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ABSTRACT

Observations of binaries in clusters tend to be of visual binaries with separations
of 10s – 100s au. Such binaries are ‘intermediates’ and their destruction or survival
depends on the exact details of their individual dynamical history. We investigate
the stochasticity of the destruction of such binaries and the differences between the
initial and processed populations using N -body simulations. We concentrate on Orion
Nebula Cluster-like clusters, where the observed binary separation distribution ranges
from 62 – 620 au.

We find that, starting from the same initial binary population in statistically
identical clusters, the number of intermediate binaries that are destroyed after 1Myr
can vary by a factor of > 2, and that the resulting separation distributions can be
statistically completely different in initially substructured clusters. We also find that
the mass ratio distributions are altered (destroying more low mass ratio systems), but
not as significantly as the binary fractions or separation distributions. We conclude
that finding very different intermediate (visual) binary populations in different clusters
does not provide conclusive evidence that the initial populations were different.

Key words: stars: formation – kinematics and dynamics – binaries: general – open
clusters and associations: general – methods: numerical

1 INTRODUCTION

The nature of star formation is one of the great unsolved
problems in astrophysics. The formation of stars is extremely
interesting in itself, but also has implications for galaxy for-
mation and evolution, and planet formation. In recent years,
studies of young star forming regions have shown that the
initial mass function (IMF) is invariant, at least on nearby
galactic scales (Bastian, Covey & Meyer 2010).

It is unclear whether this apparent universality of
star formation in the IMF is also mirrored in the pri-
mordial binary population. Most stars form in binaries
(Goodwin & Kroupa 2005; Kroupa 2008), but the picture
is clouded by subsequent dynamical evolution in some clus-
tered environments (e.g. Kroupa 1995a,b; Parker et al. 2009,
2011), making it difficult to conclude whether or not binary
formation in different star forming regions is also universal
(King et al. 2012).

By comparing the results of N-body simulations to ob-
servations of binaries in both clusters and the Galactic field
it is possible to account for this dynamical evolution and
then infer the probable initial conditions of star formation,
a process known as “reverse engineering” or “inverse popula-
tion synthesis” (Kroupa 1995a). For this purpose the results

⋆ E-mail: rparker@phys.ethz.ch

of many simulations (> 10) are usually averaged together
to obtain a 1–σ uncertainty, and then compared to observa-
tions.

Most observations of the binary separation distribution
in young clusters tend to probe the visual separation regime
(e.g. Patience et al. 2002; Reipurth et al. 2007; King et al.
2012), in which binaries typically have separations between
several tens, to several hundreds of au (this depends on dis-
tance and cluster surface density).

Taking the Orion Nebula Cluster (ONC) as an exam-
ple, the observations probe the separation range 62 – 620 au
(Reipurth et al. 2007). Binaries with shorter separations are
difficult to detect in clusters, whereas those with wider sepa-
rations become indistinguishable against the background of
other cluster members (if they even exist in such clusters,
Scally et al. 1999; Parker et al. 2009). Comparison with av-
eraged numerical simulations (Parker et al. 2009, 2011) sug-
gest good agreement with a primordial field-like separation
distribution and an initial binary fraction of around 75 per
cent.

Unfortunately, as we will investigate in detail in this
paper, this 10s to 100s au ‘intermediate’ binary separation
range is one which is affected stochastically by dynamical
interactions.

Heggie (1975) and Hills (1975) investigated the dynam-
ically processing of binaries. They divided binaries into two
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2 R. J. Parker & S. P. Goodwin

broad classes: hard, and soft. Hard binaries have a binding
energy that exceeds the local Maxwellian energy of stars in
the cluster and are so tightly bound that it is extremely rare
for an encounter to destroy them (indeed, encounters tend
to extract energy, making them harder). Soft binaries have
a binding energy that is less than local Maxwellian energy
and are so loosely bound that single distant encounters, or
even the tidal field of a cluster, can destroy them (although
they are so easy to make that a transient population can
exist, see Moeckel & Clarke 2011).

Based on these definitions, it is also possible to define a
third dynamical class of binaries: intermediate binaries. In-
termediate binaries are those inbetween hard and soft (their
binding energy is comparable to the local Maxwellian energy
of stars in the cluster), whereby a single relatively close en-
counter, or several distant encounters may destroy them.
Therefore if an intermediate binary survives depends on the
exact details of its dynamical history and an element of ‘luck’
in the number and severity of encounters it has.

In a smooth, spherical system such as a Plummer
sphere, the boundary between hard and soft binaries, ahs,
can be estimated following Binney & Tremaine (1987), as

ahs =
3

2

r1/2
Nsys

, (1)

where r1/2 is the half-mass radius of the cluster, and Nsys

is the number of stellar systems in the cluster. Adopt-
ing the current half-mass radius of the ONC as 0.8 pc
(Hillenbrand & Hartmann 1998), and the number of stars
as ∼ 1500 (King et al. 2012), then ahs ≃ 250 au.

However, the hard-soft boundary is not a sharp bound-
ary. Destruction depends not only on the typical encounter
energy/velocity, but also on having an encounter, and hence
an element of ‘luck’ in having or avoiding a destructive en-
counter. The encounter timescale depends on density, but
with (as we will show) a stochastic element1. Binaries a fac-
tor of 2 or 3 above ahs can survive if they avoid strong en-
counters, and binaries a factor of 2 or 3 below ahs can be
destroyed.

As the hard-soft boundary depends on local density
it varies radially in smooth distributions such as Plummer
spheres. It is also a very difficult quantity to define in sub-
structured distributions such as fractals as the density can
vary significantly.

In this paper we investigate the consequences of the
stochasticity of intermediate binary destruction in star clus-
ters. This is particularly important because, as we have
discussed, observations generally cover the intermediate bi-
nary population. We evolve a variety of clumpy and smooth
clusters containing exactly the same initial binary popula-
tion (identical primary and secondary masses, semi-major
axes, and eccentricities) and examine the intermediate bi-
nary population after 1 Myr. We describe the simulation
set-up in Section 2, we present our results in Section 3, we
provide a discussion in Section 4 and we conclude in Sec-
tion 5.

1 In the Galactic field the hard-soft boundary is formally much
lower than in clusters as the velocity dispersion is much higher
than in clusters. However, many formally soft binaries can survive
for Gyr as the encounter timescale is so long.

2 METHOD

In this Section we describe the method used to set up and
run the numerical simulations of our model clusters.

2.1 Binary population

We set the clusters up with only one primordial binary pop-
ulation. This enables an investigation into the effects of mor-
phology and dynamics on a constant initial separation dis-
tribution of intermediate binaries to compare to the obser-
vational data.

Earlier work has shown that in a dense ONC-like
cluster, a primordial binary population will be affected
by dynamical interactions, which both lowers the primor-
dial binary fraction and alters the initial semi-major axis
(hereafter separation) distribution (e.g. Kroupa et al. 1999;
Parker et al. 2009, 2011).

Recently, King et al. (2012) have placed observa-
tional and theoretical constraints on the primordial bi-
nary fraction and separation distribution in the ONC,
and find that a G-dwarf field-like separation distribution
(Duquennoy & Mayor 1991; Raghavan et al. 2010), and an
initial binary fraction of ∼75 per cent (also confirmed from
theoretical considerations by Kaczmarek et al. (2011) and
Parker et al. (2011)) represents the most likely primordial
binary population.

In this work we adopt an initial binary fraction
of 100 per cent, and a field-like separation distribu-
tion (Duquennoy & Mayor 1991; Fischer & Marcy 1992;
Raghavan et al. 2010). As our clusters are relatively dense
initially, the widest binaries in the field-like separation dis-
tribution are not physically bound (Parker et al. 2009), and
the starting binary fraction in the simulations is closer to
75 per cent.

We draw the primary masses from a Kroupa (2002) IMF
of the form

N(M) ∝

{

M−1.3 m0 < M/M⊙ 6 m1 ,
M−2.3 m1 < M/M⊙ 6 m2 ,

(2)

where m0 = 0.1M⊙, m1 = 0.5M⊙, and m2 = 50M⊙. We do
not include brown dwarfs in the simulations as these are not
present in the observational samples with which we will com-
pare our simulations. Secondary masses are drawn from a
flat mass ratio distribution, in accordance with observations
of the distribution in the Galactic field (Reggiani & Meyer
2011). However, we limit the lower mass of a companion to
be 0.1M⊙; this means that lower-mass stars do not have a
full range of mass ratios. For example, a 0.15M⊙ primary
can only have companions in the range 0.1 – 0.15M⊙. If
a companion of mass < 0.1M⊙ is selected we draw a new
random mass ratio until a companion > 0.1M⊙ is selected.

In accordance with observations of the field, we se-
lect binary periods from the log-normal fit to the G-
dwarfs in the field by Duquennoy & Mayor (1991) – see
also Raghavan et al. (2010), which has also been extrapo-
lated to fit the period distributions of the K- and M-dwarfs
(Mayor et al. 1992; Fischer & Marcy 1992):

f (log10P ) ∝ exp

{

−(log10P − log10P )
2

2σ2
log10P

}

, (3)

where log10P = 4.8, σlog10P = 2.3 and P is in days. We
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Stochasticity in binary destruction 3

convert the periods to semi-major axes using the masses of
the binary components.

The eccentricities of binary stars are drawn from a ther-
mal distribution (Heggie 1975; Kroupa 2008) of the form

fe(e) = 2e. (4)

In the sample of Duquennoy & Mayor (1991), close binaries
(with periods less than 10 days) are almost exclusively on
tidally circularised orbits. We account for this by reselecting
the eccentricity of a system if it exceeds the following period-
dependent value2:

etid =
1

2
[0.95 + tanh (0.6 log10P − 1.7)] . (5)

We combine the primary and secondary masses of the
binaries with their semi-major axes and eccentricities to de-
termine the relative velocity and radial components of the
stars in each system. The binaries are then placed at the
centre of mass and velocity for each system in either the
fractal distribution or Plummer sphere (see Section 2.2).

Note that the exact details of the initial binary distri-
bution do not matter. The following results would be true of
any initial distribution of intermediate binaries in a cluster.

2.2 Cluster morphologies

We set up clusters containing 1500 stars (i.e. 750 binary
systems), and adopt two different morphologies. Firstly,
we create fractal clusters (Cartwright & Whitworth 2004;
Goodwin & Whitworth 2004) to create clusters with sub-
structure, and secondly, we use Plummer spheres (Plummer
1911) to enable a comparison between centrally concen-
trated, smooth clusters, and the substructured clusters.

2.2.1 Fractal clusters

Observations of young, dynamically unevolved star form-
ing regions indicate that a large amount of sub-
structure is present (e.g. Cartwright & Whitworth 2004;
Sánchez & Alfaro 2009). The most convenient way of de-
scribing substructure is via the fractal, in which the amount
of substructure is set by just one number, the fractal dimen-
sion, D (Goodwin & Whitworth 2004). We adopt a moder-
ate amount of substructure (D = 2.0).

The velocities of systems in the fractal are drawn from
a Gaussian of mean zero, and the fractal is constructed in
such a way that nearby stars have similar velocities, whereas
the velocities of distant stars can be very different (see
Goodwin & Whitworth 2004; Parker et al. 2011, for a more
detailed description). The initial radius of the fractal is 1 pc,
and we scale the velocities so the cluster has a virial ratio
Q = 0.3, which is subvirial or ‘cool’. These initial conditions
have been successful in explaining the level of mass segre-
gation in the ONC through dynamics (Allison et al. 2009,

2 Kroupa (1995b) and Kroupa (2008) provides a more elaborate
‘eigenevolution’ mechanism to incorporate interactions between
the primary star and its protostellar disk during tidal circulari-
sation. However, this mechanism also alters the mass ratio distri-
bution, causing a deviation from the flat mass ratio distribution
observed in the Galactic field (Reggiani & Meyer 2011).

2010), and can account for the formation of Trapezium-like
systems (Allison & Goodwin 2011).

2.2.2 Plummer spheres

No two fractals are identical and to the eye two statistically
identical fractals can look very different. It is therefore desir-
able to test whether any differences in the intermediate sep-
aration distribution are not simply due to the exact details
of the fractal realisations. We therefore conduct simulations
in which we evolve the same primordial binary population in
a radially smooth, centrally concentrated Plummer sphere
(Plummer 1911). Whilst no two Plummer spheres are iden-
tical, their initial structures and their evolution are much
more similar than fractals.

The positions and velocities of the systems
are determined according to the prescription in
Aarseth, Hénon & Wielen (1974). We construct Plum-
mer spheres with an initial half-mass radius r1/2 = 0.1 pc
(corresponding to a hard-soft boundary of ∼70 au), and set
them to be in virial equilibrium initially (Q = 0.5).

The binaries are then randomly assigned a system po-
sition and velocity in the fractal or Plummer sphere, which
varies with each realisation of the cluster morphology. We
run 10 realisations of each morphology, identical apart from
the random number seed used to initialise the positions and
velocities of the systems. In each cluster we place the same
population of binary stars (see Section 2.1). We do not in-
clude stellar evolution in the simulations. The simulations
are run for 1Myr using the kira integrator in the Starlab
package (e.g. Portegies Zwart et al. 1999, 2001).

2.3 Summary

To summarise: we take a single initial binary population,
always the same in every way, and place it in ten realisations
of a fractal cluster and ten realisations of a Plummer sphere.
We evolve each cluster for 1 Myr and examine the remaining
intermediate binary population in each cluster.

We have chosen to compare our simulations with the
ONC. Firstly, there are good observations of visual bi-
naries in the ONC in the separation range 62 – 620 au
(Reipurth et al. 2007). Secondly, the density of the ONC
suggests that the hard-soft boundary lies within this separa-
tion range (Kroupa et al. 1999; Parker et al. 2009)3. Finally,
the ONC has a large enough population (N ∼ 1500 stars)
that we have a significant population in this separation range
in each cluster. In later papers we will discuss other sep-
aration ranges, different cluster masses and the effects of
small number statstics, but for now we will concentrate on
the currently observed intermediate binary population in a
fairly massive ONC-like cluster.

3 In this paper we will keep the separation range with which we
compare the simulations fixed, but we note that our two different
suites of simulations may have quite different hard-soft bound-
aries. For example, our Plummer sphere clusters reach higher den-
sities (and therefore contain more soft binaries) than the fractal
clusters.

c© 2012 RAS, MNRAS 000, 1–11



4 R. J. Parker & S. P. Goodwin

Table 1. The numbers of binaries in the separation range 62–620 au in the fractal cluster simulations at 0Myr (first row) and at 1Myr
(second row). Each simulation has 106 binaries initially.

simulation a b c d e f g h i j

Nbin;0Myr 106 106 106 106 106 106 106 106 106 106

Nbin;1Myr 87 83 67 74 73 77 66 81 62 69

Table 2. The numbers of binaries in the separation range 62–620 au in the Plummer sphere cluster simulations at 0Myr (first row) and
at 1Myr (second row). Not all 106 binaries are physically bound at the start of each simulation due to the high initial densities of the
Plummer spheres.

simulation a b c d e f g h i j

Nbin;0Myr 102 100 102 103 105 104 104 101 104 102

Nbin;1Myr 48 39 61 42 54 65 52 50 64 54

3 RESULTS

Our initial binary population is formed with 106 binaries
in the range 62 – 620 au, and this is the initial population
for every cluster. Clusters differ only in the random number
seeds which set the system positions and velocities, not the
system properties.

In this Section, we will first examine the differences in
the numbers of intermediate binaries which are destroyed
after 1Myr, before turning our attention to the separation
distributions and the mass ratio distributions of these bina-
ries.

3.1 Binary fraction

In Table 1 we present the initial (0Myr) and final (1Myr)
numbers of binaries in the separation range 62–620 au in
each of the ten fractal cluster simulations. Each cluster has
106 binaries in this range initially, but the final number of
binaries varies significantly, with extrema of 62 and 87 bina-
ries (simulations i and a, respectively). Thus between 42 per
cent and 18 per cent of the initial population has been de-
stroyed. Looking just at this range, we started with 212 stars
in 106 systems (a binary fraction of unity4) and the extremes
after 1 Myr are 212 stars in 150 systems (a binary fraction
of 0.41) and 212 stars in 125 systems (a binary fraction of
0.70).

Turning to the Plummer sphere clusters, in Table 2 we
show the initial (0Myr) and final (1Myr) numbers of bina-
ries in the separation range 62–620 au for each of our ten
simulated clusters. There is a slight variation in the initial
number of binaries detected by our algorithm (and no clus-
ter has its full compliment of 106 initial binaries identified),
due to the high initial densities of the Plummer spheres.

In the two most extreme cases, 39 binaries remain in
a cluster that contained 100 initially (simulation b), and
65 binaries remain in a cluster that contained 105 initially

4 We define the binary fraction, fbin = B
S+B

, where B is the
number of binaries (and higher order multiple systems), and S is
the number of singles.

(simulation f). Thus between 71 per cent and 37 per cent of
the initial population has been destroyed. In terms of the
binary fraction, we started with 212 stars in 112 systems
(a binary fraction of 0.89 – simulation b), and 212 stars in
108 systems (a binary fraction of 0.96 – simulation f). After
1Myr the binary fractions in these clusters are 0.23 and 0.44,
respectively.

The total binary fraction in the cluster of course also
depends on the numbers of systems with separations outside
of this range that have been destroyed.

More binaries are destroyed in the Plummer sphere clus-
ters than the fractal clusters. The reason for this is that we
produce an intermediate binary (say of separation 500 au)
and place it at random within the simulation. If the binary is
placed in a low-density region where the typical separation
between stars is, say, 3000 au, then it is clearly identified as
a binary system. However, if a 500 au binary is placed in
a dense region with a typical inter-star separation of, say,
800 au, then it is no longer a ‘binary’. The handful of the
106 intermediate separation systems placed near the centre
of a Plummer sphere are therefore ‘destroyed’ at time zero.

The localised substructure in the fractal clusters is not
as dense as the central regions of the Plummer spheres, and
so all binaries that ‘form’ in the fractals remain physically
bound. The maxiumum densities in the fractal clusters are
around 1000 – 2000M⊙ pc−3, whilst the central densities of
the Plummer spheres are around 6−7×104 M⊙ pc−3. There-
fore, as the simulation progresses there will be significantly
more and closer encounters in the centres of the Plummer
spheres, which process the intermediate binaries more than
in fractal clusters. We noted above that after 1 Myr the
106 intermediate binaries in the fractal clusters had been
reduced to between 62 and 87 systems. In the much denser
Plummer spheres the final numbers of systems are between
39 and 65 – a far more destructive environment.

However, in both morphologies the final binary fractions
can differ by almost a factor of two, irrespective of density.

c© 2012 RAS, MNRAS 000, 1–11



Stochasticity in binary destruction 5

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) AVERAGE

Figure 1. Individual intermediate separation distributions in the range (62 – 620 au) probed by Reipurth et al. (2007) (panels (a) –
(j)). The average of all 10 simulations is shown in panel (k). The (constant) initial distribution is shown by the open histogram, and
the final distribution is shown by the shaded histogram. The observations by Reipurth et al. (2007) are shown by the green crosses. The
log-normal fits to the field separation distributions for G- and M-dwarfs are shown by the solid red and dashed blue lines, respectively.
Along the top are the initial and final numbers of binaries in each bin; note that the initial numbers of binaries are always the same.

c© 2012 RAS, MNRAS 000, 1–11



6 R. J. Parker & S. P. Goodwin

(a) (b)

Figure 2. The cumulative separation distribution of binaries in the separation range 62 – 620 au in (a) 10 different fractal clusters, and
(b) the two extrema, after 1Myr. The initial binary population is shown by the thick dashed grey line in both panels and is identical for
each cluster.

3.2 Separation distribution

As well as changing the binary fraction in the intermediate
62 – 620 au range, the distribution of separations can also
be changed significantly.

In Fig. 1 we show the individual separation distributions
in the range 62 – 620 au for each fractal cluster, binned in the
same way as the data in Reipurth et al. (2007). The initial
separation distribution, which is identical in each simulation,
is shown by the open histogram, and the separation distri-
bution after 1Myr is shown by the shaded histogram. For
comparision, the data from Reipurth et al. (2007) is shown
by the green crosses, and the log-normal fits to the field sep-
aration distributions for G- and M-dwarfs are shown by the
solid red and dashed blue lines, respectively. The average of
all 10 simulations, with 1–σ uncertainties, is shown in panel
(k).

As noted in Parker et al. (2011), averaging together the
10 realisations of clusters with a fractal morphology and sub-
virial velocities reproduces the observed ONC binary distri-
bution reasonably well (see also King et al. 2012). However,
from inspection of Fig. 1 we see that the same initial popula-
tion can evolve to very different distributions over the course
of 1Myr. Clearly, the initial population of 106 intermediate
binaries is processed differently in each cluster.

In Fig. 2 we show the cumulative distributions of the in-
termediate binary separations along with the initial separa-
tion distribution (the thick dashed grey line in both panels).
In Fig. 2(a) all ten fractal realisations are shown, in Fig. 2(b)
we show the two most different cumulative distributions.

In Fig. 3 we plot the 45 possible KS-test comparisons
between the cumulative separation distributions of the frac-
tal clusters. We reject the null hypothesis of there being no
difference between two separation distributions if the KS
p-value is less than 0.05.

The two most different separation distributions are from
the distributions shown in panels (c) and (h) of Fig. 1. Note
that these two simulations are not the same two simulations

Figure 3. The distribution of values for KS tests between all pairs
of the fractal cluster simulations on the cumulative separation
distributions (colours correspond to those in Fig. 2). We show
the KS p-value against the KS D statistic.

that produce the largest difference in binary fraction (which
were those in panels (a) and (i)).

The largest difference between the two extreme distri-
butions is D = 0.26; for this D a KS test gives the p–value
P = 0.01. This is a very significant difference and one would
draw the (correct) conclusion that these two distributions
are different. However, it is not the initial distributions that
were different (they were identical), rather it is the dynam-
ical processing of the systems that was very different.

Note that only two pairs of simulations are rejected by
the KS test as being significantly different (pairs c and h,
and h and j), with simulation h being the most significant
outlier. That nine simulations agree reasonably well with

c© 2012 RAS, MNRAS 000, 1–11



Stochasticity in binary destruction 7

(a) (b)

Figure 4. The cumulative separation distribution of binaries in the separation range 62 – 620 au in (a) 10 different Plummer-sphere
clusters, and (b) the two extrema, after 1Myr. In panel (a) the thick dashed grey lines show the initial distributions which are slightly
different for each cluster (see text), the differences are so small that in panel (b) we only plot the primordial distribution for the righthand
cluster for clarity.

Figure 5. The distribution of values for KS tests between all pairs
of the Plummer-sphere cluster simulations on the cumulative sep-
aration distributions (colours correspond to those in Fig. 4). We
show the KS p-value against the KS D statistic.

each other (for the separation distribution, not necessarily,
as we have seen, for binary fractions) shows that this simu-
lation is just an outlier. However, the problem is that in just
ten simulations we have produced a significant outlier, and
there is no way of telling if a single observed distribution for
a cluster is such an outlier.

Examination of Fig. 2(b) shows that one extreme (the
lower orange line) remains very close to the initial separation
distribution (the thick dashed grey line). This distribution
is from panel (h) of Fig. 1 and it can be seen that it has
lost roughly the same fraction of binaries from each bin so

retaining the shape of the initial distribution. The upper
extreme (the green line) shows a very different separation
distribution to the initial distribution, as can also be seen in
panel (c) of Fig. 1 this cluster has mainly lost wider binaries
(> 200 au).

Generally speaking (and visible in Figs. 1 and 2), wider
binaries are more susceptable to disruption as they are more
weakly bound. A key result however is that because binary
destruction is stochastic, the probability of destruction of an
intermediate system depends more on if a system has had
a close encounter or not than on the binding energy of the
system (see Hills 1975; Heggie 1975).

One could hypothesise that the very different and
stochastic dynamical histories of different fractals (see
Allison et al. 2010) might be responsible for the very large
differences in the resulting populations. To test this in Fig. 4
we plot the cumulative distributions of separations in our
ten Plummer spheres for all ten realisations (panel (a)) and
the two extremes (panel (b)) after 1 Myr along with the
initial distribution (the thick dashed grey lines). Note that
the initial distributions for each Plummer sphere are very
slightly different, this is because some intermediate systems
are in such a place that they are not identified as binaries
even at time zero. Different realisations of Plummer spheres
are almost impossible to distinguish, and their dynamical
histories will be very similar. The only differences should be
in the chance of a particular system having (a) destructive
encounter(s) or not.

Again we find a wide spread in the distributions, and we
plot the results of the KS tests between each set of simula-
tions in Fig. 5. Interestingly, although the Plummer spheres
are more dense, the most extreme separation distributions
(shown in Fig. 4(b)) have D = 0.23 and a KS test p–value
of P = 0.15. Based on this value, we cannot reject the hy-
pothesis that there is no difference between these separation
distributions. However, as we have seen, the binary fractions

c© 2012 RAS, MNRAS 000, 1–11



8 R. J. Parker & S. P. Goodwin

are also significantly affected, and care must be taken not to
take a marginal result for the KS test in separation distri-
bution together with different binary fractions to make us
suspect a real difference between clusters.

This may indicate that the differences in the final sep-
aration distributions are due to the stochastic nature of the
substructured fractals. However, as young, unevolved clus-
ters appear to be substructured (Cartwright & Whitworth
2004; Sánchez & Alfaro 2009), and this substructure can dis-
rupt binaries (Parker et al. 2011; King et al. 2012), then we
must recognise that this stochasticity could affect our inter-
pretation of observations of real clusters.

3.3 Mass ratio distribution

We have seen that the numbers and separation distribu-
tions of intermediate binaries can be significantly altered in
a highly stochastic way by encounters. We now turn our
attention to the mass ratio distribution: is this also signif-
icantly altered, or does it retain an imprint of the initial
distribution? Note that the initial mass ratio distribution
for our binary population is flat5.

In Figs. 6 and 7 we show the cumulative distributions of
mass ratios in the intermediate 62 – 620 au range after 1 Myr
of the fractal clusters (Fig. 6) and the Plummer spheres
(Fig. 7). In both Figs. panel (a) shows all ten realisations,
and panel (b) shows the two most extreme distributions.
The initial mass ratio distributions are shown by the thick
dashed grey lines (for the same reasons as in the separation
disributions each Plummer sphere has a slightly different ini-
tial distribution).

Interestingly in the fractal clusters, the spread in the
mass ratio distributions is rather low (Fig. 6), and even the
two extremes look very similar (panel (b)). A KS test on
these distributions fails to distinguish them.

However, in the Plummer spheres where processing has
been much more extreme we see that the difference between
the two extremes is greater than in the fractal clusters, but
still not enough to be significantly different in a KS test.

Finally, we note that both the fractals and Plummer
spheres with the two extremes in the final mass ratio distri-
bution are not the same clusters with the extremes in the
separation distribution.

Whether an encounter is destructive depends on the
distance of that encounter and the binding energy of the bi-
nary: a closer binary requires a closer encounter to destroy
it. Binding energy also depends on the mass ratio, but these
results suggest that the most important factor is the distance
of the encounter (which depends on density but is stochastic
with regards to the mass ratio of the system). In the case of
the Plummer sphere clusters (Fig. 7(b)) both clusters have
more q < 0.4 systems after processing than before (inspec-
tion of Fig. 7(a) shows that this is not always the case).
One extreme has stayed fairly close to the initial mass ratio
distribution (the upper extreme), whilst the lower extreme

5 The cumulative initial mass ratio distributions in Figs. 6 and 7
are not straight lines despite being drawn from a flat mass ratio
distribution. This is due to limiting the lower mass of companions
to be > 0.1M⊙ meaning that M-dwarfs in particular do not fill
the entire range of possible mass ratios. See Section 2.

has evolved to have far more very high mass ratio systems
(q > 0.9).

4 DISCUSSION

From the results presented in Section 3 we can see that
stochasticity in the destruction of intermediate binaries can
have a number of important consequences.

As would be expected, intermediate binary destruction
depends on density. Dense environments are far more effec-
tive at destroying intermediate binaries. Indeed, the defini-
tion of what is a hard, soft, or intermediate binary depends
on density – a hard binary in a very low-density environment
could be an intermediate binary in another environment.

However, the range of (visual) binary separations in
clusters normally probed by observations of 10s – 100s au
covers the intermediate binary regime in the range of densi-
ties found those clusters of 10 − 105 stars pc3 (see King et
al. 2012). Therefore, we almost always observe intermediate

binaries in star forming regions.

As would be expected, we find that the number of bina-
ries processed depends on the density. But this processing is
always stochastic with 18 – 42 per cent of intermediate bi-
naries processed in the relatively low-density fractals, to 37
– 71 per cent in the higher-density Plummer spheres. There-
fore, the number of intermediate binaries that are destroyed

depends on density, but with a stochastic factor of around 2

in the number destroyed.

A key result is illustrated in Figs. 2 and 4 that whatever
the density, the initial intermediate separation distribution

can be significantly altered. Wider intermediate binaries are
generally destroyed in preference to closer intermediates, but
this is not a strong relationship. For an initially substruc-
tured cluster, differences in processing can easily be extreme
enough to show very strong statistical differences with e.g.
a KS test. We emphasize here that only two different pairs
of simulations resulted in significantly different separation
distributions. However, we have no way of telling whether
the clusters we observe in reality are themselves stochastic
outliers.

Interestingly, as shown in Figs. 6 and 7 the change in
the initial mass ratio distributions are not as strong as in
the separation distributions. It seems that intermediate bi-

nary destruction does not care about the system mass ratio.
That intermediate binary destruction is insensitive to mass
ratio means that the processed mass ratio distributions are
statistically the same as the initial mass ratio distribution.
Therefore, in clusters with low levels of intermediate binary

destruction, the mass ratio distribution should reflect the ini-

tial mass ratio distribution. However, one has to know that
there has been little processing to use this result.

These results have interesting implications for the inter-
pretation of both observations and numerical simulations.

Clearly, when we observe a cluster we are observing a
single realisation of its initial binary population and the pro-
cessing of that population. When we compare two clusters
we compare two different realisations and as we have seen,
any two realisations may be very different, even if their ini-
tial conditions were the same.

Further, as we have seen the dynamical processing of
intermediate binaries does depend on density. It is important

c© 2012 RAS, MNRAS 000, 1–11
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(a) (b)

Figure 6. The cumulative mass ratio distribution of binaries in the separation range 62 – 620 au in (a) 10 different fractal clusters, and
(b) the two extrema, after 1Myr. The initial distribution is shown by the thick dashed grey line in both panels.

(a) (b)

Figure 7. The cumulative mass ratio distribution of binaries in the separation range 62 – 620 au in (a) 10 different Plummer-sphere
clusters, and (b) the two extrema, after 1Myr. The initial distributions are shown by the thick dashed grey line in panel (a), but in panel
(b) the initial distribution for the righthand cluster only is shown for clarity.

to note that processing occurs very quickly and so it is not
the current density that is important, but the maximum
density reached at some point in the past that determines
how effective binary processing is (see also Goodwin 2010;
Parker et al. 2009, 2011).

The problem we face when attempting to compare
two intermediate binary populations and determine if they
come from the same initial populations is therefore twofold.
Firstly, we need to have information about the past state of
the cluster to determine what level of processing we might
expect on average. Secondly, we have to account for the
stochasticity in intermediate binary destruction.

Let us take two ONC-like clusters as an example. We

started with 106 binaries in the observed 62–620 au range.
(Actually, randomly sampling from the same underlying dis-
tribution would give a range of 90 – 110 binaries initially in
that range). We then find that 37 – 71 per cent of these
can be destroyed in a dense cluster. Therefore in numbers
of binaries alone, statistically the same initial population
could result in between 39 and 65 binaries remaining in that
range – a difference of over a factor of two from random
chance alone. And this is before we consider the possibility
that these two populations have also evolved to statistically
different separation and mass ratio distributions.

If we were to observe two clusters with similar masses
and densities and find that they had statistically very sig-

c© 2012 RAS, MNRAS 000, 1–11
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inificant differences in the numbers of binaries, and the sep-
arations and mass ratios of these binaries, then we might
reasonably conclude that we were looking at two different
initial populations and therefore a difference in how the stars
were formed. However, as we have seen, that is sadly not the
case.

Great care must also be taken when comparing simula-
tions with observations. It is standard procedure to average
together the outcome of, say, ten simulations and compare
the separation distribution (with standard deviation) to the
observed one (e.g. Kroupa et al. 1999; Parker et al. 2009,
2011; King et al. 2012). However, the observed distribution
may in fact be an outlier and a failure to fit the observed
distribution might not mean that the model is ‘wrong’, con-
versely, a good fit to the observed distribution does not mean
the model is ‘right’ (correctly fitting an outlier would be wor-
rying unless one’s simulation was also an outlier in the same
way). Ensembles of simulations are crucial to at least deter-
mine a reasonable tolerance for the model, however nothing
will ever be able to determine if the observed realisation is
an outlier or not.

In future papers we will examine the observed binary
separation distributions in clusters from King et al. (2012)
in light of these results, we will also examine what separation
ranges are of use in distinguishing differences or otherwise
in the star formation in different regions.

5 CONCLUSIONS

We have conducted N-body simulations of ONC-like clus-
ters containing 1500 stars (750 primordial binary systems)
in which we have kept the initial binary population constant,
but varied the positions and velocities of the systems within
ten realisations of the same cluster. We have studied two dif-
ferent cluster morpholgies; a fractal cluster undergoing cool
collapse (e.g. Allison et al. 2010) and a Plummer sphere in
virial equilibrium (e.g. Parker et al. 2009). We have com-
pared the intermediate separation distribution (62 – 620 au)
in these clusters to examine the importance of stochasticity
in intermediate binary destruction.

We conclude the following:
(i) The numbers of intermediate systems destroyed in clus-
ters can vary by a factor of two.
(ii) The separation distributions of intermediate systems in
substuctured clusters can be altered such that they are sta-
tistically significantly different after just 1 Myr.
(iii) The mass ratio distributions change less than the sepa-
ration distributions, especially in low-density environments.

The results imply that the intermediate binary separa-
tion distribution, which is the range most often observed in
young clusters, should be treated with caution when used to
interpret the dynamical history of a star cluster. Even with a
knowledge of the initial conditions and probable dynamical
history of a cluster, stochasticity in intermediate binary de-
struction can very significantly alter the initial population.
Whilst most clusters evolve in a ‘typical’ way, statistically
significant outliers are not uncommon and we have no way
of knowing if a single observed cluster is unusual because
of differences in the initial conditions, or through a slightly
unusual dynamical evolution.
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