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Abstract. In this paper, we reformulate the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein Poisson bracket.
In order to get the numerical solutions preserving the Poisson bracket, we split the Hamiltonian of the Vlasov-Maxwell equations
into five parts. We construct the numerical methods for the time direction via composing the exact solutions of subsystems. By
combining an appropriate spatial discretization, we can prove that the resulting numerical discretization preserves the discrete
Poisson bracket. We present numerical simulations for the problems of Landau damping and two-stream stability.
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Vlasov-Maxwell equations

The Vlasov-Maxwell(VM) system of equations describes the collective motion of particles interacting with self-
consistent electromagnetic fields. The system of dimensionless Vlasov-Maxwell equations regardless of the relativistic
effects reads

∂ f

∂t
+ v ·

∂ f

∂x
+ (E + v × B) ·

∂ f

∂v
= 0, (1)

∇ × B =

∫

f vdv +
∂E

∂t
, (2)

∇ × E = −
∂B

∂t
, (3)

∇ · E =

∫

f dv − 1, ∇ · B = 0, (4)

where f (x, v, t) is the electron distribution function, x ∈ U ⊂ R
3 denotes the position, v ∈ R3 denotes the velocity, and

(E,B) ∈ R3 ×R3 are the electromagnetic fields. DenoteM = {( f ,E,B)| ∇ · B = 0}. The Vlasov-Maxwell system is an
infinite dimensional Hamiltonian system defined onM . In particular, VM equations (1-3) can be written in the form,

∂Z

∂t
= {Z,H}, (5)

whereZ ∈ M. The bracket {·, ·}is the Morrison-Marsden-Weinstein (MMW) Poisson bracket presented in [1, 2],

{F ,G} =
∫

f
[

δF
δ f
,
δG

δ f

]

xv
dxdv +

∫ (

δF
δE
·
∂ f

∂v

δG

δ f
−
δG

δE
·
∂ f

∂v
δF
δ f

)

dxdv (6)

+

∫ (

δF
δE
·
(

▽ ×
δG

δB

)

−
δG

δE
·
(

▽ × δF
δB

))

dx (7)

+

∫

f B ·
(

∂
∂v
δF
δ f
× ∂
∂v

δG

δ f

)

dxdv, (8)
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where F and G are any two functionals defined onM. Here [·, ·]xv denotes the canonical Poisson bracket. The Hamil-
tonian functionalH is

H( f ,E,B) =
1

2

∫

v2 f dxdv +
1

2

∫

(

E2
+ B2
)

dx. (9)

It is clear that the energy of the systemH remains constant along the solution of the system.

For the purpose of constructing numerical methods which can preserve the Poisson bracket, we split the Hamil-
tonian (9) as five parts

H = HE +HB +H1 f +H2 f +H3 f (10)

with HE =
1
2

∫

E2dx,HB =
1
2

∫

B2dx, andHi f =
1
2

∫

v2
i

f dxdv for i = 1, 2, 3. Substituting (10) into (5) provides five

solvable subsystems which are

Ż = {Z,HE} , Ż = {Z,HB} , Ż =
{

Z,H1 f

}

, Ż =
{

Z,H2 f

}

, Ż =
{

Z,H3 f

}

. (11)

For example, the i-th subsystem corresponding to HamiltonianHi f is,

∂ f

∂t
+ vi

∂ f

∂xi

+

3
∑

j=1

B̂ jivi

∂ f

∂v j

= 0, (12)

∂Ei

∂t
= −

∫

vi f dv, (13)

∂E j

∂t
= 0, j , i, (14)

∂B

∂t
= 0. (15)

Here B̂i j is the element of the matrix B̂ =

[

0 B3 −B2
−B3 0 B1
B2 −B1 0

]

, where B = (B1, B2, B3). By the method of character-

istics, with the initial condition ( f0,E0,B0) ∈ M, the exact solution to the i-th subsystem (12–15) is

f (x, v, t) = f0

















x − tviei, v −

3
∑

l=1

elF
(i)

l

















, (16)

Ei(x, t) = Ei(x, 0) −

∫ t

0

∫

vi f (x, v, τ)dvdτ, E j(x, t) = E0 j(x), j , i, (17)

B(x, t) = B0(x), (18)

where F
(i)

l
=

∫ xi

xi−tvi
B̂li(x, 0)dxi, ei is the unit vector in the i-th Cartesian direction.

Temporal discretizations can be constructed by composing the solutions of the subsystems, first order methods
can be constructed by the Lie splitting method , and second order methods can be constructed by the Strang splitting
method. To get high-order methods, the composition approaches developed in [4] can be employed.

Discretization of the 1 + 1
2

dimensional Vlasov-Maxwell system.

We consider a 1 + 1
2

dimensional VM equations introduced in [5]. Assume that the distribution f depends only on
(x1, v1, v2), B and E depend only on x1, B1 = B2 = E3 = 0, and f , B and E are periodic in the x1-direction. Then the
Vlasov-Maxwell equations (1)–(4),

∂ f

∂t
+ v1

∂ f

∂x1

+ (E1 + v2B3)
∂ f

∂v1

+ (E2 − v1B3)
∂ f

∂v2

= 0, (19)

∂E1

∂t
= −

∫

v1 f dv1 dv2,
∂E2

∂t
= −
∂B3

∂x1

−

∫

v2 f dv1 dv2, (20)

∂B3

∂t
= −
∂E2

∂x1

. (21)
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We apply the Hamiltonian splitting method above to discretize this system in time. In this reduced case, the exact
solution of subsystem H1 f is:

f (x1, v1, v2; t) = f
(

x1 − tv1, v1, v2 +

∫ x1

x1−tv1
B3(ξ) dξ; 0

)

, (22)

E1(x1; t) = E1(x1; 0) −
!

v1

∫ x1

x1−tv1
f (ξ, v1, v2; 0) dξ dv1 dv2, (23)

E2(t) = E2(0), B3(t) = B3(0). (24)

Next, we discretize (22,23) in space. As the solution is periodic w.r.t x1, we use the Fourier spectral method in the
x1 direction. For the v1 and v2 directions, we use the finite volume method. It can be investigated from (22) that we
need evaluate the value of f off the grid point. Here, we use the Parabolic Spline Method (PSM) introduced in [6] to
reconstruct a continuous function. For (23), we use Fourier coefficients of f to compute the Fourier coefficients of E1.
We can handle with the other subsystems like this subsystem.

Numerical experiments

Landau damping.
We simulate the problem of Landau damping. We use the above developed numerical discretizations to solve the

Vlasov-Poisson equations. For this case, we do not concern the magnetic effect. For the computation, the initial values
are taken as

f (x1, v1, v2) =
1

2π
e−

1
2
|v|2 (1 + α cos(kx1)) , (25)

E1(x1) =
α

k
sin (x1) , E2(x1) = 0, B3(x1) = 0, (26)

where k=0.4, x1 ∈ [0, 2π/k], v ∈ R2. Figure.1,2 display the evolution of the numerical electric and total energy. The
Figure.1 displays the result of linear Landau damping. We can see an exponential decrease of electric energy, which
recovers the analytic decay rate. The Figure.2 displays the results of nonlinear Landau damping. We can see from the
left figure a short time exponential decrease of electric energy and oscillation in later times. In the right figure, the

error of total energy is bounded by 10−2.
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FIGURE 1. Time evolution of the electric energy for the linear Landau damping test using the Strang splitting with 32 × 64 × 64

grid points and a time step of ∆t = 0.1, α = 0.01.

Two-stream instability.
We simulate a very common instability in plasma physics, the two-stream instability. For this test, we take the

initial particle density defined on [0, 2π] × [0.4, 0.4]× [0.4, 0.4] as

f (x1, v1, v2) =
1

2πk
e−

v2
2
k (e−

(v1−0.2)2

k + e−
(v1+0.2)2

k ),
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FIGURE 2. Time evolution of the electric energy and energy error for the nonlinear Landau damping test using the Strang splitting

with 32 × 64 × 64 grid points and a time step of ∆t = 0.1, α = 0.5.

where k = 0.002. We take the initial electromagnetic fields as

B3(x1) = 0.001 sin (x1) , E1(x1) = 0, E2(x1) = 0.

The numerical result is shown in Fig.3. In theory, there is a exponential increase of the electric energy. And in the left
figure, the exponential increase and a saturation in the electric field can be investigated. The right figure indicates the
evolution behavior of electric energy has effect on the total energy error.
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FIGURE 3. Time evolution of the electric energy and energy error for the two-stream instability. The Strang splitting scheme with

32 × 64 × 64 grid points and time step ∆t = 0.1 are used.
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