

This is a repository copy of *Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2-5 and on dialysis.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/120339/

Version: Supplemental Material

Article:

Shroff, R., Wan, M., Nagler, E.V. et al. (12 more authors) (2017) Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2-5 and on dialysis. Nephrology Dialysis Transplantation, 32 (7). pp. 1098-1113. ISSN 0931-0509

https://doi.org/10.1093/ndt/gfx065

This is a pre-copyedited, author-produced version of an article accepted for publication in Nephrology Dialysis Transplantation following peer review. The version of record Volume 32, Issue 7, 1 July 2017, Pages 1098–1113 is available online at: https://doi.org/10.1093/ndt/gfx065.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Table 1 – Recommendations for native vitamin D treatment in healthy children

	RCPCH (UK, 2013) ⁹³	National Osteoporosis Society (UK, 2015) ⁹²	The Endocrine Society (US, 2011) ⁴²
Deficiency defined as	< 25 nmol/L*	< 25 nmol/L	<50 nmol/L
Insufficiency defined as	25 - 50 nmol/L	25 - 50 nmol/L	52.5 - 72.5 nmol/L
Vitamin D ₂ vs. D ₃	No specific recommendation	No preference	No preference
Loading regimens			
Age under 6 months	1,000 - 3,000 IU/day orally for 4 - 8 weeks	3,000 IU/day orally for 8 - 12 weeks	2,000 IU/day orally for 6 weeks
Age 6 months - 12 years	6,000 IU/day orally for 4 - 8 weeks	6,000 IU/day orally for 8 - 12 weeks	2,000 IU/day orally for 6 weeks
Age 12 - 18 years	10,000 IU/day orally for 4 - 8 weeks	10,000 IU/day orally for 8 - 12 weeks	2,000 IU/day orally for 6 weeks
Maintenance regimens			
Alternative recommended dosages	Weekly or monthly doses	Weekly doses	Weekly doses
Up to 1 month	300 - 400 IU/day orally	400 - 600 IU/day orally	400 - 1,000 IU/day orally
1 month - 18 years	400 - 1,000 IU/day orally	400 - 600 IU/day orally	600 - 1,000 IU/day orally

RCPCH: Royal College of Paediatrics and Child Health *To convert nmol/L to ng/ml divide by 2.5

Table 2 – Physiological disturbances reported at different serum 25-hydroxyvitamin D [25(OH)D] levels

Physiological disturbance						
Rickets or osteomalacia, severe hyperparathyroidism, calcium malabsorption						
PTH stimulation, reduced calcium absorption						
Sometimes raised PTH						
No further increase in 1,25(OH) ₂ D production or increased calcium absorption Abolition of seasonal variations in PTH						
No pathologic mineralization defects or growth plate abnormalities						
Associated with increased mortality						
Hypercalcaemia and hypercalciuria						

*To convert nmol/L to ng/ml divide by 2.5 PTH: Parathyroid hormone; 1,25(OH)₂D: 1,25-dihydroxyvitamin D

Table 3A – Systematic review of the effect of native vitamin D supplementation versus placebo on bone density and bone mineral content in children without chronic kidney disease

Author; Year	No. of studies	Population, Age	n, Nª	Outcomes	Meta- analysis model	Mean difference of meta- analysis (95% CI)	Results	Potential bias / limitations
Winzenberg; 2011 ⁵³	6 x RCTs	Healthy children Age: 8-17 y	541, 884	Bone mineral density of hip	Random	0.06 (-0.18, 0.29)	 Overall, vitamin D supplementation had no statistically significant effects on total body bone mineral content or on bone mineral density of the hip or forearm. Sub-group analysis in those with low serum vitamin D concentrations (<35 nmol/L), vitamin D supplementation could result in clinically useful 	 Small number of studies Small study populations
				Bone mineral density of lumbar spine	Fixed	0.15 (-0.01, 0.31)		 High levels of heterogeneity
				Total bone mineral content	Fixed	0.10 (-0.06, 0.26)	improvements, particularly in lumbar spine bone mineral density and total body bone mineral content.	
				Bone mineral density of forearm		0.04 (-0.36, 0.45)		

^a*n* represents the number of participants who had received D₂ or D₃; *N* represents the number of participants enrolled in the full study. CI: confidence interval, RCT: randomised controlled trial

Table 3B – Randomised controlled trial of native vitamin D supplementation on bone density and bone mineral content in children without chronic kidney disease

(Include only articles published since publication of the systematic review as listed in Table 3A)

Author; Year	Population, Gender, Age	n, N ^a	City, Country	Intervention	Comparator	Duration	Results	Comments
real	Gender, Age					of treatment		
Mølgaard; 2010 ⁵⁴	Healthy children Male: 0% Age: 11-12 y	147, 221		D₃ orally 200 or 400 IU /day	Placebo	1 y	 No effect on indices of bone health in the entire group. Increased whole body bone mineral density and bone mineral content in the FF- VDR genotype subgroup. 	 Limitation: sub-group analysis The extent to which potential genetic determinants may be related to vitamin D metabolism is raised.

^an represents the number of participants who had received D₂ or D₃; N represents the number of participants enrolled in the full study.

Author; Year	Population, Gender, Age	n, Nª	City, Country	Intervention	Comparator	Duration of treatment	Results
Shroff; 2012 ⁸	CKD with eGFR: 47±8.1 ml/min/1.73 m ² Male: 66% Age: Intervention group: 10.6±2.5 y Placebo group: 7.9 ±4.8 y	24, 47	London, UK	D₂ orally Dosing as per modified NKF- KDOQI	Placebo	Median 52 weeks	 Children receiving D₂ had a significantly longer time to development of secondary hyperparathyroidism (hazard ratio=0.30, 95% confidence interval=0.09 - 0.93, <i>P</i>=0.05) compared with those children on placebo. In the intervention group, 80% children achieved 25(OH)D levels > 75 nmol/L after intensive replacement treatment (month 3), whereas only 12 of 20 (60%) children continued to have 25(OH)D levels > 75 nmol/L after maintenance treatment. It was more difficult to achieve and maintain normal 25(OH)D levels in CKD stages 3–4 compared with stage 2 No hypercalcaemia or other treatment related side effects.

^an represents the number of participants who had received D₂ or D₃; N represents the number of participants enrolled in the full study. eGFR: estimated glomerulus filtration rate, NKF-KDOQI: National Kidney Foundation–Kidney Disease Outcomes Quality Initiative, 25(OH)D: 25-hydroxyvitamin D

To convert nmol/L to ng/ml divide by 2.5

Author; Year	Population, Gender, Age	N	City, Country	Intervention	Duration of treatment	Results
Kari; 2013 ⁷⁰	CKD stages 2-5 Male: 58% Age: 11.8 ± 4.6 y	19	Jeddah, Saudi Arabia	D ₃ intramuscularly 300,000 IU stat	Single dose	 At 12 wk, 25(OH)D₃ levels were significantly higher than at baseline but lower than levels at 4 wk. PTH levels decreased significantly at 12 wk. No changes in calcium, phosphate, or ALP levels
Kari; 2012 ⁶⁹	CKD stages 2-5 Male: 69% Age: 9.6 ± 4.6 y	45	Jeddah, Saudi Arabia	D ₃ orally 2000 IU/day	26 wk	 25(OH)D level normalized only in 11% of the patients 25(OH)D increased from 35.5 ± 20.5 nmol/L to 50.4 ± 33.5 nmol/L No improvement in PTH levels after 3 and 6 months. No changes were observed in the levels of calcium, phosphate, alkaline phosphatase, or creatinine.
Hari; 2010 ⁶⁸	CKD stages 2-4 Male: 86% Age: 7.7±3.8 y	42	New Delhi, India	D ₃ orally 600,000 IU over 3 consecutive days	Over 3 days	 25(OH)D increased from 41.8 (95% CI 28.3, 49.5) nmol/L to 115.5 (95% CI 86.3, 111.5) nmol/L at 6 wk. Median PTH decreased significantly from 51.3 (95% CI 46.7, 71.5) to 37.1 (29.0, 54.6) pg/ml at 6 wk. Serum calcium and phosphorus did not change significantly.
Belostotsky; 2009 ⁶⁷	CKD stage not specified Age: 13.6± 3.4 y	20	Manchester, UK	D ₂ orally 100,000 IU stat	Single dose	 25(OH)D increased from 3.8 –39.5 nmol/L to 17.5 – 64 nmol/L at wk 12.

Table 4B – Prospective observational studies of native vitamin D therapy in children with chronic kidney disease

25(OH)D: 25-hydroxyvitamin D; PTH: Parathyroid hormone; ALP: Alkaline phosphatase

Author; Year	No. of studies	Population	N	Outcomes	Meta-analysis model	Mean difference (or relative risk) of meta-analysis (95% CI)	Results	Potential bias / limitations
Alvarez; 2012 ⁷³	8 x RCTs 9 x observational (5 prospective, 4 retrospective)	CKD stages 2-5 Adults and children	1046	N/A	N/A	N/A	 Achievement of optimal vitamin D status (25(OH)D ≥ 75 nmol/L) in patients with early CKD may require greater than 2,000 IU/day of vitamin D. PTH significantly decreased in eight studies with a variety of dosing protocols including both D₂ and D₃. 	- Studies were mostly of low to moderate quality.
Kandula; 2011 ⁵⁷	5 x RCTs	CKD stages 2-5D + transplanted	264	25(OH)D	Random	13.9 ng/ml (5.6, 22.4)	 Significant increase in 25(OH)D levels with vitamin D supplementation 	- Studies were mostly of low to
		Adults		PTH	Random	−31.5 pg/ml, (−57.0, −6.1)	and an associated decline in PTH.	 moderate quality. Allocation concealment was unclear in the included RCTs, and participants,
	17 x observational	CKD stages 3-5D +	1329	25(OH)D	Random	24.1 ng/ml (19.6, 28.6)	 No significant change in serum calcium, phosphorous, levels with 	
			transplanted Adults		Random	-41.7 pg/ml, (−55.8, −27.7)	vitamin D supplementation. - Low incidence of hypercalcemia and hyperphosphatemia with vitamin D supplementation.	investigators, and outcome assessors were not blinded except for one study.

Table 5A - Systematic reviews of native vitamin D versus placebo in adults with chronic kidney disease and on dialysis

*To convert ng/ml to nmol/L multiply by 2.5; *N* represents the number of participants enrolled in the full study. CI: confidence interval, RCT: randomised controlled trial; 25(OH)D: 25-hydroxyvitamin D; PTH: Parathyroid hormone

Table 5B - Randomised controlled trials of native vitamin D versus placebo or no treatment in adults with chronic kidney disease and on dialysis

(Include only articles published since publication of the systematic reviews listed in Table 5A)

Author; Year	Population, Gender, Age	N	City, Country	Intervention	Comparator	Duration of treatment	Results
Thimachai; 2015 ⁷⁹	CKD stages 3-4 Male: 53% Age: Intervention group: 65.9 ± 15.5 y Comparator group: 66.7 ± 15.4 y	68	Bangkok, Thailand	D₂ orally Double the dosage of NKF-KDOQI	D ₂ orally Dosing as per NKF-KDOQI	8 wk	 25(OH)D increased significantly from 52.5 ± 16.7 nmol/L to 83.5 ± 22.3 nmol/L at wk 8 in the intervention group and increased from 52.1 ± 18 nmol/L to 58.6 ± 19.7 nmol/L in the control group. PTH levels significantly decreased at wk 8 (<i>p</i> = 0.024) in the intervention group, and there was no change in the control group. No significant changes in serum calcium and phosphate in both groups. No serious adverse events reported.
Mieczkowski; 2014 ⁷⁸	CKD stage 5D Male: 53% Age: Intervention group: 63 (52-79) y Comparator group: 46 (29-79) y	19	Warsaw, Poland	D₃ orally 2000 IU three times a week	No treatment	52 wk	 25(OH)D levels increased significantly from 28.3 to 112.3 nmol/L at 52 wk in the D₃ group and no change in the controls. Treatment with D₃ was associated with a small increase in serum calcium, but serum phosphate, PTH, alkaline phosphatase, and bone mineral density remained unchanged in both groups.
Bansal; 2014 ⁷⁴	CKD stages 5D Male: Not reported Age: Intervention group: 75 ± 9 y	35	Haryana, India	D ₃ orally 60,000 IU/wk	No treatment	6 wk	 25(OH)D levels increased significantly from 24 ± 19 to 48.7 ± 10.7 nmol/L at 6 wk in the D₃ group and no significant change in the control group. No significant changes in serum calcium and PTH in both groups.

	Comparator group: 73 ±12 y						
Delanaye; 2013 ⁷⁵	CKD stage 5D Male: 70% Age: Intervention group: 75 ± 9 y Comparator group: 73 ±12 y	30	Liège, Belgium	D ₃ orally 25,000 IU every 2 weeks	Placebo	52 wk	 At 52 wk, 75% of patients in the D₃ group achieved 25(OH)D ≥ 75 nmol/l, compared to 0% patients in the placebo group. Significant difference was found in changes in PTH between the two groups (ΔPTH of −115 pg/mL in the D₃ group and +80 pg/mL in the controls). No significant changes in serum calcium and phosphate in both groups. No incidence of hypercalcaemia
Gravesen; 2013 ⁷⁶	CKD stages 4-5 Male: Not reported Age: Not reported	43	Copenhagen, Denmark	D ₂ orally 50,000 IU/wk (<i>N=</i> 26)	No treatment (<i>N</i> =17)	6 wk	 25(OH)D levels increased significantly from < 10 to 90 ± 4 nmol/L at 6 wk in the D₂ group and no change in the control group. No significant changes in serum calcium, phosphate, PTH and fibroblast growth factor 23 in both groups.
Marckmann; 2012 ⁷⁷	CKD stage 1-5D, Tx Male: 75% Age: Intervention group: 71 (62-78) y Comparator group: 68 (59-76) y	52	Odense, Denmark	D ₃ orally 40,000 IU/wk	Placebo	8 wk	 25(OH)D levels increased significantly from 23.8 (17.2-41.4) to 154.7 (81.4-240.3) nmol/L at 8 wk in the D₃ group and no change in the controls. In non-haemodialysis patients, there was a significant decreased in PTH on the D₃ group. PTH changes were small and insignificant in haemodialysis patients. Serum calcium and fibroblast growth factor 23 increased significantly in the D₃ group.

Tx: transplant; 25-hydroxyvitamin D; PTH: Parathyroid hormone

To convert nmol/L to ng/ml divide by 2.5

Author; Year	Study design	Population, Age	N	Intervention	Comparator	Duration of treatment		Results	Potential bias/ limitations
Gallo; 2013 ⁸²	RCT	Healthy, 1 mo	52	D₃ orally 400 IU/day	D₂ orally 400 IU/day	12 wk	-	Increase in 25(OH)D levels between the D_2 and D_3 groups did not differ at wk 12. No differences were noted among groups in the proportion that achieved 25(OH)D level > 75nmol/L at follow up.	 73% of infants were taking a vitamin D supplement at baseline (although similar % in each group) No safety follow up
Thacher; 2010 ⁸⁴	Prospective cohort	Healthy with nutritional rickets, 15 – 120 mo	28	D ₃ orally 50,000 IU stat	Historic control	Single dose	-	Increase in 25(OH)D levels between the D_2 and D_3 groups did not differ at day 3 in both rachitic and healthy children.	 Historic cohort of rachitic children treated with D₂ was used as comparator.
	RCT	Healthy, 19 - 59 mo	21	D₃ orally 50,000 IU stat	D ₂ orally 50,000 IU stat	Single dose	_	D_2 may be metabolised more rapidly than D_3 . 25(OH)D levels maintained above 75nmol/L with D_3 group at day 14.	- Short follow-up
Gordon; 2008 ⁸³	RCT	Healthy, 8 – 24 mo	40	D₃ orally 2,000 IU/day	D ₂ orally 2,000 IU/day D ₂ orally 50,000 IU/wk	6 wk	-	Increase in 25(OH)D levels between the D_2 and D_3 groups did not differ at wk 6. No significant change in serum calcium, PTH or ALP with any groups.	 Short follow-up Weekly D₂ dose is not a direct comparison on a IU per IU basis. Each group was also prescribed calcium supplementation.

Table 6A – Studies of vitamin D₂ versus vitamin D₃ supplementation in children without chronic kidney disease

RCT: randomised controlled trial; 25(OH)D: 25-hydroxyvitamin D; PTH: Parathyroid hormone; ALP: Alkaline phosphatase

Author; Year	No. of studies	Population	n, Nª	Meta- analysis model	Mean difference of meta- analysis (95% CI)	Results	Potential bias / limitations
Tripkovic; 2012 ⁸⁵	7 x RCTs	Adults	344, 442	Random	15.23 (6.12, 24.34)	 D₃ is more efficacious at raising serum 25(OH)D concentrations than is D₂ (<i>P</i> =0.001). When the frequency of dosage administration was compared, there was a significant response for D₃ when given as a bolus dose (<i>P</i>=0.0002) compared with administration of D₂, but the effect was lost with daily supplementation. 	 Small number of studies. Small and underpowered study populations. High levels of heterogeneity: dosage of vitamin D, the frequency of supplementation, and the route of administration. Lack of data in lower D₂ or D₃ doses. Lack of consensus in the analysis of serum 25(OH)D concentrations. An overall general lack of attention to detail in reporting.

Table 6B – Meta-analysis of native vitamin D₂ versus vitamin D₃ supplementation in adults without chronic kidney disease

^a*n* represents the number of participants who had received D₂ or D₃; *N* represents the number of participants enrolled in the full study. CI: confidence interval, RCT: randomised controlled trial; 25(OH)D: 25-hydroxyvitamin D

Author; Year	Study design	Population, Gender, Age	N	Intervention	Comparator	Duration of treatment	Results
Daroux; 2013 ⁸⁶	RCT	CDK stage 5D Male: 67% Age: Intervention group: 68.5 ± 14 y Comparator group 65.3 ± 14.3 y 66.4 ± 18.6 y	39	D ₃ orally 200,000 IU /month (single dose)	D ₂ orally 200,000 IU /month (single dose) or D ₂ orally 200,000 IU/ month (in divided doses)	12 wk	 Increase in 25(OH)D levels was significantly higher in the D₃ group compared to either of the D₂ groups at wk 12. 25(OH)D increased to levels >75 nmol/L in 84% of group D₃ patients, but in only 15% and 27% of group D₂ (single dose) and D₂ (divided doses) patients, respectively.

Table 6C – Studies of vitamin D₂ versus vitamin D₃ supplementation in adults with chronic kidney disease (CKD)

RCT: randomised controlled trial; 25(OH)D: 25-hydroxyvitamin D

Table 7 – Recommendations for native D treatment from renal guidelines on chronic kidney disease metabolic bone disease

	European Renal Best Practice Group (2010) ⁸⁹	KDIGO (2009) ³	NKF-KDOQI (2005) ¹²				
Deficiency defined as	< 30 nmol/L*	Not defined	< 37.5 nmol/L (severe deficiency < 12.5 nmol/L)				
Insufficiency defined as	30 - 75 nmol/L	Not defined	40 - 75 nmol/L				
Vitamin D ₂ vs. D ₃	D_3 or other 25(OH)D analogues	No specific recommendation	Only D ₂ discussed				
Loading regimens							
For all ages (infants to 18 years)	As per general population	As per general population	Dosing based on level: < 12.5 nmol/L: 8,000 IU/day orally for 4 weeks then 4,000 IU/day orally for 8 weeks 12.5 – 37.5 nmol/L: 4,000 IU/day orally for 12 weeks 40 - 75 nmol/L: 2,000 IU/day orally for 12 weeks				
Maintenance regimens							
Age 1 month to 18 years	As per general population	As per general population	Weekly doses OR Supplement with vitamin D containing multivitamin preparation				

KDIGO: Kidney disease improving global outcomes, NKF-KDOQI: National Kidney Foundation-Kidney Disease Outcomes Quality Initiative; 25(OH)D: 25hydroxyvitamin D * To convert nmol/L to ng/ml divide by 2.5

Intensive replacement phase								
Age	25(OH)D serum (nMol/L)***	Vitamin D supplementation dose (daily)	Monitoring					
< 1 year	r 600 IU / day*		- Serum calcium and urinary calcium levels					
	< 12	8000 IU / day	1-3 monthly based on CKD stage					
>1 year*	12 - 50	4000 IU / day	- 25(OH)D levels: after 3 months					
	50 – 75	2000 IU / day						
Maintenance phase								
< 1 year		400 IU / day	- 25(OH)D levels: 6-12 monthly					
>1 year**	>75****	1000 - 2000 IU /day						
-		based on CKD stage						

Table 8 – Suggested treatment for vitamin D supplementation in children with chronic kidney disease and on dialysis

25(OH)D: 25-hydroxyvitamin D

* In infants under 1 year a fixed dose is recommended irrespective of the level of 25(OH)D

** Consider adjusting dose by body size (weight or body surface area)

*** To convert nMol/L to ng/ml divide by 2.5

**** If levels remain <75nmol/L, then give doses as per the 'Intensive replacement' schedule for a further course of intensive replacement and recheck levels