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ABSTRACT

Amazon forests are fire-sensitive ecosystems and consequently, fetsfafést structure and composition. For
instance, the legacy of past fire regimes may persist through seciesspnd traits that are found due to past
fires. In this study, we tested for relationships between functionaltinaitare classically presented as the main
components of plant ecological strategies and environmental filters related to clich&istarical fires among
permanent mature forest plots across the range of local and regionahereital gradients that occur in
Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a mtdiaitn of carbon that can
persist for millennia in soils, as a novel indicator of historical fire ingotolwvth forestsFive out of the nine
functional traits evaluated across all 378 species were correlated with someraevital variableAlthough

there is more PyC in Amazonian soils than previously reportedeticeqiage soil PyC indicated no detectable
legacy effect of past fires on contemporary functional composition. Moreespeith dry diaspores were found
in drier and hotter environments. We also found higher wood dengieis from higher temperature sites. If
Amazon forest past burnings were local and without distinguishable attributesd#spread fire regime, then
impacts on biodiversity would have been small and heterogenedemaiively, sufficient time may have

passed since the last fire to allow for species replacement. Regardless, as we fatkstt tongl impact of past
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fire on present forest functional composition, if our plots are representativé tggests that mature Amazon
forests lack a compositional legacy of past fire.

Key-words: fruit type; wood density; fire; soil charcoal; climatological water deficit; éeatpre, elevation.
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INTRODUCTION

Throughout global tropical forests, fire is now often used to facilitate tscal@-clearing of the rain
forest frontier. Although there is little understanding about the scalaegukehcy of past fires, historical fires
may have been more localized than today, with anthropogenic $ieglsfor opening and maintaining gaps for
agriculture, hunting and gathering, and perhaps influencing plaogéssion through management of secondary
vegetation (Barton et al. 2012, McMichael et al. 2012, Watling et al. 201 &yiimdatural fires coinciding with
the driest periods of Amazonian history (Bush et al. 2008). Chamoaids suggest fire return intervals on the
order of 200-1,000 yrs during the Holocene and occurring@ntly as 250-390 yrs before present in some old-
growth moist Amazonian forest (Sanford et al. 1985, Turcq et al. 198830 et al. 2013). Climate
reconstructions indicate Amazon-wide drying occurred at frequent muttirgeavals over the last 10,000 years
(Moy et al. 2002), likely modifying fire-patterns. The presence anaitapce of fires in natural forests soils of
the Amazon Basin may be indicated through soil pyrogenic carbon (By@d)ced by the incomplete
combustion of organic matter, and which can persist in soils for ni#l€Bird et al. 2015). Koele et al. (in
review) estimated PyC for Amazonian forests to be 1.10 PY ¢(heer 0-30 cm soil depth, about ten times larger
than previously estimated by Bird et al. (2015). Fires occurring oggrast few decades in the Amazon have
resulted in substantial effects on forest dynamics and structure (Barldneeesl2008). However, there is little
information about whether fire caused by climate variation and/or past hutapation in Amazon has had
substantial legacy effects on present-day forest structure, composititmatidning.

Hardesty et al. (2005) classified the Amazon region as a fire-sensitive tecosyhich is damaged by
fire that disrupts ecological processes, kills many individuals, or evematas species that have not evolved
under this selective force. Undisturbed moist forest rarely burns (Uhl et &l); T@@vever, forests that have
burned once are more likely to burn again (Cochrane et al. 1999 Wwitlbspread historical impact of humans
and fire on Amazonian forests is widely debated (McMichael et al. 2012) aathrentirely unaccounted in
many influential studies (McMichael et @017) Thus, even if fires were not a frequent environmental filter in
these forests, they might have assembled species with a restricted ranggionél traits related to fire in
current forests, as has occurred in savannas (Dantas et al. 2013), makingstisariore resilient to recent
burning or to recent dry periods than previously thought. As a rdghisenvironmental filter (fire), the
structure, species composition, and functional traits (any attribute that has potegtigfigasit influence on

plant establishment, survival, and fitness: Reich et al. 2003) of forests Afrtazon Basin may have changed

4



109 dramatically with time. Thus, studying these traits is fundamental, ag&megrovide a mechanistic basis for
110 understanding how ecosystems function (Cadotte et al. 2015) aedicglly in this study, whether these traits
111 can potentially reveal how the Amazon Basin forest community relates to firdiarate

112 Determining the causative forces shaping contemporary forest compdatesmmethodological

113  challenges. Determining the date of the last fire in old-growth forestsghrAMS Radiocarbon methods can be
114  cost prohibitive. And, fire can co-vary with climate, which can affeesostructure, composition, and

115  dynamics (Esquivel-Muelbert et al. 2016, Feldpausch et al. 2011, Marimor2@14). Previous studies

116 evaluating whether fire is an evolutionary pressure shaping plant traitssedjtfeat it may not always be

117 possible to distinguish between traits that are adaptations originating ingespdire or exaptations

118 originating in response to other factors (Bradshaw et al.,20ddley et al. 2011). Thus, we must stress here that
119  we do not intend to separate fire traits from aridity or soil infertility timsté is difficult to unambiguously

120 isolate fire effects from these other influences.

121 Dry-vegetation and fire-prone species, which appear to invest mare-iedistance, have a

122 preponderance of dry and small seed species and seasonal fruiting phecmitggting with rain forests

123 species that have mainly larger, fleshy fruits and aseasonal seed dispersalf\ieficariot 2006). Other

124 authors contrasting savanna and forest vegetation have shown that le@&tgetdeaves in forest species:
125 Hoffmann et al. 2012) and tree height (higher in forest species: Hoffmanr2@03), as well as wood density,
126 are, or could be, fire- or disturbance- related traits (Cianciaruso €14, Pucena et al. 2015). The few studies
127  that have compared species traits across Amazonian sites commonly attrieut@cht in some traits to

128 climatic and soil variations. For example, Malhado et al. (2015) showed Aimazoees with smaller seeds
129 occurring more frequently in transitional or seasonal forests, andageitbrlarger seeds more associated with
130 climatically stable rain forests (low seasonality in temperature and precipit@ioedada et al. (2012) found
131 that basin-wide differences in stand-level turnover rates are mostly inftlubgcmil physical properties with
132  variations in wood production mostly related to soil phosphorus status.

133 Understanding the disturbance history in tropical forests is vitally ir@apbfor interpreting their

134 present-day structure, composition and dynamics. One of the mairsdsfyest change in the Amazon biome
135 may have been fire (Pinter et al. 2011). Our study introduces anpawtant potential predictor to determine
136 plant traits distributions across the Amazon Basin, soil PyC abundance. émstamdiing of soil PyC

137 distribution may provide a large-scale perspective of fire history (WhidadkLarsen 2001). Thus, our
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objective in this study was to assess the relationships between vegetationdraitgsisonmental filters,
accounting for climate and historical fires (PyC) across representative safniplesAmazon rain forest. We
hypothesized that, despite the Amazon biome being a fire-sensitive ecosmtafunctional traits persist in
modern old-growth rain forest vegetation as a legacy of past fire reginesfi&ly, we hypothesized that
functional traits representative of species growing in fire-prone envirdepsech as higher wood density and
shorter trees (Brando et al. 2012), are positively associated with sodlRy@ance and that functional traits
that respond to dry climate such as high numbers of dry fruit-fypeies and seasonal fruiting (Sfair et al. 2016)

are related to drier and hotter climate conditions

MATERIAL AND METHODS
Forest sites

Species richness and individual abundance-data from 34 1-ha permanentdtsesirpss the range of
local and regional environmental gradients that occur in Amazonia were usadanalysis (Online Resource 1
and Figure 1). The forest data, including Terra Firme forests on bgthicteand white-sand substrates, and
seasonally flooded forest are summarized in Appendix 1. Of these 343@l@t® in the ForestPlots.net
database, a web repository for loregm tropical forest inventory plots, where trees >10 cm diameter within an
area are individually identified, measured and tracked through timefk@pnzalez et al. 2009, 2011), and one
is in the Tropical Ecology Assessment and Monitoring (TEAM) database (MPEG YBGCAX1). All sites
examined were old-growth humid forests, excluding Anthropogenic Bauth sites (Terra Preta de indio)
Based on the vegetation and local information, there was no eviderezenf,rmajor, direct human impact or

fire. The most abundant species in each plot (more than five individuals pex@le chosen for analysis.

Plant traits

We selected six plant functional traits that are classically presented as the main cosnpigpiant
ecological strategies (Pausas and Lavorel 2003). Some traits are strategies fandistana regeneration like
fruit size and leaf length (Kraft et al. 2008), some are useful to undeigtamt response to fire such as tree
height and wood density (Brando et al. 2012), and some are linkethtdeclhs seed-type (dry- versus fleshy-

type fruits) and fruiting phenology (duration and timing of eplsenophase) (Correa et al. 2015)
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Seed type asextracted from several studies (mainly Amaral et al. 2009, Muniz 2008, Stefainallo
2009 Yamamoto et al. 2007). If a species could not be found in publishdidssttruit type was drawn from
genus level information; it is well known that reproductive traits show clogter phylogenetic trees (Chazdon
et al. 2003). All fruit morphologies of the genera were checked in bowksyscripts and published floras. We

estimated fruit size and leaf length and we assessed maximum plant hsiggholn botanical registers at Lista

de Espécies da Flora do Brgsil (hItlp://WWW.roradobrasiI.jbrj.govamnl SpeciesLink Network

(http://splink.cria.org.br/). For these previous parameters, we used at leastemtdlants, including rarer
individuals (smaller and bigger ones). If the differences between individeatshigh, we expanded the sample
collection. Wood density was obtained from Forestplots.net database or, whpeadies svas absent, from the
Wood Density database (Ketterings et al. 2001; http://www.worldagroforestry.qngffovood -density-
database).

Fruiting phenology wsassigned based on the months that the species were collected with fruits on
botanical registers at Lista de Espécies da Flora do Brasil (for speciesthayver-collected we selected the
months with highest numbers of exsiccatae). We could not relate collectigpacific plot locations, thus we
treated plant registers of different siesoriginating from the same location. Although the timing ofseal
events, such as fruiting, is highly sensitive to climate (Chuid®@€ince collections cover a wide range of
dates, the data should represent general phenology patterns for most specidenolagp traits were derived
from the survey: duration given by i) number of days - nemd$ months that the species was recorded as
having fruit multiplied by 30 and ii) fruiting timing occurring in ttley and/or wet periods - dry period, if a
reproductive phenophase was registered between July and November iidvtagsan the dry period
(seasonality defined according to Huete et al. 2006 in a multiple scale studiirig an extensive 2,000 km
climate transect through eastern and central Amazonia), wet period, if registesegn December and June, or
both periods, if the phenophase was registered in mixed periods. Bhed8tl plots include a wide geographic
range with different seasonality calendars (Girardin et al. 2016), from Gty &waador to the south border of
Amazonia in Mato Grosso state. These different calendars have differentddsmgfperiods, and it is
methodologically challenging to determine phenology including suclsgéeific variations. For this reason, we
chose only one dry and wet period for the whole Amazon regiomedieficcording to the previously mentioned

study. Flowering phenology was not evaluated sincagfaund for less than half of all species.
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Environmental variables

We considered three types of variables: climatic, topographic and fire-histatgd. We used three
climate predictors from WorldClim 1.4 dataset (Hijmans et al. 2005; http://weshdalim.org/bioclim.htm):
bio01 (annual mean temperature), bio05 (maximum temperature watheest month) and biol12 (annual
precipitation) and a complementary measure of drought severity, thenomaxdlimatological water deficit
(MCWD, Aragéo et al. 2007). These are some of the parameters consideeectitecal to the physiological

functioning and survival of plants (Woodward 1987). For altitweeeused Ambdata dataset (Amaral et al. 2013;

http://www.dpi.inpe.br/Ambdafp We used Pyrogenic Carbon (PyC) abundance as a proxy dirpastents,

because it is estimated that up to 15% of fire affected biomass is convertpgragenic organic carbon (Santin
et al. 2015). We used PyC analysis rather than more time-wegpisysical assessments of charcoal abundance
based on counting or mass estimates of charcoal. AMS radiocarbon datipgrisiee and usually only possible
for a limited number of sitesvg have charcoal dates for three study ¥itegC abundance, as percentage PyC
of the soil sample, was quantified as stable polycyclic aromatic carbon (SPAQ)eahaly hydrogen pyrolysis
(HyPy). The HyPy technique has been described elsewhere (Meredith et ala2®12¢ same experimental

procedure was used in this study. PyC was quantified in thec@x3®il interval (Koele et al. in review).

Data analyses

The relationships between species traits and environmental variables were tedt€ldoniRined
with fourth corner analysis (Kleyer et al. 2012, Dray et al. 200l4is analysis aims to investigate the
relationships between two tables, R (environmental characteristics) and Q (spebigestin our case), using
a third table, L (species abundance matrix), to establish the linkage and thegimexrdination. R represents a
matrix whose rows are the sites and columns the environmental charactienistish plot; Q represents a
matrix whose rows are tree species abundance and columns are the attnitagek fpecies; L represents
matrix whose rows are plots and whose columns are tree species. Baxhvamprimarily analyzed in
isolation by means of a Principal Component Analysis (PCA) for emviental data and traits, and according to
a Correspondence Analysis (CA) for species abundance matrices. The asfatiog these matrices was
established by means of a Colnertia analysis to maximize their covariance.

We followed the new approach recommended by Dray et al. (2014)liirepihe fourth-corner tests

to the output of the RLQ analysis, which allows for quantification andtitatitesting of the relationships
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between environmental variables and species traits by means of two null idéeleised a combination of
model 2—- which tests for the links between the matrices L and Q, with the ypothesis assuming that the
distribution of species with fixed (i.e. species-independent) traits is natmefa by environmental conditions,
jointly with the model 4- which tests for the links between L and R, with the null hymisheonsidering that

the species composition with fixed environmental conditions is not influence lspecies traits. According to
the aforementioned authors, this new approach combining these twotagon models has correct type | error
rates, but at the same time, as ter Braak et al (2016) stated it does not cpasigletemporal and phylogenetic
autocorrelation. Significance of the relationship between species traits and emvitalwvariables was assessed
based on 999 permutations. All analyses were performed using thpaadege for R v.3.2.1 (R-Development

Core Team 2013).

RESULTS

Our dataset represented 9789 individuals distributed across 378 species anddbgr@4th forest
plots. Of this total, 173 species had few individuals (less thandidnals in only one or two plots). The ten
most common species (according to frequency in plots and abundaree)atragastris altissima
(Burseraceae), Iriartea deltoidea (Arecaceae), Euterpe precatoria (ArecBsea€plmedia laevis (Moraceae),
Eschweilera coriacea (Lecythidaceae), Amaioua guianensis (Rubiaceaié)¢cl@um cognatum
(Celastraceae), Socratea exorrhiza (Arecaceae), Rinorea guianensis (Viaaddd&onia pyrifolia
(Melastomataceae).

Plant traits varied according to the sites (Table 1): fleshy fruit species were dominadtisites with
two exceptions, ELD-01 and FMH-01, which were the more eastésly @/fenezuela and Guyana) (Figure 1)
Fruit lenght ranged from 2.1 to 8.8 (mean 3.9) cm acrossitit® tree height from 18 to 28 (23) m, leaf length
from 10 to 22 (13) cm and wood density from 0.50 to Q08@5) g.cn®. Fruiting phenology by site was
staggered through the year.

The first axis of the RLQ analysis accounted for 80.3% of the totalestia (i.e. the link between the
traits and climatic variables) and the second axis for 14.7% (PyC). This repres&ftedf the correlation
expressed for the first axis in the CA of species composition (Tabl¢a®id), and 48.0% and 27.7% of the total

variance expressed for the first axis in the PCA of the environmeartables (Table 2: R table) and functional
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traits (Table 2: Q table), respectively, indicating variability in species trait values #oecmsvironmental
gradient.

Among those traits, only the variability in diaspore type and wood glemai explained by the
variability in the environmental gradient (r=0.89, p=0.001 and r8;(60.001 respectively; Figure 2). And
among these environmental parameters, average temperature (rp=0.881), water deficit (MCWD) (r=-
0.89, p=0.001), annual precipitation (r=-076, p=0.001) and alt{tade87, p=0.001) explained the variability in
the studied functional traits. There was also a significant association bétyw@dn=-0.71, p=0.001) and
maximum temperature of the warmest month (r=0.88, p=0.001)}kdtkecond RLQ axis, but with traits
unrelated to this axis, which may indicate a lack of detectable effect of past frtestemporary composition
and functioning of Amazon Basin forests (Figure 2).

We also found a significant relationship between species composition @rmherental variables
(model 2, p=0.007) and between species composition and functionalrtradsl (4, p=0.009). These results
indicate that species composition is dependent on the environmental conditions (aliitete, and fire-
history) of the sites and influenced by species’ functional attributes.

Species with denser wood were associated with hotter (r=0.28, p=0.002)anetlevation
environments (r=-0.20, p=0.037); species with dry diaspores were assadidielrier (r=0.23, p=0.007), hotter
(r=0.18, p=0.014) and lower elevation environments (r=-0,19,0d30the opposite was found for the
relationships between fleshy fruit species and MCWD (r=-0.23, p=0.@08perature (r=-0.18, p=0.017) and
altitude (r=0.19, p=0.01). There were less species fruiting in the dodges-0.16, p=0.042) and the fruiting
duration was shorter (r=-0.17, p=0.027) in sites where annual precipie®higher (Figure 3). None of the
studied traits were significantly associated with PyC (Figure 3); howdneeanialyses showed a tendency for

less species fruiting in the dry period in plots with higher perces@yByC (r=-0.12, p=0.091; Figure 4).

DISCUSSION

Our results show that functional traits and environmental variables jointly pradition in tree
species composition in the Amazon Basin. The findings of this studysest some of the main hyper-dominant
species that occur throughout the Amazon Basin (ter Steege et al. 2013) amhtlspecies in Cerrado-
Amazon forest transition sites (Ackerly et al. 1989, Marimon et al. 200@&sMeal. 2011, Morandi et al. 2016).
The fourth-corner permutation models assessing thedraiironment-species link suggests that the distribution

10
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of species with fixed traits is influenced by environmental charactersiitshat the species composition of
sites with given environmental characteristics is influenced by speciesKafset al. (2008), using a
functional ecology approach, also found evidence for niche-based meaes®n Amazonian forest. Other
recent studies have shown that Amazonian tree species distribution respogly strenvironmental variation
(Esquivel-Muelbert et al. 2016) and the strength of response is sigtlificarrelated to functional traits
(Rowland et al. 2014, Silva et al. 2014).

Differences in community structure and function were primarily driweteimperature and water
availability (and altitude, variable usually correlated to the other two climateptees: Benavides et al. 2016).
Therefore, functional traits representative of fire-prone environment specleastigher wood density and
shorter trees were not associated with soil PyC abund@heseresults of no detectable legacy of fire effect on
plant traits may ba consequence of several factors: i) historical fires may have been loadlty smporally
restricted and not associated with a widespread and/or frequent fire regime; ¢hénmgdacts on biodiversity
would have been small and/or heterogeneous,; ii) alternatively, sufficienttay have passed since the last fire
(hundreds of years) to allow the forest to recover; iii) soil pyrogembmoastorage may not be a suitable
predictor of past-fires. Despite these facttite significant relation between PyC and the second RLQ axis and
marginal significance with one of the studied traits, suggests thataspeets of past fire events need to be
investigated. Large-scale carbon radiocarbon dating, although costifwehibould provide key information
about time since last &t

It has been shown that fire strongly mediated the effect of other envirtaimariables on some traits
in a longleaf pine savanna in California, indicating that strong environmeathégts cannot be considered
independently when assessing their effects on functional traits (Arakf615). However, savannas are fire
prone ecosystems, which evolved as a response of fire regimes, i.atyintemation and frequency of burnings
(Bowman et al. 2009). In tropical rain forests such as our stodygh, the data from charcoal radiocarbon
dating imply a fire return of hundreds or thousands of yearddf@het al. 1985, Turcq et al. 1998), with distinct
spatial and temporal patterns (Bush eR@D7, Bush et al2008) Some preliminary charcoal dating results of
three studied plots may confirm return times and spatial pattamreastern Amazonia plot had fire estimaties
1134years before preserBlP) (charcoal in 10-20 cm) and 1620BP (30-50 cm)anorthern Amazonia plot
989 yr BP (32 cm); andsouth edge plot a range of 96 yr BP (10-20 cm), 8@Py{20-30 cm) and.372yr BP

(150-200 cm). Other recent AMS results from the same region ahliarger return interval in fire records for
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some sites~6,000 years (from 6876 to 365 yr BBoulart et al. 2017 Previous studies of soil charcoal have
also shown a spatially localized and heterogeneous signature of fire on\foeesis (McMichael et al. 2012,
McMichael et al. 2017).

Thus, rather than a pristine tropical forest, some areas in the AmazorhBasibeen interpreted as
constructed landscapes, dramatically altered by past indigenous groupsdiE&26K8, Heckenberger et al.
2007, Roosevelt 2003) indicating propensity for regional forests to burn, esgetiaihg periods of drought
(Bush et al. 2008). Anthropogenic fire has been a factor in shapirtgcplamunities through human prehistory,
e.g., generally a woody non-fire-prone vegetation type tends tdtiwarte a more herbaceous, flammable and
shade-intolerant vegetation type with frequent fire (Pinter et al. 2011 )iolaorest composition (Barlow and
Peres 2008) and structure (Bennett et al. pahd species abundance (Piperno and Becker 1996, depending on
the regional pool of species: Mittelbach & Schemske 2015). Brando et &) @@bented the first evidence of
substantial fire-induced tree mortality due to altered fire regimes and gvwaddsnvasion by flammable
grasses in a southern Amazonian forest subjected to experimental repeaBbsithes fire-induced mortality
other demographic patterns also play important roles after a disturbana@ssechuitment and growth of
individuals. For these reasons, forest recovery is very slow (Almeida étlél. Barlow and Peres 2008, Flores
etal. 2012, Uhl et al. 1998). Howeyegcovery may be fast enough to erase the signal of fire historgon th
functional composition of this vegetation, considering the limited reported eha&ts dated fire
spatiotemporal patterns with long times since last fire in old-growéisferin fact, it may take only a decade for
trait changes to be apparethe individual level as a response to some stessgan der Sande et al. (2016)
found for wood density and specific leaf area in Neotropical foresiecub increased drought stress.

There is uncertainty about how PyC forms and persists in 8aits €t al. 2015)PyC generation is
governed by complex factoesinvestigated by Brewer et al. (2013): fuel properties (density, compagsition
arrangement and moisture) and burning conditions (weather, flame aedyfiame time). As a result, many
low-intensity fires may not produce a similar amount of PyC irstfile as few intense fires. Improved
understanding of how different fire types affect PyC storage and thevibngePyC in moist tropical forests
will assist in the development of soil PyC as a proxy providinginédion about past fires.

Lowland Amazon tropical rain forests possess an annual climate thaniswitdr little temperature
variation; rainfall, however, varies spatially and is highly seasonal ie segionsthe south and southeast are

drier and more seasonal, while the west and northwest are wetter and ag&asohedek 2001). During the
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last century the Amazon warmed BRC] but rainfall pattern changes are more difficult to identify (IPCC 2013).
Climate change is viewed as a threat to biodiversity (Bellard et al. 2012). Despéiteesilience to moderate
annual and repeat drougliDavidson et al. 2012, Feldpausch et al. 2ppkant traits related to drought-induced
mortality, such as lower wood density, larger tree size, fast growonggrs and evergreens (Feldpausch et al.
2016,0’Brien et al. 2017, Phillips et al. 2009) may be not be advantageous in drier sites highlighting the
needto identify traits that account for differential tree vulnerability to environmentadsstre

We found more species with dry diaspores in drier and hotter envirtégsyra@d which may be an
advantageous trait in disturbed forestereover, the high number of wind-dispersed species in areas closer to
Venezuela could be an imprint of ancient forest-savanna transitiodsy (farests) Other reviews have shown
the importance of wind-adapted (Howe and Smallwood 1982) gniduit species in dry environments (van der
Pijl 1972). Thus, in a future scenario of drier and hotter Amazeviih fires possibly becoming more frequent
(Alencar et al. 2015), these forests are likely to be replacedrmdispersed plants easily spread independent
of animal vectorsAlso, the light and flat primarily wind-dispersed seeds may aldtaheported long distances
by water-mediated dispersal in lower altitude and flood-prone sites (Sauwir€baarik 2013), which our
results confirmed by the high number of dry seed species in loweattieles: We found that with higher
precipitation, fewer tree species produced fruits in the dry period andditéion of fruiting in any period was
shorter. In areas with higher precipitation, more fleshy fruit speciesxpeeted, which will develop and
disperse their fruits during the wet period (Correa et al. 28d%/e and Smallwood 1982). Even in a moist
environment like the studied region, the amount of precipitation cdiustg to be less spread throughout the
year and more synchronous with the wet period.

Wood density was positively associated with average temperature gatd/ely with altitude,
corroborating the findings of Quesada et al. (2012). Thus, our regpipert the theory that higher temperatures
and lower altitudes induce a stress-avoidance strategy by reducing hydréciboeffand vulnerability to
xylem cavitation by increasing wood density (Swenson and Eng007). Also, higher wood density species
would be less susceptible to fire-induced mortality (Brando et al. 20h@Xter and drier Amazon forests
(Feldpausch et al. 2016, Brien et al. 2017, Phillips et al. 2009).

Five out of the seven functional traits evaluated across all 378 species were cowifas®me
environmental variable, indicating that the selected traits and the independent paraeretadequate in that

they cover the range of traits commonly deemed essential to woody plaed)gtifPausas and Lavorel 2003).
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Despite this, fruit size, maximum height, average leaf size and fruiting dhenget period did not relate to any
parameter. Soll fertility (Clarke et al. 201Bantas et al. 2013) could have been an important environmental
factor predicting variation of the studied traits. In fact, Koele et al. (in r¢\f@mynd positive associations
between PyC and soil nitrogen and phosphorous for the studiscapd we also might expect functional traits
to be influenced by edaphic factors as shown by Quesada et al. (2012)ledhal gt al. (2016) in the Amazon
Basin. Additionally, including other fire-related traits such as bark ieisg, leaf toughness and height to
diameter ratio of plant species might have relevance to future studies of Amasiarfddest dynamics
(Cianciaruso et al. 2012, Lucena et al. 2015).

In general, the Amazon forests examined in this study had highgortions of zoochory (dispersal of
seeds by animals) than other dispersal types and large-sized frfispgw the importance of animal-
mediated seed dispersal in the tropics (Correa et al, Piige and Smallwood 1982). It has been shown that
tree height and wood density vary significantly across Amazonia (Feddpatial. 201,INogueira et al. 2008),
differences also reflected in the most abundant species of our sheldyedults also indicated that Amazon
forests are predominantly populated by tree species with leaf sizesmeslphyll class (Malhado et al. 2009).
Lastly, fruiting was in different periods throughout the year, reflgdtie high variation in the time of fruit
production and maturation.

The long-term ecological consequences of fire in Amazon forests are noFaleasare rapidly
becoming a common occurrence in vast areas of both disturbeshdistlirbed Amazonian forests and
pyrogenic carbon analysis indicates fire historically occurred in all ots, pfeluding even the wettest plots of
northwestern Amazonia, but the time-scale of these burnings sedm$onger than that the needed for forest
functional composition recoverin this study, we observed that functional traits and environmental leariab
jointly predicted variations in tree species composition in Amazon Basin foréstalso showed the lack of a
detectable effect of PyC on specific traits, but the existence of a secondmiptéms with the general traits
distribution (axis 2) indicates that the consideration of climatic variables alonaahbg sufficient to explain
species distributions and the maintenance of diversity and functionfgazonian forests. The future
trajectory of Amazonian forests that experience drought and fire will derepdrt, upon tree species
composition and drought- and fire-tolerance traits, both of whicme#t to be better disentangled and

understood.
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Table 1. Vegetation trait descriptions3# forest plots in Amazonia. (Abbreviations: unk, unknown; Jan,

January.... Dec, December; d: dry period; w: wet period).

Plot

Species/
individuals

Leaf
length
(cm)

Maximum
tree height
(m)

Wood
density
(9-.cm-

3)

Fruit
type

Fruit
size
(cm)

Fruiting timing

AGP-01

AGP-02

ALF-02

ALP-30

BDF-03

BDF-09

BNT-02

BNT-04

CAX-01

CAX-06

Cuz-01

DOI-01

DOI-02

ELD-01

FLO-01

FMH-01

HCC-21

IWO-22

JAS02

JEN-11

JRI01

15/128

11/100

22/430

20/356

22/198

24/196

23/253

22/274

20/268

13/129

25/319

18/207

8/73

6/82

27/500

13/394

20/489

12/328

22/258

24/229

32/327

15

17

13

12

12

11

12

13

10

11

13

16

17

11

14

10

14

10

19

12

14

24

24

24

20

27

26

25

28

23

27

18

25

24

22

20

28

20

22

24

26

25

0.60

0.56

0.61

0.62

0.68

0.70

0.72

0.72

0.74

0.78

0.53

0.66

0.61

0.75

0.63

0.81

0.57

0.81

0.53

0.65

0.69

4 dry
10
fleshy
1 unk
4 dry
6
fleshy
1 unk
1dry
21
fleshy
7 dry
13
fleshy
9dry
13
fleshy
9dry
15
fleshy
8 dry
15
fleshy
8 dry
14
fleshy
7 dry
13
fleshy
6 dry
7
fleshy
2dry
23
fleshy
6 dry
12
fleshy
3dry
5
fleshy
5dry
1

fleshy
4 dry
23
fleshy
6 dry
6
fleshy
5dry
15
fleshy
5dry
7
fleshy
5dry
17
fleshy
10 dry
16
fleshy
7 dry
25

3.2

3.4

3.6

4.2

3.2

2.7

4.6

3.5

3.3

3.9

4.9

3.2

8.8

51

3.1

4.2

3.6

55

35

4.1

Oct,Feb d,w

Feb w

Octd

Dec w

Nov d

Nov d

Jan-Feb w

Nov d

Oct-Dec d,w

Nov d

Feb w

Sep-Oct d,w

Octd

Jan,Mar w

Octd

Octd

Mar w

Dec w

Octd

Jan w

Jan w
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LFB-01

LFB-02

NOU-06

PORO1

POR02

RSTO01

SCRO5

SUC02

TAM-05

TAN-04

TEC-O1*

VCR-02

YAN-01

20/460

18/435

7/89

25/293

23/270

12/195

30/460

19/164

28/317

21/509

19/214

19/560

19/225

14

15

17

14

12

13

12

15

13

12

11

11

22

21

21

27

22

22

19

25

21

23

19

25

19

26

0.58

0.55

0.64

0.62

0.64

0.50

0.71

0.62

0.60

0.63

0.78

0.66

0.56

fleshy
5dry

fleshy
5dry

fleshy
1dry

fleshy
5dry

fleshy
4 dry

fleshy
1dry

fleshy
7 dry

fleshy
5dry

fleshy
5dry

fleshy
3dry

fleshy
6 dry

fleshy
2dry

fleshy
7 dry

fleshy

2.7

3.2

2.9

2.9

3.1

7.0

5.2

4,2

2.8

2.1

2.9

2.9

4.8

Octd

Octd

Oct,Jan d,w

Octd

Aug-Oct d

Jul-Aug d

Jan w

Octd

Octd

Apr-May w

Nov d

Sepd

Octd

604
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Table 2. Results of RLQ analysis using environmental variables and speciegay&itgenvalues (and % of

606 total co-inertia) for the first two axes. Ordinations of tables R (principal componetysiar PCA), L
607 (correspondence analysi€CA) and Q (PCA). (b) Summary of RLQ analysis: eigenvaluegantentage of
608 total co-inertia accounted for by the first two RLQ axes, covariance and corrétaimbfb variance) with the
609 correspondence analysis of the L matrix and projected variance (anda¥ceamith the R and Q matrices.
Axis 1 (%) AXxis 2 (%)

R table PCA 2.88 (48.02) 1.97 (32.89)

L table CA 0.95 (5.29) 0.93 (5.18)

Q table PCA 2.49 (27.67) 1.84 (20.48)

RLQ axes eigenvalues 0.54 (80.31) 0.098 (14.71)

Covariance 0.73 0.31

Correlation: L 0.30 (30.79) 0.21 (21.33)

Projected Variance: R 2.78 (96.66) 4.74 (97.71)

Projected Variance: Q 2.14 (85.87) 3.32 (76.70)
610
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611 Figure 1. Location of the Amazonian study sites (circles) showing the varatpercentage pyrogenic carbon
612  intotal soil. The green outline shows Amazonia boundary, blue lines aieeteand streams. Circles are
613 proportional to the percentage pyrogenic carbon in soil sarfip&3cm interval) and are semi-transparent to
614  visualize when overlapping.

615 Figure 2. RLQ results between the first two RLQ axes for envirotaheariables (AXR1/AxR2) and traits
616 (AxQ1/AxQ2). Significant (p < 0.05) positive associations are represented bgltgdsignificant negative
617  associations by blue cells. Variables with no significant associations are shgvay.i parbiol=annual mean
618  temperature; parbio5=maximum temperature of the warmest month; paraioiLal precipitation;

619  paralt=elevation; MCWD= maximum climatological water deficit; %PyC=percentage of pyrogehimnciar
620  total soil (0-30 cm depth).

621 Figure 3. Fourth-corner results between environmental variables and traitBc&igiip < 0.05) positive

622 associations are represented by red cells; significant negative associations by bMargatles with no

623 significant associations are shown in gray. parbiol=annual mean temmpgparbio5=maximum temperature of
624  the warmest month; parbiol2=annual precipitation; paralt=elevation; MCWD= maximuatatbigical water
625 deficit; %PyC=percentage of pyrogenic carbon in total soil (0-30 cm depth).

626 Figure 4. Percentage of species fruiting during dry period ploti@dstgercentage pyrogenic carbon in total
627  soil

628
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633
634  Figure 2.
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par.hio

12

par.alt

27



o <&
S 40 - o C o
é‘ <&
%D 35 - % < <><> < <
£ O
5 2 OO
< g 30 - &
en © e < <
23 00 C Joo IR TN
E5% o
7 <
-g 20 -~
2
o 15 - %
N
10 T T T <> T T T 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
% PyC

638
639 Figure 4. Percentage of species fruiting during dry period ploti@dstgercentage pyrogenic carbon in total
640  soil.
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Online Resource 1. Site descriptions of 34 forest plots in the Amazon Basin.

Name Plot Country Latitude Longitude Forest type Year of
Code census
Amacayacu: Agua AGP-01  Colombia -3.72 -70.30 terra firme 2011
Pudre E
Amacayacu: Agua AGP-02  Colombia -3.72 -70.30 terrafirme 2006
Pudre U
Parque Cristalino, ALF-02 Brazil -9.58 -55.92 terra firme 2008
Alta Floresta, MT
Allpahuayo C ALP-30 Peru -3.95 -73.43 white sand 2011
forest
BDFFP, 1101 BDF-03 Brazil -2.42 -59.85 terra firme 2009
Gaviao
BDFFP, 1109 BDF-08 Brazil -2.40 -59.90 terra firme 2009
Gaviao
Bionte 2 BNT-02 Brazil -2.64 -60.15 terra firme 2010
Bionte 4 BNT-04 Brazil -2.63 -60.15 terra firme 2010
Caxiuana 1 CAX-01 Brazil -1.74 -51.46 terra firme 2009
Caxiuana 6 CAX-06 Brazil -1.72 -51.46 terra firme 2009
Cuzco Amazonico, CUZ-01 Peru -12.54 -69.06 terra firme, 2008
CUZAM1E floodplain
RESEX Chico DOI-01 Brazil -10.57 -68.32 terra firme 2009
Mendes: Seringal
Dois Irmaos 1
RESEX Chico DOI-02 Brazil -10.55 -68.31 terra firme, 2009
Mendes: Seringal bamboo
Dois Irmaos 2
El Dorado, km93, ELD-01 Venezuela 6.11 -61.41 terra firme 2009
plotG1l, ED1
Fazenda Floresta, FLO-01 Brazil -12.81 -51.34 terra firme 2013
Ribeirdo Cascalheira
MT
Forest reserve FMH-01  Guyana 5.17 -58.69 terra firme 2010
Mabura hill 01
Huanchaca Dos, plot HCC21  Bolivia -14.56 -60.75 terra firme 2009
1
Iwokrama 22 IWO-22  Guyana 4.62 -58.72 terra firme 2010
Jatun Sacha 2 JAS02 Ecuador -1.07 -77.62 terra firme 2010
Jenaro Herrera A JEN-11 Peru -4.88 -73.63 terra firme 2011
Terraza Alta
Jari 1 JRIO1 Brazil -1.00 -52.05 terra firme 1996
Los Fierros Bosque | LFB-01 Bolivia -14.58 -60.83 terra firme 2009
Los Fierros Bosque LFB-02 Bolivia -14.58 -60.83 terra firme 2009
1]
Nourages NOU-06  French 4.08 -52.68 2012
Guyana
RESEX Chico PORO1 Brazil -10.82 -68.77 terra firme 2009
Mendes: Seringal
Porongaba 1
RESEX Chico PORO2 Brazil -10.80 -68.77 terra firme 2009
Mendes: Seringal
Porongaba 2
Base da Restauracdc RST01 Brazil -9.04 -72.27 terra firme 2009
- Reserva
Extrativista do Alto
Jurua
San Carlos de Rio SCRO5 Venezuela  1.93 -67.04 terra firme 2012




Negro, MAB site,

Yevaro, plot B

Sucusari B SUC-02
Tambopata plot 3 TAM-05
Fazenda Tanguro, TAN-04
Queréncia, MT

Team Caxiuana 1* TEC-01

Fazenda Vera Cruz, VCR-02
plot 2
Yanamono A YAN-01

Peru
Peru
Brazil

Brazil
Brazil

Peru

-3.25
-12.83
-12.92

-1.71
-14.83

-3.43

-72.90
-62.97
-52.37

-51.46
-52.17

-72.84

terra firme
terra firme
terra firme

terra firme
terra firme

terra firme

2012
2008
2008

2014
2008

2011

643
644

*data from the TEAM network plot; all other data from the RAINFOR nekwor
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