocking: In open-source software, the most

used Mockito method is verify [23]. This is used to

check if a mocked method was indeed called with a given

input, and throws an exception if not (thus failing the

test). For example, after foo(true, x) a tester could add

verify(x).first() to check if the method first()

was called inside foo(). However, we have decided to not use

any verify calls in EvoSuite. The reason is to avoid “brittle”

tests, i.e., tests that could fail in successive modifications of

the CUT even though no regression bug is introduced, and so

become false positives. To find bugs, we rely on assertions

on the return values of the CUT methods, and not on their

interactions with the input parameters, as these could change

without altering the external behavior of the CUT.

Even when no verify is used, mocking frameworks can

still lead to manually written tests that are brittle. For example,

if a class X is mocked, and in an updated version of the

CUT new calls to X are added/changed (without modifying

the semantic of the CUT), then those will just return default

values (e.g., 0 for integers and null for objects). This could well

lead to the tests failing, although the new CUT is semantically

equivalent (e.g., it was just a refactoring). This is a major issue

in manually written tests, where care needs to be taken when

using Mockito (e.g., do not use it on classes/interfaces that

likely will go through few updates in the future).

Similarly to the case of PA, an option to avoid this

problem is to change the behavior of Mockito to throw

7http://junit.org/junit4/javadoc/4.12/org/junit/
AssumptionViolatedException.html, accessed September 2016.

a AssumptionViolatedException by default. This is

usually not done in manually written tests, as it would force the

developer to set the mocks (e.g., add when calls with default

values) for every single mocked method that is called in the

CUT, even when their return value is of no interest for the

tests. This would be tedious, and thus likely not very practical.

On the other hand, in automatically generated tests we can

automatically add all those mock setup calls, and therefore use

AssumptionViolatedException as default behavior

(except for void methods) to guard against future changes.

However, a minor side effect is that the recommended pattern

when(X.foo()).thenReturn(...) cannot be used (as

the call to X.foo() would throw the AVE), and we need

to rather rewrite it as doReturn(...).when(X).foo(),

which is arguably less readable.

E. Minimizing Private API Access and Functional Mocking

Both, private access and functional mocking may lead to

false positives. Consequently, it is desirable to minimize the

usage of these techniques, and only retain resulting tests if there

are no alternative tests that achieve the same coverage without

using reflection or mocking. We integrated this objective into

the search algorithm in two complementary ways.

First, search-based test generation techniques usually main-

tain an archive of test cases during the search [25], [27]. This

archive retains one test for each coverage goal that has been

covered during the search, and it allows the search to focus

on those coverage goals not yet covered. EvoSuite maintains

the archive as a map, where for each testing target EvoSuite

keeps track of the best test seen for this target. At the end

of the search, the contents of this archive represent the final

test suite, and typically some post-processing steps such as

minimization are applied to improve the readability of the tests.

We modified this archive such that if a new test covers a target

without using PA or FM, then it will replace a previous test

using PA or FM, regardless of their size (by default, EvoSuite

retains the smaller of two tests that cover the same target).

Second, in order to make sure that the use of PA and FM

is a last resort for the search space exploration, we integrated

a number of parameters into the search operators. These

parameters define how likely the search can resort to PA or

FM rather than standard API calls and real objects, and when

during the search PA and FM should be activated — from the

very beginning of the search, or rather later on (e.g., after 50%

of generations have already been evaluated)? The latter could

be for example more preferable (i.e., more efficient) if most

tests using PA will be be superseded in the archive:

● The SPA parameter specifies the percentage of the search

budget that should be evaluated before starting to use PA.

● The PPA parameter decides how often reflection on a

private field or method is used, rather than using a public

one. It thus represents the probability of activating PA.

● The SFM parameter specifies the percentage of the search

budget that should be evaluated before functional mocking

is activated.

● The PFM parameter specifies the probability of using a

mock object instead of a real instance. Note that if an

interface has no concrete class, then a mock object will

be instantiated regardless of PFM .

IV. EVALUATION

We aimed at evaluating how the use of Private API Access

(PA) and Functional Mocking (FM) together (PAFM) during

test generation affects the effectiveness and brittleness of the

tests. In particular, the four addressed research questions are:

RQ1: What PAFM configuration maximizes code coverage?

RQ2: Does PAFM improve code coverage?

RQ3: Does PAFM improve fault detection?

RQ4: Does PAFM affect test brittleness?

A. Subject Programs

To answer our research questions, we used two different

datasets: the SF110 corpus [13] and Defects4J [19]. SF110 is a

collection of 100 open source projects randomly chosen from

SourceForge, plus the top 10 most popular ones at the time

in which the corpus was defined. In total, the SF110 corpus

consists of 23,886 Java CUTs, totalling more than 6.6 million

lines of code. The Defects4J [19] dataset consists of 357 real

faults from five open source projects: JFreeChart (26 faults),

Google Closure compiler (133 faults), Apache Commons Lang

(65 faults), Apache Commons Math (106 faults), and Joda Time

(27 faults). For each fault, Defects4J provides a buggy and

fixed program version with a minimized change that represents

the isolated bug fix. It further provides information about the

classes relevant to the fault (e.g., classes modified by the bug

fix, classes loaded by the fault-revealing test, etc.).

B. Experimental Setup

For the experiments carried out in this paper, we used the

default configuration of EvoSuite, which is supposed to show

good results on average [4]. In each experiment, the search

phase for EvoSuite was executed until either a timeout of two

minutes or 100% code coverage was reached. For each run

we collected data on the achieved branch coverage as reported

by EvoSuite. Statistics on the number of mock objects and

reflection calls were collected by parsing and analyzing the

generated tests. For experiments on Defects4J we collected

bug detection data using Defects4J’s infrastructure.

Because EvoSuite is based on randomized algorithms, each

experiment was repeated several times with different random

seeds, to obtain reliable results from which to draw sound

conclusions. The results were then analyzed following standard

guidelines [3]. In particular, to assess statistical difference we

used the non-parametric Mann–Whitney–Wilcoxon U-test, and

the Vargha-Delaney Â12 effect size.

C. RQ1: What PAFM configuration maximizes code coverage?

To answer RQ1, we investigated different settings for the

probability PPA of applying private access, and when starting

to apply it (SPA; recall Section III-E). We did the same for the

probability PFM of using functional mocking, and its starting

time SFM . This gave us four different parameters to tune.

TABLE I
BRANCH COVERAGE COMPARISON OF Base WITH BEST CONFIGURATION

FOR PA, FM AND PAFM ON 110 CLASSES.

Name Configuration Coverage

Base PFM = 0,PPA = 0 72.1%
PA PFM = 0,PPA = 0.50,SPA = 80% 74.1%
FM PFM = 0.50,SFM = 30%,PPA = 0 74.8%
PAFM PFM = 0.80,SFM = 50%,PPA = 0.50,SPA = 80% 76.8%

For the two probabilities PPA and PFM , we considered the

four different values [0.0, 0.3, 0.5, 0.8]. For the starting point

percentages SPA and SFM , we used [0.3, 0.5, 0.8, 1], where 1

means “never start”, i.e., deactivate PA or FM. The combination

of four different parameters with four different values did not

lead to 4
4 = 256 combinations, as some of them are redundant.

For example, if PPA = 0, then the value of SPA becomes

irrelevant, and vice-versa if SPA = 1. So, to study PA we had

all 32 = 9 combinations of PPA,SPA ∈ [0.3, 0.5, 0.8], with a

further PPA = 0,SPA = 1 to study when PA is not used. Similarly,

for FM we had 9 combinations in which it is used and 1 in

which it is not. All together, this led to (9+ 1)× (9+ 1) = 100
different configuration settings.

Due to the large number of configurations to tune, we did not

use the whole SF110 as case study. For each of the 110 projects

in SF110, we selected one CUT at random. Then, on each CUT

we executed EvoSuite with the 100 different configurations,

and collected data on the resulting branch coverage. Each

experiments was repeated 3 times, giving 110 × 3 = 330 data

points per configuration. In total, this led to 330×100 = 33,000
runs of EvoSuite.

Table I shows the results for the Base configuration (no

PA and no FM), the best configuration in which PA is used

but not FM, then the other way around, and finally the best

configuration for when both are used at the same time (PAFM).

The results in Table I show that both PA and FM improve upon

the Base configuration, and this improvement is even higher

when they are combined.

The best configuration improved branch coverage from

72.1% to 76.8%, i.e., a +4.7% improvement. It is interesting

to analyze which configuration values maximized the coverage:

For example, PA is best used only near the end of the search, as

SPA = 80%. This is not unexpected: Adding private fields and

methods to the search increases the search space considerably.

The search might end up spending a lot time modifying private

fields, when for a given CUT it could be easier to just do it

through its public methods. However, after 80% of the search,

it might well be that EvoSuite covered everything possible with

the public methods, and so introducing PA does not hinder the

coverage. The best probability of applying PA at that point

is PPA = 0.5; higher values inhibit the search, as focusing

on only private methods would prevent coverage on any non-

private methods in the CUT. FM might have side effects on

the search landscape, and the creation of mock objects with

Mockito causes a considerable overhead, and as such its starting

percentage is SFM = 0.5 and not the lowest 0.3.

1

2

3

4

0% 25% 50% 75% 100%
Branch coverage ratio

D
en

si
ty

Configuration Base PAFM

Fig. 3. Branch coverage comparison of Base configuration with PAFM.

The best configuration for PAFM is: PPA = 0.5,

SPA = 80%, PFM = 0.8 and SFM = 50%.

These settings are the ones used for all successive experi-

ments with PAFM.

D. RQ2: Does PAFM improve code coverage?

The results of RQ1 identify the best configuration for

PAFM in terms of coverage. However, the +4.7% coverage

improvement needs to interpreted with care, as it might well be

an overestimation. Even though we used repetitions to minimize

the threat of noise in the data influencing the result, the exper-

iment focused more on a breadth of different configurations

rather than reducing noise on individual classes/configurations.

To reduce this threat to validity, when answering RQ2 we

therefore conducted a new experiment on a stratified sample

of 1,000 classes from SF110, trying to sample uniformly from

each project (i.e., about 9 classes per project were used). On

these 1,000 CUTs, we ran both Base and the best PAFM

configuration 10 times. This led to 1,000 × 2 × 10 = 20,000

runs of EvoSuite.

The results of this experiment confirm the results of RQ1: the

Base configuration obtained a 70.5% average branch coverage,

whereas PAFM obtained 73.8%. This is a +3.3% improvement.

This improvement on the total means that PAFM achieves

coverage of +11.2% of the coverage goals missed by Base.

Figure 3 compares the distribution of coverage values for

the Base and PAFM configurations. There is a clear spike in

density to the far right of the plots, showing that EvoSuite

obtains very high branch coverage already without PAFM.

In these cases PAFM cannot make any further improvement,

and this influences the magnitude of the observed increase in

coverage. However, the plot shows a clear reduction of the

cases where coverage is low (0%–25%), and a clear increase in

the number of cases where coverage is very high (90%–100%)

when using PAFM. A paired U-test (1,000 average coverage

values for Base paired with 1,000 values of PAFM on the same

CUTs) confirms this observation with a p-value very close to

TABLE II
NUMBER OF FAILURE-TRIGGERING TEST SUITES FOR THE BUGS IN

DEFECTS4J FOR Base AND PAFM. Triggering total GIVES THE TOTAL

NUMBER OF BUGS FOR WHICH AT LEAST ONE FAILURE-TRIGGERING TEST

SUITE WAS GENERATED ACROSS ALL 30 RUNS. Triggering average GIVES

THE AVERAGE NUMBER OF BUGS FOR WHICH A FAILURE-TRIGGERING TEST

SUITE WAS GENERATED IN A SINGLE RUN.

Project Bugs Triggering total Triggering average p-value
Base PAFM Base PAFM

Chart 26 23 25 15.4 14.7 0.346

Closure 133 25 32 10.7 12.2 0.030

Lang 65 42 46 23.7 26.4 0.286

Math 106 65 81 42.9 50.5 0.002

Time 27 18 18 11.3 11.2 0.913

Total: 357 173 202 103.9 115.0 0.002

TABLE III
PAFM STATISTICS ON THE FAILURE-TRIGGERING TESTS: PERCENTAGE OF

TESTS THAT USED PAFM, AND AVERAGE NUMBER OF PA OR FM RELATED

STATEMENTS.

Project Test % PA Methods PA Fields FM Objects FM Calls

Chart 11.8% 0.0 0.0 0.1 0.1
Closure 11.0% 0.1 0.0 0.1 0.1
Lang 9.0% 0.1 0.0 0.1 0.1
Math 14.8% 0.0 0.0 0.2 0.2
Time 10.6% 0.0 0.0 0.1 0.1

All 12.8% 0.0 0.0 0.1 0.2

0, which means there are more cases in which PAFM leads to

an improvement than the other way round.

Using PAFM covers +11.2% of the uncovered branches,

thus increasing branch coverage by +3.3%.

E. RQ3: Does PAFM improve fault detection?

We used Defects4J to analyze the fault detection capability

of PAFM. Although mutation analysis is a viable alternative

for this kind of experiment [20], we preferred to use the 357

real faults provided by the Defects4J benchmark. For each of

the 357 faults in Defects4J, we executed EvoSuite with the

configurations Base and PAFM 30 times on the bug-free CUTs.

Once the test suites were generated, we executed each of them

on the buggy version of the CUT to check if any tests fail.

Table II shows the results of this analysis. Because EvoSuite

uses a randomized algorithm it may happen that, for a particular

CUT, a failure-triggering test suite was generated only in a

subset of the 30 runs. Therefore, we make a distinction between

the total number of bugs for which a failure-triggering test

suite was generated in all 30 runs and the average number of

bugs for which a failure-triggering test suite was generated in

a single run.

The results in Table II show that PAFM led to 11 more

failure-triggering test suites on average—a 115−103.9

103.9
= 10.6%

improvement. However, this does not mean that these tests are

revealing the bugs, as they could be false positives.

Table III summarizes statistics on the amount of PAFM in

the failure-triggering tests: On average, 12.8% of the failing

tests use some kind of mocking or reflection. The PA Methods

and PA Fields columns show the average number of reflection

statements per test, and only Closure and Lang use at least

some reflection on methods. Mock objects are used in all

projects; i.e., on average there are 0.1 mock objects per failing

test, and 0.2 doReturn calls per failing test. These numbers

suggest that the mechanisms to reduce PAFM to only the

absolutely necessary cases are effective. We also note that the

AVE mechanism is effective, as on average over all bugs and

random seeds there are 0.4 AVEs per test suite; these AVEs

would otherwise lead to false positives.

To investigate the effects of PAFM on false positives, we

thus focus on the 36 bugs for which only PAFM generated a

failure-triggering test suite. (Note that the 202 − 173 = 29 in

Table II is due to Base finding 7 bugs that PAFM did not.) In

order to determine whether PAFM leads to false positives, we

manually investigated the test suites that triggered these failure.

As manually investigating 36 program versions of a complex

application with 30 test suites each is a time-consuming task,

we sampled the bugs whose detection is most likely related

to PAFM as follows: To avoid looking at spurious results, we

only analyzed the bugs that, being revealed by chance at least

once in the 30 runs of PAFM, have less than 1% probability

of never being triggered in any of the 30 runs by Base. Given

p being the most likely estimation of fault detection based on

s successful runs with PAFM (i.e., p = s

n
), we looked at the

probability k < 0.01 that no run in Base found the bug while

p is independent from whether PAFM is used or not. In other

words, we look at the lowest value for s for which we can have

enough confidence that the bug was found due to PAFM and not

just by chance. This means solving mins(1 − (
s

30
))30 < 0.01,

which leads to s = 5. Overall, 15 out of 36 bugs were found

at least 5 out of 30 times (Chart-25, Closure-1, Closure-68,

Closure-76, Lang-17, Math-9, Math-34, Math-39, Math-64,

Math-67, Math-71, Math-76, Math-84, Math-86, Math-100).

Each author of the paper independently analyzed all failing

tests for all 15 and classified them as either fault revealing or

false positive. Each discrepancy in the classification was then

analyzed and discussed until a consensus was reached.

There were 4 cases that were clearly true positives: Chart-

25, Closure-68, Closure-76 and Math-100. In these cases a

numerical value was computed, and then an assertion on the

returned value failed in the JUnit tests. On the other hand,

there were 4 bugs for which we identified both true and false

positives among the failing tests, and another 4 bugs only had

false positives. For these 8 bugs, there were several different

reasons for which a test resulted in a false positive.

Invalid mock objects. In two cases (Math-76 and Math-86),

the false positive was due to a mocked object with inconsistent

state, e.g., a matrix/vector where the size method returns an

invalid negative value, which could never happen on the original

non-mocked class. Because the object is invalid, the generated

tests throw an exception of type X (e.g., a null pointer or array

out of bounds exception), and that is caught in a try/catch.

However, when those tests are run on the buggy version of the

CUT, a different exception is thrown of type Y due to different

code being executed, making the test fail (the tests generated

by EvoSuite check for the type of expected exceptions that

should be thrown). A possible mitigation for this type of false

positive might be to not check for exception types when a test

is using any FM calls.

Loop counters and timeouts. To avoid that test cases

execute too long or end up in an infinite loop, EvoSuite uses

(a) bytecode instrumentation to count loop executions, and (b)

timeouts on unit tests. If a loop is executed too many times

(e.g., 10,000 times), EvoSuite throws a dedicated exception.

In the cases of Math-39 and Math-71, the bug made the CUT

execute fewer or more iterations, causing either an unexpected

exception of this type, or the absence of an expected exception,

both of which cause the JUnit test to fail. This, however, is

not directly related to the bug, and is thus a false positive. A

possible mitigation for this issue would be to never fail a test

when an exception is thrown by the loop check, which can be

implemented with a JUnit @Rule. Timeouts, implemented with

the @Test(timeout=4000) annotation seen in Figure 2),

caused a false positive for Lang-17, where the failure was due

to a non-functional property and not on the actual bug we

investigated. Neither of these 3 cases (Lang-17, Math-39 and

Math-71) is directly related to the use of PAFM, as they could

happen for Base as well. However, PAFM leads to higher code

coverage, and so it is more likely that these cases occur.

Null values in reflection. For Math-9 and Math-34, PA set

some private fields to null values, and thus put the CUT in an

inconsistent state. These particular tests threw an exception that

is of a different type than the one thrown in the buggy version,

as different code is executed. Similarly to Math-76 and Math-

86, this leads to false positives. However, this kind of problem

should have been prevented in the first place, as EvoSuite does

not use null values in PA for fields during the test generation

(see Section III-D1). However, in this case it happened in the

successive phases that can modify the generated tests, like test

minimization. This problem can be fixed by enforcing such

constraints throughout all the phases of test generation.

Bugs in EvoSuite. The last out of these 8 false positives

was due to an AVE, which should have caused the test to

be ignored rather than counting it as a failure. However, the

try/catch block in the generated test caught this exception, then

compared it with an expected exception type, and declared it a

failure because the type did not match. This problem could be

easily solved by never catching an AVE in a generated JUnit

test (or re-throwing it if caught).

Controversial cases. While the 12 bugs discussed so far

were relatively easy to analyse, the remaining 3 were not. In

Math-67, there was one failing test that reveals an actual bug,

but not the specific Defects4J bug. Still, we count it as a true

positive. The case of Math-84 was similar to the one of Math-

39 and Math-71, i.e., EvoSuite throws an exception due to a

loop that is executed too often. However, here the bug was

indeed related to performance, and the original manual tests

for that bug also checked for loop executions. As such, we

did not consider it as a false positive. Finally, Closure-1 calls

a method with a null parameter using PA, which causes an

exception only in the buggy version of the CUT. However,

in practice this method cannot be executed with a null value

through its public API, so even though the test reveals the

difference, it could arguably be counted as a false positive.

In summary, out of the 15 analysed bugs, we identified 10

types of true failures, and 9 types of false positives. However,

in most cases the manual analysis led to the identification of

ways to avoid these types of false positives to some extent. The

degree to which this mitigates the problem of false positives

and the degree to which this counters the coverage benefits

remains to be investigated as future work.

On average, test suites generated using PAFM triggered

10.6% more failures in Defects4J, but there is a trade-off

with false positives.

F. RQ4: Does PAFM affect test brittleness?

While PAFM improves test suite effectiveness in terms of

code coverage and number of failure-triggering tests, it might

also increase test brittleness—that is, it might increase the

likelihood of a test failing in the future, and thus increasing

the effort for test maintainability. We therefore conducted an

experiment on code evolution, using the programs version

control systems, to answer the question of whether PA and

FM affect the test maintainability of the generated tests. In

particular, we applied the following methodology for each

generated test suite:

1) Determine the commit of the program version for which

the test suite was generated.

2) Determine and enumerate all future commits in the version

conrol system that affect the source code of the program.

3) For each of the future commits, evolve the source code one

commit at a time (i.e., incrementally apply the committed

changes to the source code). We call such an incremental

step an evolution step.

4) For each evolution step, determine whether the test suite

still compiles and passes, and if so, determine the number

of AssumptionViolatedExceptions.

5) If the test suite fails or passes all future commits,

determine the number of successful evolution steps.

In addition to evaluating the generated test suites, we applied

the same methodology to the developer-written test suites,

provided by Defects4J. Note that to ensure comparability, we

only consider the developer-written tests that are related to

the classes for which the generated test suites were created.

Figure 4 shows the code evolution results for Base, PAFM,

and the developer-written test suites.

The results of this experiment show that, on average, PAFM

test suites pass on fewer evolution steps than Base test suites,

but the differences in terms of the number of evolution steps

are small and not significant (p = 0.63). PAFM and Base test

suites pass on all evolution steps for 7 program versions and

fail after the same number of evolution steps for 162 program

versions. PAFM test suites fail earlier for 131 and later for 51

program versions. Moreover, both PAFM and Base test suites

0.00

0.25

0.50

0.75

1.00

Base PAFM Developer

Fig. 4. Ratio of successful code evolution steps for Base, PAFM, and the
developer-written test suites.

pass on more evolution steps than the developer-written test

suites on average.

The question of whether these earlier failures are true or

false positives cannot be answered without further manual

analysis. However, interestingly we did not observe any

AssumptionViolatedExceptions for the PAFM test

suites throughout the entire evolution experiment. The likely

explanation for this is that the amount of PAFM is very

moderate, by design: Table IV shows statistics about the average

amount of mocking and reflection related statements per test

suite. On average, the test suites have 74.1 tests, but only

2.9 calls to private methods and 1 access of a private field.

There are 5.7 mock objects on average per test suite, and 7.6

doReturn calls. To put these numbers into perspective, we

calculated the same statistics on the test suites generated with

Agitar One for a previous study [30] by counting invocations

to Agitar’s reflection and mocking helper functions. Table V

shows that there is substantially more use of PAFM, which

explains the high number of false positives observed for the

Agitar test suites in that study.

PAFM test suites tend to fail slightly earlier than their

Base counterparts, but the absence of AVEs suggests that

the reason is increased code coverage and not PAFM.

G. Threats to Validity

Internal: The techniques presented in this paper have all

been implemented as part of the EvoSuite tool, which is used

by many practitioners, but may still contain bugs. Because

EvoSuite is based on randomized algorithms, each experiment

was repeated several times, and the results have been evaluated

with rigorous statistical methods. To ensure reproducibility [10],

we released the implementation of all the techniques presented

in this paper as open-source (LGPL license), and we made

it available on a public repository8. Similarly, SF110 and

Defects4J are freely available.

Construct: We used branch coverage, which is a common

coverage criterion in the software testing literature, and we

also considered fault detection based on real faults. However, it

is hard to quantify the tradeoff between improved coverage/fault

detection and the presence of false positives. If PAFM improves

8 www.github.com/EvoSuite/evosuite

TABLE IV
AVERAGE NUMBER OF PA AND FM USES IN EVOSUITE TEST SUITES.

Project Tests PA FM

Methods Fields Objects Calls

Chart 100.8 0.8 4.4 15.3 15.6
Closure 43.1 4.8 0.3 2.6 2.3
Lang 145.0 3.2 0.3 1.9 2.3
Math 61.8 1.5 1.5 6.2 9.4
Time 95.4 1.4 1.4 16.3 27.2

All 74.1 2.9 1.0 5.7 7.6

TABLE V
AVERAGE NUMBER OF PA AND FM USES IN AGITAR TEST SUITES [30].

Project Tests PA FM

Methods Fields Objects Calls

Chart 117.4 32.5 317.8 1.1 430.3
Closure 142.0 69.8 303.4 9.0 633.8
Lang 164.5 71.5 47.1 12.0 154.5
Math 90.5 13.6 62.0 0.7 117.4
Time 157.6 78.6 122.6 3.2 303.8

All 129.0 51.5 188.9 6.0 385.3

coverage by X%, but at the same time it increases the number

of false positives by Y%, how to determine if the X% increase

is worthwhile? As the effects of false positives on software

development is a little investigated topic in the literature, more

studies are necessary to shed light on this issue.

External: We used the SF110 corpus, which is a statistically

valid random sample of 100 projects from SourceForge, plus

its 10 most downloaded ones. Although we selected stratified

samples (110 and 1,000 CUTs), this still led to a large variety

among the employed classes on which EvoSuite was applied,

which increases our confidence that the results generalise.

Regarding fault detection, we based our experiments on 357

real faults from Defects4J. However, those faults come only

from five different systems.

V. RELATED WORK

A. Private API Access

A study of Ma et al. [22] on the effects of private methods on

the code coverage of unit tests showed that, while developers

seem to be able to cope well, automated tools (in this study

Randoop and EvoSuite) are negatively affected. In the same

study, Ma et al. demonstrated that a customized version

of Randoop, in which private methods were called through

reflection, achieved higher code coverage than without this

extension. However, they also acknowledged that accessing

private methods, without knowing if their preconditions are

valid, could have undesired side-effects.

In a study of the state-of-the-art in unit test generation [30],

we observed that the commercial Agitar One makes use

of reflection to access private members. However, we also

observed a substantial number of false positives related to

these tests, which motivated the integration as described in this

paper, with the aim to minimize the number of false positives.

B. Functional Mocking

In the context of automated test generation, the most common

use of mocking is to handle interactions of the CUT with its

environment. Interactions could be, for example, reading/writing

files, opening TCP connections to remote servers, etc. To have

a full, deterministic control over the environment, an approach

is to use environment mocks, which are classes that mimic

the behavior of the environment. In the code under test, all

calls to classes dealing with the environment can be replaced

with mocks, which then can be configured directly in the tests.

This approach was used to deal with the file system [5] and

networking [6], and similar approaches have been used to deal

with interactions with databases [31] and cloud services [35].

There have been some discussions about automatically gen-

erating more generic mock objects to improve test generation

([2], [15], [33]), and Islam and Csallner [18] presented a

technique where mock objects were generated for classes that

depend on interfaces with no concrete implementations. For

those interfaces, mock objects were generated, where the return

values of method calls on these mock objects were determined

with a constraint solver. Promising results were achieved on

34 static methods, for a total of 320 lines of code. However,

the presented technique only worked on the testing of static

methods, and was limited by the type of inputs the constraint

solver could handle (e.g, integers but not objects).

VI. CONCLUSIONS

In this paper, we introduced techniques to integrate private

API access (PA) and functional mocking (FM) together (PAFM)

into search-based unit test generation. A large empirical study

showed that PAFM improves not only branch coverage (on

average by +3.3%), but also fault detection on the real faults

of the Defects4J data set.

The use of PAFM leads to false positives, i.e., tests that

misleadingly fail although they detect no actual fault. We

presented techniques to reduce these negative effects, showing

that the number of false positives is low. A manual analysis

nevertheless revealed that false positives may still happen, even

with these counter measures.

The use of PAFM is thus a trade-off between increased

coverage and increased risk of false positives. However, note

that the problem of false positives does not go away by

deactivating PAFM: We observed several cases of false positives

independent of PAFM. As the role of false positives is a little

investigated topic in automated test generation, future work will

need to focus on studying those false positives and developing

techniques to detect or avoid them.

All techniques discussed in this paper have been implemented

as part of the EvoSuite test data generation tool. EvoSuite is

open-source (LGPL license) and freely available to download.

To learn more about EvoSuite and to access all artefacts

of the experiments in this paper please visit our website at:

http://www.evosuite.org.

ACKNOWLEDGMENTS

This project has been funded by the EPSRC project “GREAT-

EST” (EP/N023978/1), and by the National Research Fund,

Luxembourg (FNR/P10/03).

REFERENCES

[1] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege. A systematic
review of the application and empirical investigation of search-based
test-case generation. IEEE Transactions on Software Engineering (TSE),
36(6):742–762, 2010.

[2] N. Alshahwan, Y. Jia, K. Lakhotia, G. Fraser, D. Schuler, P. Tonella,
M. Harman, H. Muccini, W. Schulte, and T. Xie. Automock: Automated
synthesis of a mock environment for test case generation. Practical

Software Testing: Tool Automation and Human Factors, 2010.

[3] A. Arcuri and L. Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Software

Testing, Verification and Reliability, 24(3):219–250, 2014.

[4] A. Arcuri and G. Fraser. Parameter tuning or default values? an empirical
investigation in search-based software engineering. Empirical Software

Engineering, 18(3):594–623, 2013.

[5] A. Arcuri, G. Fraser, and J. P. Galeotti. Automated unit test generation
for classes with environment dependencies. In IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 79–90,
2014.

[6] A. Arcuri, G. Fraser, and J. P. Galeotti. Generating TCP/UDP network
data for automated unit test generation. In ACM SIGSOFT International

Symposium on the Foundations of Software Engineering (FSE), pages
155–165. ACM, 2015.

[7] L. Baresi, P. L. Lanzi, and M. Miraz. TestFul: an evolutionary test
approach for Java. In IEEE International Conference on Software Testing,

Verification and Validation (ICST), pages 185–194, 2010.

[8] S. Bauersfeld, T. Vos, K. Lakhotia, S. Poulding, and N. Condori. Unit
testing tool competition. In International Workshop on Search-Based

Software Testing (SBST), pages 414–420, 2013.

[9] J. Campos, A. Arcuri, G. Fraser, and R. Abreu. Continuous test genera-
tion: enhancing continuous integration with automated test generation.
In Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering, pages 55–66. ACM, 2014.

[10] C. Collberg and T. A. Proebsting. Repeatability in computer systems
research. Communications of the ACM, 59(3):62–69, 2016.

[11] L. Cseppento and Z. Micskei. Evaluating symbolic execution-based test
tools. In IEEE International Conference on Software Testing, Verification

and Validation (ICST), pages 1–10. IEEE, 2015.

[12] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite generation for
object-oriented software. In ACM SIGSOFT International Symposium on

the Foundations of Software Engineering (FSE), pages 416–419, 2011.

[13] G. Fraser and A. Arcuri. A large-scale evaluation of automated unit test
generation using evosuite. ACM Transactions on Software Engineering

and Methodology (TOSEM), 24(2):8, 2014.

[14] G. Fraser and A. Arcuri. 1600 faults in 100 projects: Automatically
finding faults while achieving high coverage with evosuite. Empirical

Software Engineering, 20(3):611–639, 2015.

[15] S. J. Galler, A. Maller, and F. Wotawa. Automatically extracting mock
object behavior from design by contract™ specification for test data
generation. In Proceedings of the 5th Workshop on Automation of

Software Test, pages 43–50. ACM, 2010.

[16] F. Gross, G. Fraser, and A. Zeller. Search-based system testing: high
coverage, no false alarms. In Proceedings of the 2012 International

Symposium on Software Testing and Analysis, pages 67–77. ACM, 2012.

[17] M. Harman, Y. Jia, and Y. Zhang. Achievements, open problems and
challenges for search based software testing. In IEEE International

Conference on Software Testing, Verification and Validation (ICST),
pages 1–12. IEEE, 2015.

[18] M. Islam and C. Csallner. Generating test cases for programs that are
coded against interfaces and annotations. ACM Transactions on Software

Engineering and Methodology (TOSEM), 23(3):21, 2014.

[19] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults
to enable controlled testing studies for java programs. In Proceedings

of the 2014 International Symposium on Software Testing and Analysis,
pages 437–440. ACM, 2014.

[20] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in software
testing? In Proceedings of the Symposium on the Foundations of Software

Engineering (FSE), pages 654–665, Hong Kong, November 18–20 2014.
[21] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler. Grt:

Program-analysis-guided random testing. In IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2015.
[22] L. Ma, C. Zhang, B. Yu, and H. Sato. An empirical study on effects of

code visibility on code coverage of software testing. In Automation of

Software Test (AST), 2015 IEEE/ACM 10th International Workshop on,
pages 80–84. IEEE, 2015.

[23] S. Mostafa and X. Wang. An empirical study on the usage of mocking
frameworks in software testing. In 14th International Conference on

Quality Software (QSIC), pages 127–132. IEEE, 2014.
[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed

random test generation. In ACM/IEEE Int. Conference on Software

Engineering (ICSE), pages 75–84, 2007.
[25] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating branch

coverage as a many-objective optimization problem. In Software

Testing, Verification and Validation (ICST), 2015 IEEE 8th International

Conference on, pages 1–10. IEEE, 2015.
[26] I. S. W. B. Prasetya. T3i: A Tool for Generating and Querying Test

Suites for Java. In ACM SIGSOFT International Symposium on the

Foundations of Software Engineering (FSE), 2015.
[27] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser. A detailed investigation

of the effectiveness of whole test suite generation. Empirical Software

Engineering, 2016.

[28] U. Rueda, R. Just, J. P. Galeotti, and T. E. Vos. Unit testing tool
competition - round four. In International Workshop on Search-Based

Software Testing (SBST), 2016.
[29] A. Sakti, G. Pesant, and Y.-G. Gueheneuc. Instance generator and

problem representation to improve object oriented code coverage. IEEE

Transactions on Software Engineering (TSE), 2015.
[30] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri.

Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t). In 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE’15), pages 201–
211. IEEE, 2015.

[31] K. Taneja, Y. Zhang, and T. Xie. Moda: Automated test generation for
database applications via mock objects. In IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 289–292.
ACM, 2010.

[32] N. Tillmann and J. N. de Halleux. Pex — white box test generation for
.NET. In Int. Conference on Tests And Proofs (TAP), volume 4966 of
LNCS, pages 134 – 253. Springer, 2008.

[33] N. Tillmann and W. Schulte. Mock-object generation with behavior.
In Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM

International Conference on, pages 365–368. IEEE, 2006.
[34] P. Tonella. Evolutionary testing of classes. In ACM International

Symposium on Software Testing and Analysis (ISSTA), pages 119–128,
2004.

[35] L. Zhang, X. Ma, J. Lu, T. Xie, N. Tillmann, and P. De Halleux.
Environmental modeling for automated cloud application testing. IEEE

Software, 29(2):30–35, 2012.

