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Fig 1: Schematic of design process for half an arm with 

curvature ratio C.  
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Abstract 

Bi-axially strained Germanium (Ge) is an ideal 
material for Silicon (Si) compatible light sources, 
offering exciting applications in optical interconnect 
technology. By employing a novel suspended 
architecture with an optimum design on the curvature, 
we applied a biaxial tensile strain as large as 0.85% 
to the central region of the membrane.  
(Keywords: Si Photonics, Germanium, Light source) 

 
Introduction 

Bi-axially suspended germanium membranes exhibit 
extremely high strain values reducing the direct band-
gap and thus enhancing light emission [1, 2]. 
Previous works have demonstrated high biaxial strain 
up to 1.9% [1] and 2.4 times PL enhancements [2] by 
using Ge-On-Insulator (GeOI) wafers. Despite the 
successful demonstrations by GeOI wafers [1, 2], the 
cost might be increased. We have utilized Ge on bulk 
Si wafers to manufacture suspended membranes.  

 
Design, Simulation and Fabrication 

2D Simulations were performed in COMSOL 
Multiphysics 5.2. The “Structural Mechanics” 
module was used with elasticity matrix defined in 
Voigt notation to simulate the strain values. The 
“dilute species” module was also used to simulate the 
diffusion of the solution during the wet etching to 
identify the boundaries of the etched Si substrate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The design steps are shown in Fig. 1 with the 
curvature ratio, C, defined in terms of the comprising 
primitives.  
 
 
 
 
 
 
 
 
 
 

An intrinsic Ge on Si wafer was patterned using  
electron-beam lithography. The etching windows 
were patterned using deep reactive ion etching 
(DRIE) with 38 sccm Ar and 12 sccm CHF3 at 200W 
RF power. Finally, the suspended Ge membranes 
were made using a Tetra-Methyl-Ammonium-
Hydroxide (TMAH) wet etching process. Fig. 2 
shows the wafer and main etching steps. 

 
Results 

Fig. 3 shows an optical 3-Dimentional (3D) 
micrograph of a structure with C of 3.0. The etching 
profile can be seen with etched slopes corresponding 
to the <111> crystallographic plane.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 2: Schematic of the wafer stack and the main etching steps. 

DRIE defines the etch windows followed by an anisotropic wet 

TMAH under etch. 

Fig 3: 3D micrograph of structure with C of 3.0  
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Fig. 4 shows a titled optical micrograph of a structure 
with C of 3.0 and the etched window, in which the 
shadows show successful suspension. 
 
 
 
 
 
 
f 
 
 
 
 

 
Fig. 5 shows strain distribution at the extremities of  
C of 1.6 and 3.0. These simulations show improved 
homogeneity in the membrane with C of 3.0 relative 
to that with C of 1.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 shows the Raman spectra at various C with 
Lorentzian fittings. The peak widths and peak 
positions was then extracted from this data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 shows the effect of C on the peak widths and 
the Raman shifts. The peak widths remained 
relatively constant with increasing C, suggesting no 
major change in crystalline qualities. The decrease of 
the Raman shift on increasing C corresponds to the 
decrease of strain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5:  Simulated strain distributions with C of a) 1.6 and 

b) 3.0. As C increases the strain homogeneity increases. 

Fig 4: a) Tilted micrograph of structure at C of 3.0. b) 

Normal micrograph of etch window with etched Si 

crystallographic planes visible. 

Fig 6: Raman spectra with Lorentzian fitting 

plotted over with increasing c 

Fig 7: Raman shift and peak width with increasing C. Peak 

width remains relatively constant suggesting no significant 

change in crystalline quality. Raman shift decreases 

corresponding to decreasing central strain. 
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Fig. 8 shows the strain estimated from the Raman 
shift in comparison with the simulated values. Both 
the measured and simulated strain values decreased 
with increasing C, with a maximum strain of 0.85% 
observed at C of 1.6. The small differences between 
experimental and simulated values would be 
attributed to the simulated boundaries assuming 2D 
isotropic wet etching, while actual wet etching was 
highly anisotropic. This highlights the need for a 
more sophisticated simulation for defining the profile 
taking into account the anisotropic etching of the 
silicon crystal in three dimensions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. shows the micro-PL spectra at the center of 
structures with increasing C. Surprisingly, the devices 
with smaller C and thus higher central strain values 
exhibit smaller PL intensities. One explanation of this 
trend could be increased dislocations and thus 
increased non-radiative recombination due to higher 
strain values. In fact, we found significant local 
increase of the tensile strain at the edges of the 
membrane with C of 1.6 (Fig. 5 (a)). The steeper 

strain gradient resulted in the local band-gap 
distribution, and carriers might be recombined at the 
edges [2].  
The peaks identified in the spectrum in Fig. 9 from 
the membrane with C of 3.0 would be attributed from 
the splitting of Light-Hole (LH) and Heavy-Hole 
(HH) bands with the presence of biaxial strain.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Conclusion 

We have successfully fabricated bi-axially suspended 
membranes using Ge on Si wafers with the tensile 
strain up to 0.85%. We found that the inhomogeneity 
of the strain reduces the PL intensities, so that the 
homogeneous strain-engineering would be critical 
towards developing monolithic Ge light sources on Si. 
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Fig 9: PL spectra at various C and bulk Ge. HH and LH 

splitting can be visualized as well as a decrease in intensity 

with increasing C despite the central strain value increasing. 

Fig 8: Simulated and measured strain at various C. Both 

simulated and measured strain decreases with increasing 

C. There is a discrepancy between the two sets of values is 

due to a simple isotropic etching profile being assumed. 
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