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ABSTRACT 60 

Amazon forests are fire-sensitive ecosystems and consequently, fires affect forest structure and composition. For 61 

instance, the legacy of past fire regimes may persist through some species and traits that are found due to past 62 

fires. In this study, we tested for relationships between functional traits that are classically presented as the main 63 

components of plant ecological strategies and environmental filters related to climate and historical fires among 64 

permanent mature forest plots across the range of local and regional environmental gradients that occur in 65 

Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can 66 

persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine 67 

functional traits evaluated across all 378 species were correlated with some environmental variable. Although 68 

there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable 69 

legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found 70 

in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If 71 

Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then 72 

impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have 73 

passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past 74 
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fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon 75 

forests lack a compositional legacy of past fire. 76 

Key-words: fruit type; wood density; fire; soil charcoal; climatological water deficit; temperature, elevation. 77 

 78 

  79 
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INTRODUCTION 80 

Throughout global tropical forests, fire is now often used to facilitate broad-scale clearing of the rain 81 

forest frontier. Although there is little understanding about the scale and frequency of past fires, historical fires 82 

may have been more localized than today, with anthropogenic fires used for opening and maintaining gaps for 83 

agriculture, hunting and gathering, and perhaps influencing plant succession through management of secondary 84 

vegetation (Barton et al. 2012, McMichael et al. 2012, Watling et al. 2017) and with natural fires coinciding with 85 

the driest periods of Amazonian history (Bush et al. 2008). Charcoal records suggest fire return intervals on the 86 

order of 200-1,000 yrs during the Holocene and occurring as recently as 250-390 yrs before present in some old-87 

growth moist Amazonian forest (Sanford et al. 1985, Turcq et al. 1998, Urrego et al. 2013). Climate 88 

reconstructions indicate Amazon-wide drying occurred at frequent multi-year intervals over the last 10,000 years 89 

(Moy et al. 2002), likely modifying fire-patterns. The presence and importance of fires in natural forests soils of 90 

the Amazon Basin may be indicated through soil pyrogenic carbon (PyC), produced by the incomplete 91 

combustion of organic matter, and which can persist in soils for millennia (Bird et al. 2015). Koele et al. (in 92 

review) estimated PyC for Amazonian forests to be 1.10 Pg (ha-1) over 0-30 cm soil depth, about ten times larger 93 

than previously estimated by Bird et al. (2015). Fires occurring over the past few decades in the Amazon have 94 

resulted in substantial effects on forest dynamics and structure (Barlow and Peres 2008). However, there is little 95 

information about whether fire caused by climate variation and/or past human occupation in Amazon has had 96 

substantial legacy effects on present-day forest structure, composition and functioning. 97 

 Hardesty et al. (2005) classified the Amazon region as a fire-sensitive ecosystem, which is damaged by 98 

fire that disrupts ecological processes, kills many individuals, or even eliminates species that have not evolved 99 

under this selective force. Undisturbed moist forest rarely burns (Uhl et al. 1998); however, forests that have 100 

burned once are more likely to burn again (Cochrane et al. 1999). The widespread historical impact of humans 101 

and fire on Amazonian forests is widely debated (McMichael et al. 2012) and remain entirely unaccounted in 102 

many influential studies (McMichael et al. 2017). Thus, even if fires were not a frequent environmental filter in 103 

these forests, they might have assembled species with a restricted range of functional traits related to fire in 104 

current forests, as has occurred in savannas (Dantas et al. 2013), making the forests more resilient to recent 105 

burning or to recent dry periods than previously thought. As a result of this environmental filter (fire), the 106 

structure, species composition, and functional traits (any attribute that has potentially significant influence on 107 

plant establishment, survival, and fitness: Reich et al. 2003) of forests of the Amazon Basin may have changed 108 
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dramatically with time. Thus, studying these traits is fundamental, as they can provide a mechanistic basis for 109 

understanding how ecosystems function (Cadotte et al. 2015) and, specifically in this study, whether these traits 110 

can potentially reveal how the Amazon Basin forest community relates to fire and climate.  111 

Determining the causative forces shaping contemporary forest composition faces methodological 112 

challenges. Determining the date of the last fire in old-growth forests through AMS Radiocarbon methods can be 113 

cost prohibitive. And, fire can co-vary with climate, which can affect forest structure, composition, and 114 

dynamics (Esquivel-Muelbert et al. 2016, Feldpausch et al. 2011, Marimon et al. 2014).  Previous studies 115 

evaluating whether fire is an evolutionary pressure shaping plant traits suggested that it may not always be 116 

possible to distinguish between traits that are adaptations originating in response to fire or exaptations 117 

originating in response to other factors (Bradshaw et al. 2011, Keeley et al. 2011). Thus, we must stress here that 118 

we do not intend to separate fire traits from aridity or soil infertility traits as it is difficult to unambiguously 119 

isolate fire effects from these other influences. 120 

 Dry-vegetation and fire-prone species, which appear to invest more in fire-resistance, have a 121 

preponderance of dry and small seed species and seasonal fruiting phenology, contrasting with rain forests 122 

species that have mainly larger, fleshy fruits and aseasonal seed dispersal (Vieira and Scariot 2006). Other 123 

authors contrasting savanna and forest vegetation have shown that leaf traits (larger leaves in forest species: 124 

Hoffmann et al. 2012) and tree height (higher in forest species: Hoffmann et al. 2003), as well as wood density, 125 

are, or could be, fire- or disturbance- related traits (Cianciaruso et al. 2012, Lucena et al. 2015). The few studies 126 

that have compared species traits across Amazonian sites commonly attribute differences in some traits to 127 

climatic and soil variations. For example, Malhado et al. (2015) showed Amazonian trees with smaller seeds 128 

occurring more frequently in transitional or seasonal forests, and genera with larger seeds more associated with 129 

climatically stable rain forests (low seasonality in temperature and precipitation). Quesada et al. (2012) found 130 

that basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with 131 

variations in wood production mostly related to soil phosphorus status. 132 

Understanding the disturbance history in tropical forests is vitally important for interpreting their 133 

present-day structure, composition and dynamics. One of the main drivers of past change in the Amazon biome 134 

may have been fire (Pinter et al. 2011). Our study introduces a new important potential predictor to determine 135 

plant traits distributions across the Amazon Basin, soil PyC abundance. An understanding of soil PyC 136 

distribution may provide a large-scale perspective of fire history (Whitlock and Larsen 2001). Thus, our 137 
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objective in this study was to assess the relationships between vegetation traits and environmental filters, 138 

accounting for climate and historical fires (PyC) across representative samples of the Amazon rain forest. We 139 

hypothesized that, despite the Amazon biome being a fire-sensitive ecosystem, some functional traits persist in 140 

modern old-growth rain forest vegetation as a legacy of past fire regimes. Specifically, we hypothesized that 141 

functional traits representative of species growing in fire-prone environments, such as higher wood density and 142 

shorter trees (Brando et al. 2012), are positively associated with soil PyC abundance and that functional traits 143 

that respond to dry climate such as high numbers of dry fruit-type species and seasonal fruiting (Sfair et al. 2016) 144 

are related to drier and hotter climate conditions.  145 

 146 

MATERIAL AND METHODS 147 

Forest sites 148 

 Species richness and individual abundance data from 34 1-ha permanent forest plots across the range of 149 

local and regional environmental gradients that occur in Amazonia were used in our analysis (Online Resource 1 150 

and Figure 1). The forest data, including Terra Firme forests on both clay-rich and white-sand substrates, and 151 

seasonally flooded forest are summarized in Appendix 1. Of these 34 plots, 33 are in the ForestPlots.net 152 

database, a web repository for long-term tropical forest inventory plots, where trees ≥10 cm diameter within an 153 

area are individually identified, measured and tracked through time (Lopez-Gonzalez et al. 2009, 2011), and one 154 

is in the Tropical Ecology Assessment and Monitoring (TEAM) database (MPEG 2014, VEGCAX1). All sites 155 

examined were old-growth humid forests, excluding Anthropogenic Dark Earth sites (Terra Preta de Índio). 156 

Based on the vegetation and local information, there was no evidence of recent, major, direct human impact or 157 

fire. The most abundant species in each plot (more than five individuals per plot) were chosen for analysis.  158 

 159 

Plant traits 160 

 We selected six plant functional traits that are classically presented as the main components of plant 161 

ecological strategies (Pausas and Lavorel 2003). Some traits are strategies for disturbance and regeneration like 162 

fruit size and leaf length (Kraft et al. 2008), some are useful to understand plant response to fire such as tree 163 

height and wood density (Brando et al. 2012), and some are linked to climate as seed-type (dry- versus fleshy-164 

type fruits) and fruiting phenology (duration and timing of each phenophase) (Correa et al. 2015).  165 
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 Seed type was extracted from several studies (mainly Amaral et al. 2009, Muniz 2008, Stefanello et al. 166 

2009, Yamamoto et al. 2007). If a species could not be found in published studies, fruit type was drawn from 167 

genus level information; it is well known that reproductive traits show clustering in phylogenetic trees (Chazdon 168 

et al. 2003). All fruit morphologies of the genera were checked in books, manuscripts and published floras. We 169 

estimated fruit size and leaf length and we assessed maximum plant height based on botanical registers at Lista 170 

de Espécies da Flora do Brasil (http://www.floradobrasil.jbrj.gov.br/) and SpeciesLink Network 171 

(http://splink.cria.org.br/). For these previous parameters, we used at least ten different plants, including rarer 172 

individuals (smaller and bigger ones). If the differences between individuals were high, we expanded the sample 173 

collection. Wood density was obtained from Forestplots.net database or, when the species was absent, from the 174 

Wood Density database (Ketterings et al. 2001; http://www.worldagroforestry.org/output/wood-density-175 

database). 176 

Fruiting phenology was assigned based on the months that the species were collected with fruits on 177 

botanical registers at Lista de Espécies da Flora do Brasil (for species that were over-collected we selected the 178 

months with highest numbers of exsiccatae). We could not relate collections to specific plot locations, thus we 179 

treated plant registers of different sites as originating from the same location. Although the timing of seasonal 180 

events, such as fruiting, is highly sensitive to climate (Chuine 2010) since collections cover a wide range of 181 

dates, the data should represent general phenology patterns for most species. Two phenology traits were derived 182 

from the survey: duration given by i) number of days - number of months that the species was recorded as 183 

having fruit multiplied by 30 and ii) fruiting timing occurring in the dry and/or wet periods - dry period, if a 184 

reproductive phenophase was registered between July and November it was said to be in the dry period 185 

(seasonality defined according to Huete et al. 2006 in a multiple scale study including an extensive 2,000 km 186 

climate transect through eastern and central Amazonia), wet period, if registered between December and June, or 187 

both periods, if the phenophase was registered in mixed periods. The 34 studied plots include a wide geographic 188 

range with different seasonality calendars (Girardin et al. 2016), from Guyana to Ecuador to the south border of 189 

Amazonia in Mato Grosso state. These different calendars have different dry and wet periods, and it is 190 

methodologically challenging to determine phenology including such site-specific variations. For this reason, we 191 

chose only one dry and wet period for the whole Amazon region, defined according to the previously mentioned 192 

study. Flowering phenology was not evaluated since it was found for less than half of all species.  193 

 194 

http://www.floradobrasil.jbrj.gov.br/
http://www.floradobrasil.jbrj.gov.br/
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Environmental variables 195 

 We considered three types of variables: climatic, topographic and fire-history-related. We used three 196 

climate predictors from WorldClim 1.4 dataset (Hijmans et al. 2005; http://www.worldclim.org/bioclim.htm): 197 

bio01 (annual mean temperature), bio05 (maximum temperature of the warmest month) and bio12 (annual 198 

precipitation) and a complementary measure of drought severity, the maximum climatological water deficit 199 

(MCWD, Aragão et al. 2007). These are some of the parameters considered to be critical to the physiological 200 

functioning and survival of plants (Woodward 1987). For altitude, we used Ambdata dataset (Amaral et al. 2013; 201 

http://www.dpi.inpe.br/Ambdata/). We used Pyrogenic Carbon (PyC) abundance as a proxy of past fire events, 202 

because it is estimated that up to 15% of fire affected biomass is converted into pyrogenic organic carbon (Santín 203 

et al. 2015). We used PyC analysis rather than more time-intensive physical assessments of charcoal abundance 204 

based on counting or mass estimates of charcoal. AMS radiocarbon dating is expensive and usually only possible 205 

for a limited number of sites (we have charcoal dates for three study sites). PyC abundance, as percentage PyC 206 

of the soil sample, was quantified as stable polycyclic aromatic carbon (SPAC) analyzed via hydrogen pyrolysis 207 

(HyPy). The HyPy technique has been described elsewhere (Meredith et al. 2012) and the same experimental 208 

procedure was used in this study. PyC was quantified in the 0-30 cm soil interval (Koele et al. in review).  209 

 210 

Data analyses 211 

 The relationships between species traits and environmental variables were tested by RLQ combined 212 

with fourth corner analysis (Kleyer et al. 2012, Dray et al. 2014). This analysis aims to investigate the 213 

relationships between two tables, R (environmental characteristics) and Q (species attributes, in our case), using 214 

a third table, L (species abundance matrix), to establish the linkage and their combined ordination. R represents a 215 

matrix whose rows are the sites and columns the environmental characteristics for each plot; Q represents a 216 

matrix whose rows are tree species abundance and columns are the attributes for each species; L represents a 217 

matrix whose rows are plots and whose columns are tree species. Each matrix was primarily analyzed in 218 

isolation by means of a Principal Component Analysis (PCA) for environmental data and traits, and according to 219 

a Correspondence Analysis (CA) for species abundance matrices. The relation among these matrices was 220 

established by means of a CoInertia analysis to maximize their covariance. 221 

We followed the new approach recommended by Dray et al. (2014) in applying the fourth-corner tests 222 

to the output of the RLQ analysis, which allows for quantification and statistical testing of the relationships 223 

http://http/www.dpi.inpe.br/Ambdata/
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between environmental variables and species traits by means of two null models. We used a combination of 224 

model 2 – which tests for the links between the matrices L and Q, with the null hypothesis assuming that the 225 

distribution of species with fixed (i.e. species-independent) traits is not influenced by environmental conditions, 226 

jointly with the model 4 – which tests for the links between L and R, with the null hypothesis considering that 227 

the species composition with fixed environmental conditions is not influenced by the species traits. According to 228 

the aforementioned authors, this new approach combining these two permutation models has correct type I error 229 

rates, but at the same time, as ter Braak et al (2016) stated it does not consider spatial, temporal and phylogenetic 230 

autocorrelation. Significance of the relationship between species traits and environmental variables was assessed 231 

based on 999 permutations. All analyses were performed using the ade4 package for R v.3.2.1 (R-Development 232 

Core Team 2013). 233 

 234 

RESULTS 235 

Our dataset represented 9789 individuals distributed across 378 species and the 34 old-growth forest 236 

plots. Of this total, 173 species had few individuals (less than 10 individuals in only one or two plots). The ten 237 

most common species (according to frequency in plots and abundance) were Tetragastris altissima 238 

(Burseraceae), Iriartea deltoidea (Arecaceae), Euterpe precatoria (Arecaceae), Pseudolmedia laevis (Moraceae), 239 

Eschweilera coriacea (Lecythidaceae), Amaioua guianensis (Rubiaceae), Cheiloclinium cognatum 240 

(Celastraceae), Socratea exorrhiza (Arecaceae), Rinorea guianensis (Violaceae) and Miconia pyrifolia 241 

(Melastomataceae).  242 

Plant traits varied according to the sites (Table 1): fleshy fruit species were dominant in most sites with 243 

two exceptions, ELD-01 and FMH-01, which were the more easterly sites (Venezuela and Guyana) (Figure 1). 244 

Fruit lenght ranged from 2.1 to 8.8 (mean 3.9) cm across the sites, tree height from 18 to 28 (23) m, leaf length 245 

from 10 to 22 (13) cm and wood density from 0.50 to 0.81 (0.65) g.cm-3. Fruiting phenology by site was 246 

staggered through the year.  247 

The first axis of the RLQ analysis accounted for 80.3% of the total co-inertia (i.e. the link between the 248 

traits and climatic variables) and the second axis for 14.7% (PyC). This represented 5.3% of the correlation 249 

expressed for the first axis in the CA of species composition (Table 2: L table), and 48.0% and 27.7% of the total 250 

variance expressed for the first axis in the PCA of the environmental variables (Table 2: R table) and functional 251 
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traits (Table 2: Q table), respectively, indicating variability in species trait values across the environmental 252 

gradient. 253 

Among those traits, only the variability in diaspore type and wood density was explained by the 254 

variability in the environmental gradient (r=0.89, p=0.001 and r=-0.60, p=0.001 respectively; Figure 2). And 255 

among these environmental parameters, average temperature (r=-0.85, p=0.001), water deficit (MCWD) (r=-256 

0.89, p=0.001), annual precipitation (r=-076, p=0.001) and altitude (r=0.87, p=0.001) explained the variability in 257 

the studied functional traits. There was also a significant association between PyC (r=-0.71, p=0.001) and 258 

maximum temperature of the warmest month (r=0.88, p=0.001) with the second RLQ axis, but with traits 259 

unrelated to this axis, which may indicate a lack of detectable effect of past fires on contemporary composition 260 

and functioning of Amazon Basin forests (Figure 2). 261 

We also found a significant relationship between species composition and environmental variables 262 

(model 2, p=0.007) and between species composition and functional traits (model 4, p=0.009). These results 263 

indicate that species composition is dependent on the environmental conditions (altitude, climate and fire-264 

history) of the sites and influenced by species’ functional attributes. 265 

Species with denser wood were associated with hotter (r=0.28, p=0.002) and lower elevation 266 

environments (r=-0.20, p=0.037); species with dry diaspores were associated with drier (r=0.23, p=0.007), hotter 267 

(r=0.18, p=0.014) and lower elevation environments (r=-0,19, p=0.01); the opposite was found for the 268 

relationships between fleshy fruit species and MCWD (r=-0.23, p=0.008), temperature (r=-0.18, p=0.017) and 269 

altitude (r=0.19, p=0.01). There were less species fruiting in the dry period (r=-0.16, p=0.042) and the fruiting 270 

duration was shorter (r=-0.17, p=0.027) in sites where annual precipitation was higher (Figure 3). None of the 271 

studied traits were significantly associated with PyC (Figure 3); however, the analyses showed a tendency for 272 

less species fruiting in the dry period in plots with higher percentage soil PyC (r=-0.12, p=0.091; Figure 4). 273 

 274 

DISCUSSION 275 

 Our results show that functional traits and environmental variables jointly predict variation in tree 276 

species composition in the Amazon Basin. The findings of this study represent some of the main hyper-dominant 277 

species that occur throughout the Amazon Basin (ter Steege et al. 2013) and dominant species in Cerrado-278 

Amazon forest transition sites (Ackerly et al. 1989, Marimon et al. 2006, Mews et al. 2011, Morandi et al. 2016). 279 

The fourth-corner permutation models assessing the trait–environment-species link suggests that the distribution 280 
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of species with fixed traits is influenced by environmental characteristics and that the species composition of 281 

sites with given environmental characteristics is influenced by species traits. Kraft et al. (2008), using a 282 

functional ecology approach, also found evidence for niche-based processes in an Amazonian forest. Other 283 

recent studies have shown that Amazonian tree species distribution respond strongly to environmental variation 284 

(Esquivel-Muelbert et al. 2016) and the strength of response is significantly correlated to functional traits 285 

(Rowland et al. 2014, Silva et al. 2014).  286 

 Differences in community structure and function were primarily driven by temperature and water 287 

availability (and altitude, variable usually correlated to the other two climate parameters: Benavides et al. 2016). 288 

Therefore, functional traits representative of fire-prone environment species such as higher wood density and 289 

shorter trees were not associated with soil PyC abundance. These results of no detectable legacy of fire effect on 290 

plant traits may be a consequence of several factors: i) historical fires may have been locally and/or temporally 291 

restricted and not associated with a widespread and/or frequent fire regime; therefore, impacts on biodiversity 292 

would have been small and/or heterogeneous,; ii) alternatively, sufficient time may have passed since the last fire 293 

(hundreds of years) to allow the forest to recover; iii) soil pyrogenic carbon storage may not be a suitable 294 

predictor of past-fires. Despite these factors, the significant relation between PyC and the second RLQ axis and 295 

marginal significance with one of the studied traits, suggests that more aspects of past fire events need to be 296 

investigated. Large-scale carbon radiocarbon dating, although cost prohibitive, would provide key information 297 

about time since last fire.  298 

 It has been shown that fire strongly mediated the effect of other environmental variables on some traits 299 

in a longleaf pine savanna in California, indicating that strong environmental gradients cannot be considered 300 

independently when assessing their effects on functional traits (Ames et al. 2015).  However, savannas are fire 301 

prone ecosystems, which evolved as a response of fire regimes, i.e. intensity, duration and frequency of burnings 302 

(Bowman et al. 2009). In tropical rain forests such as our study, though, the data from charcoal radiocarbon 303 

dating imply a fire return of hundreds or thousands of years (Sanford et al. 1985, Turcq et al. 1998), with distinct 304 

spatial and temporal patterns (Bush et al. 2007, Bush et al. 2008). Some preliminary charcoal dating results of 305 

three studied plots may confirm return times and spatial patterns: an eastern Amazonia plot had fire estimates of 306 

1134 years before present (BP) (charcoal in 10-20 cm) and 1620 yr BP (30-50 cm); a northern Amazonia plot, 307 

989 yr BP (32 cm); and a south edge plot a range of 96 yr BP (10-20 cm), 806 yr BP (20-30 cm) and 1372 yr BP 308 

(150-200 cm). Other recent AMS results from the same region show a larger return interval in fire records for 309 
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some sites, ~6,000 years (from 6876 to 365 yr BP: Goulart et al. 2017). Previous studies of soil charcoal have 310 

also shown a spatially localized and heterogeneous signature of fire on Amazon forests (McMichael et al. 2012, 311 

McMichael et al. 2017).  312 

 Thus, rather than a pristine tropical forest, some areas in the Amazon Basin have been interpreted as 313 

constructed landscapes, dramatically altered by past indigenous groups (Erickson 2008, Heckenberger et al. 314 

2007, Roosevelt 2003) indicating propensity for regional forests to burn, especially during periods of drought 315 

(Bush et al. 2008). Anthropogenic fire has been a factor in shaping plant communities through human prehistory, 316 

e.g., generally a woody non-fire-prone vegetation type tends to transition to a more herbaceous, flammable and 317 

shade-intolerant vegetation type with frequent fire (Pinter et al. 2011), changing forest composition (Barlow and 318 

Peres 2008) and structure (Bennett et al. 2013) and species abundance (Piperno and Becker 1996, depending on 319 

the regional pool of species: Mittelbach & Schemske 2015). Brando et al. (2014) presented the first evidence of 320 

substantial fire-induced tree mortality due to altered fire regimes and a widespread invasion by flammable 321 

grasses in a southern Amazonian forest subjected to experimental repeat burns. Besides fire-induced mortality, 322 

other demographic patterns also play important roles after a disturbance such as recruitment and growth of 323 

individuals. For these reasons, forest recovery is very slow (Almeida et al. 2016, Barlow and Peres 2008, Flores 324 

et al. 2012, Uhl et al. 1998). However, recovery may be fast enough to erase the signal of fire history on the 325 

functional composition of this vegetation, considering the limited reported charcoal AMS dated fire 326 

spatiotemporal patterns with long times since last fire in old-growth forests. In fact, it may take only a decade for 327 

trait changes to be apparent at the individual level as a response to some stress, as van der Sande et al. (2016) 328 

found for wood density and specific leaf area in Neotropical forests subject to increased drought stress.  329 

There is uncertainty about how PyC forms and persists in soils (Bird et al. 2015). PyC generation is 330 

governed by complex factors as investigated by Brewer et al. (2013): fuel properties (density, composition, 331 

arrangement and moisture) and burning conditions (weather, flame height and flame time). As a result, many 332 

low-intensity fires may not produce a similar amount of PyC in the soil, as few intense fires. Improved 333 

understanding of how different fire types affect PyC storage and the longevity of PyC in moist tropical forests 334 

will assist in the development of soil PyC as a proxy providing information about past fires. 335 

Lowland Amazon tropical rain forests possess an annual climate that is warm with little temperature 336 

variation; rainfall, however, varies spatially and is highly seasonal in some regions: the south and southeast are 337 

drier and more seasonal, while the west and northwest are wetter and aseasonal (Sombroek 2001). During the 338 
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last century the Amazon warmed by 1°C, but rainfall pattern changes are more difficult to identify (IPCC 2013). 339 

Climate change is viewed as a threat to biodiversity (Bellard et al. 2012). Despite some resilience to moderate 340 

annual and repeat droughts (Davidson et al. 2012, Feldpausch et al. 2016), plant traits related to drought-induced 341 

mortality, such as lower wood density, larger tree size, fast growing pioneers and evergreens (Feldpausch et al. 342 

2016, O’Brien et al. 2017, Phillips et al. 2009) may be not be advantageous in drier sites, thus, highlighting the 343 

need to identify traits that account for differential tree vulnerability to environmental stress. 344 

 We found more species with dry diaspores in drier and hotter environments, and which may be an 345 

advantageous trait in disturbed forests. Moreover, the high number of wind-dispersed species in areas closer to 346 

Venezuela could be an imprint of ancient forest-savanna transitions (or dry forests). Other reviews have shown 347 

the importance of wind-adapted (Howe and Smallwood 1982) and dry fruit species in dry environments (van der 348 

Pijl 1972). Thus, in a future scenario of drier and hotter Amazonia, with fires possibly becoming more frequent 349 

(Alencar et al. 2015), these forests are likely to be replaced by wind-dispersed plants easily spread independent 350 

of animal vectors. Also, the light and flat primarily wind-dispersed seeds may also be transported long distances 351 

by water-mediated dispersal in lower altitude and flood-prone sites (Säumel and Kowarik 2013), which our 352 

results confirmed by the high number of dry seed species in lower elevations. We found that with higher 353 

precipitation, fewer tree species produced fruits in the dry period and the duration of fruiting in any period was 354 

shorter. In areas with higher precipitation, more fleshy fruit species are expected, which will develop and 355 

disperse their fruits during the wet period (Correa et al. 2015, Howe and Smallwood 1982). Even in a moist 356 

environment like the studied region, the amount of precipitation caused fruiting to be less spread throughout the 357 

year and more synchronous with the wet period. 358 

 Wood density was positively associated with average temperature and negatively with altitude, 359 

corroborating the findings of Quesada et al. (2012). Thus, our results support the theory that higher temperatures 360 

and lower altitudes induce a stress-avoidance strategy by reducing hydraulic efficiency and vulnerability to 361 

xylem cavitation by increasing wood density (Swenson and Enquist 2007). Also, higher wood density species 362 

would be less susceptible to fire-induced mortality (Brando et al. 2012) in hotter and drier Amazon forests 363 

(Feldpausch et al. 2016, O’Brien et al. 2017, Phillips et al. 2009). 364 

 Five out of the seven functional traits evaluated across all 378 species were correlated with some 365 

environmental variable, indicating that the selected traits and the independent parameters were adequate in that 366 

they cover the range of traits commonly deemed essential to woody plant strategy (Pausas and Lavorel 2003). 367 



14 

 

Despite this, fruit size, maximum height, average leaf size and fruiting during the wet period did not relate to any 368 

parameter. Soil fertility (Clarke et al. 2016, Dantas et al. 2013) could have been an important environmental 369 

factor predicting variation of the studied traits. In fact, Koele et al. (in review) found positive associations 370 

between PyC and soil nitrogen and phosphorous for the studied plots and we also might expect functional traits 371 

to be influenced by edaphic factors as shown by Quesada et al. (2012) and Toledo et al. (2016) in the Amazon 372 

Basin. Additionally, including other fire-related traits such as bark thickness, leaf toughness and height to 373 

diameter ratio of plant species might have relevance to future studies of Amazon Basin forest dynamics 374 

(Cianciaruso et al. 2012, Lucena et al. 2015). 375 

 In general, the Amazon forests examined in this study had higher proportions of zoochory (dispersal of 376 

seeds by animals) than other dispersal types and large-sized fruits, confirming the importance of animal-377 

mediated seed dispersal in the tropics (Correa et al. 2015, Howe and Smallwood 1982). It has been shown that 378 

tree height and wood density vary significantly across Amazonia (Feldpausch et al. 2011, Nogueira et al. 2008), 379 

differences also reflected in the most abundant species of our study. The results also indicated that Amazon 380 

forests are predominantly populated by tree species with leaf sizes in the mesophyll class (Malhado et al. 2009). 381 

Lastly, fruiting was in different periods throughout the year, reflecting the high variation in the time of fruit 382 

production and maturation.  383 

 The long-term ecological consequences of fire in Amazon forests are not clear. Fires are rapidly 384 

becoming a common occurrence in vast areas of both disturbed and undisturbed Amazonian forests and 385 

pyrogenic carbon analysis indicates fire historically occurred in all our plots, including even the wettest plots of 386 

northwestern Amazonia, but the time-scale of these burnings seems to be longer than that the needed for forest 387 

functional composition recovery. In this study, we observed that functional traits and environmental variables 388 

jointly predicted variations in tree species composition in Amazon Basin forests. We also showed the lack of a 389 

detectable effect of PyC on specific traits, but the existence of a secondary association with the general traits 390 

distribution (axis 2) indicates that the consideration of climatic variables alone may not be sufficient to explain 391 

species distributions and the maintenance of diversity and functioning in Amazonian forests. The future 392 

trajectory of Amazonian forests that experience drought and fire will depend, in part, upon tree species 393 

composition and drought- and fire-tolerance traits, both of which still need to be better disentangled and 394 

understood.  395 

 396 



15 

 

REFERENCES 397 

Ackerly DD, Thomas WW, Ferreira CAC, Pirani JR (1989) The forest-cerrado transition zone in southern 398 

Amazonia: Results of the 1985 Projecto Flora Amazônica expedition to Mato Grosso. Brittonia 41:113-128 399 

Alencar AA, Brando PM, Asner GP, Putz FE (2015) Landscape fragmentation, severe drought, and the new 400 

Amazon forest fire regime. Ecol Appl 25:1493-1505 401 

Almeida DRA, Nelson BW, Schietti J et al (2016) Contrasting fire damage and fire susceptibility between 402 

seasonally flooded forest and upland forest in the Central Amazon using portable profiling LiDAR. Remote Sens 403 

Environ 184:153-160 404 

Amaral DD, Vieira ICG, Almeida SS et al (2009) Checklist da flora arb́rea de remanescentes florestais da 405 
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Table 1. Vegetation trait descriptions of 34 forest plots in Amazonia. (Abbreviations: unk, unknown; Jan, 602 

January…. Dec, December; d: dry period; w: wet period). 603 

Plot Species/ 
individuals 

Leaf 
length 
(cm) 

Maximum 
tree height 
(m) 

Wood 
density 
(g.cm-
3) 

Fruit 
type 

Fruit 
size 
(cm) 

Fruiting timing 

AGP-01 15/128 15 24 0.60 4 dry 
10 
fleshy 
1 unk 

3.2 Oct,Feb d,w 

AGP-02 11/100 17 24 0.56 4 dry 
6 
fleshy 
1 unk 

3.4 Feb w 

ALF-02 22/430 13 24 0.61 1 dry 
21 
fleshy 

3.6 Oct d 

ALP-30 20/356 12 20 0.62 7 dry 
13 
fleshy 

4.2 Dec w 

BDF-03 22/198 12 27 0.68 9 dry 
13 
fleshy 

3.2 Nov d 

BDF-09 24/196 11 26 0.70 9 dry 
15 
fleshy 

2.7 Nov d 

BNT-02 23/253 12 25 0.72 8 dry 
15 
fleshy 

4.6 Jan-Feb w 

BNT-04 22/274 13 28 0.72 8 dry 
14 
fleshy 

3.5 Nov d 

CAX-01 20/268 10 23 0.74 7 dry 
13 
fleshy 

3.3 Oct-Dec d,w 

CAX-06 13/129 11 27 0.78 6 dry 
7 
fleshy 

3.9 Nov d 

CUZ-01 25/319 13 18 0.53 2 dry 
23 
fleshy 

4.9 Feb w 

DOI-01 18/207 16 25 0.66 6 dry 
12 
fleshy 

3.2 Sep-Oct d,w 

DOI-02 8/73 17 24 

  

0.61 3 dry 
5 
fleshy 

8.8 Oct d 

ELD-01 6/82 11 22 0.75 5 dry 
1 
fleshy 

5.1 Jan,Mar w 

FLO-01 27/500 14 20 0.63 4 dry 
23 
fleshy 

3.1 Oct d 

FMH-01 13/394 10 28 0.81 6 dry 
6 
fleshy 

4.2 Oct d 

HCC-21 20/489 14 20 

  

0.57 5 dry 
15 
fleshy 

3.6 Mar w 

IWO-22 12/328 10 22 0.81 5 dry 
7 
fleshy 

5.5 Dec w 

JAS-02 22/258 19 24 0.53 5 dry 
17 
fleshy 

3.5 Oct d 

JEN-11 24/229 12 26 0.65 10 dry 
16 
fleshy 

4.1 Jan w 

JRI-01 32/327 14 25 0.69 7 dry 
25 

3.2 Jan w 



22 

 

fleshy 
LFB-01 20/460 14 21 0.58 5 dry 

15 
fleshy 

2.7 Oct d 

LFB-02 18/435 15 

  

21 0.55 5 dry 
13 
fleshy 

3.2 Oct d 

NOU-06 7/89 17 27 0.64 1 dry 
6 
fleshy 

2.9 Oct,Jan d,w 

POR-01 25/293 14 22 0.62 5 dry 
20 
fleshy 

2.9 Oct d 

POR-02 23/270 12 22 0.64 4 dry 
19 
fleshy 

3.1 Aug-Oct d 

RST-01 12/195 13 19 0.50 1 dry 
11 
fleshy 

7.0 Jul-Aug d 

SCR-05 30/460 12 25 0.71 7 dry 
23 
fleshy 

5.2 Jan w 

SUC-02 19/164 15 21 0.62 5 dry 
14 
fleshy 

4,2 Oct d 

TAM-05 28/317 13 23 0.60 5 dry 
23 
fleshy 

2.8 Oct d 

TAN-04 21/509 12 19 0.63 3 dry 
18 
fleshy 

2.1 Apr-May w 

TEC-01* 19/214 11 25 0.78 6 dry 
13 
fleshy 

2.9 Nov d 

VCR-02 19/560 11 19 0.66 2 dry 
17 
fleshy 

2.9 Sep d 

YAN-01 19/225 22 26 0.56 7 dry 
12 
fleshy 

4.8 Oct d 

  604 
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Table 2. Results of RLQ analysis using environmental variables and species traits. (a) Eigenvalues (and % of 605 

total co-inertia) for the first two axes. Ordinations of tables R (principal components analysis – PCA), L 606 

(correspondence analysis – CA) and Q (PCA). (b) Summary of RLQ analysis: eigenvalues and percentage of 607 

total co-inertia accounted for by the first two RLQ axes, covariance and correlation (and % variance) with the 608 

correspondence analysis of the L matrix and projected variance (and % variance) with the R and Q matrices. 609 

 Axis 1 (%) Axis 2 (%) 

R table PCA 2.88 (48.02) 1.97 (32.89) 
L table CA 0.95 (5.29) 0.93 (5.18) 
Q table PCA 2.49 (27.67) 1.84 (20.48) 
RLQ axes eigenvalues 0.54 (80.31) 0.098 (14.71) 
Covariance 0.73 0.31 
Correlation: L 0.30 (30.79) 0.21 (21.33) 
Projected Variance: R 2.78 (96.66) 4.74 (97.71) 
Projected Variance: Q 2.14 (85.87) 3.32 (76.70) 

  610 



24 

 

Figure 1. Location of the Amazonian study sites (circles) showing the variation in percentage pyrogenic carbon 611 

in total soil. The green outline shows Amazonia boundary, blue lines are the rivers and streams. Circles are 612 

proportional to the percentage pyrogenic carbon in soil samples (0-30cm interval) and are semi-transparent to 613 

visualize when overlapping.  614 

Figure 2. RLQ results between the first two RLQ axes for environmental variables (AxR1/AxR2) and traits 615 

(AxQ1/AxQ2). Significant (p < 0.05) positive associations are represented by red cells; significant negative 616 

associations by blue cells. Variables with no significant associations are shown in gray. parbio1=annual mean 617 

temperature; parbio5=maximum temperature of the warmest month; parbio12=annual precipitation; 618 

paralt=elevation; MCWD= maximum climatological water deficit; %PyC=percentage of pyrogenic carbon in 619 

total soil (0-30 cm depth). 620 

Figure 3. Fourth-corner results between environmental variables and traits. Significant (p < 0.05) positive 621 

associations are represented by red cells; significant negative associations by blue cells. Variables with no 622 

significant associations are shown in gray. parbio1=annual mean temperature; parbio5=maximum temperature of 623 

the warmest month; parbio12=annual precipitation; paralt=elevation; MCWD= maximum climatological water 624 

deficit; %PyC=percentage of pyrogenic carbon in total soil (0-30 cm depth). 625 

Figure 4. Percentage of species fruiting during dry period plotted against percentage pyrogenic carbon in total 626 

soil. 627 

  628 
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 638 

Figure 4. Percentage of species fruiting during dry period plotted against percentage pyrogenic carbon in total 639 

soil. 640 
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Online Resource 1. Site descriptions of 34 forest plots in the Amazon Basin.  642 

Name Plot 
Code 

Country Latitude Longitude Forest type Year of 
census 

Amacayacu: Agua 
Pudre E 

AGP-01 Colombia -3.72 -70.30 terra firme 2011 

Amacayacu: Agua 
Pudre U 

AGP-02 Colombia -3.72 -70.30 terra firme 2006 

Parque Cristalino, 
Alta Floresta, MT 

ALF-02 Brazil -9.58 -55.92 terra firme 2008 

Allpahuayo C ALP-30 Peru -3.95 -73.43 white sand 
forest 

2011 

BDFFP, 1101 
Gaviao 

BDF-03 Brazil -2.42 -59.85 terra firme 2009 

BDFFP, 1109 
Gaviao 

BDF-08 Brazil -2.40 -59.90 terra firme 2009 

Bionte 2 BNT-02 Brazil -2.64 -60.15 terra firme 2010 
Bionte 4 BNT-04 Brazil -2.63 -60.15 terra firme 2010 
Caxiuana 1 CAX-01 Brazil -1.74 -51.46 terra firme 2009 
Caxiuana 6 CAX-06 Brazil -1.72 -51.46 terra firme 2009 
Cuzco Amazonico, 
CUZAM1E 

CUZ-01 Peru -12.54 -69.06 terra firme, 
floodplain 

2008 

RESEX Chico 
Mendes: Seringal 
Dois Irmãos 1 

DOI-01 Brazil -10.57 -68.32 terra firme 2009 

RESEX Chico 
Mendes: Seringal 
Dois Irmãos 2 

DOI-02 Brazil -10.55 -68.31 terra firme, 
bamboo 

2009 

El Dorado, km93, 
plotG1, ED1 

ELD-01 Venezuela 6.11 -61.41 terra firme 2009 

Fazenda Floresta, 
Ribeirão Cascalheira, 
MT  

FLO-01 Brazil -12.81 -51.34 terra firme 2013 

Forest reserve 
Mabura hill 01 

FMH-01 Guyana 5.17 -58.69 terra firme 2010 

Huanchaca Dos, plot 
1 

HCC-21 Bolivia -14.56 -60.75 terra firme 2009 

Iwokrama 22 IWO-22 Guyana 4.62 -58.72 terra firme 2010 
Jatun Sacha 2 JAS-02 Ecuador -1.07 -77.62 terra firme 2010 
Jenaro Herrera A 
Terraza Alta 

JEN-11 Peru -4.88 -73.63 terra firme 2011 

Jari 1 JRI-01 Brazil -1.00 -52.05 terra firme 1996 
Los Fierros Bosque I LFB-01 Bolivia -14.58 -60.83 terra firme 2009 
Los Fierros Bosque 
II  

LFB-02 Bolivia -14.58 -60.83 terra firme 2009 

Nourages NOU-06 French 
Guyana 

4.08 -52.68  2012 

RESEX Chico 
Mendes: Seringal 
Porongaba 1 

POR-01 Brazil -10.82 -68.77 terra firme 2009 

RESEX Chico 
Mendes: Seringal 
Porongaba 2 

POR-02 Brazil -10.80 -68.77 terra firme 2009 

Base da Restauração 
- Reserva 
Extrativista do Alto 
Juruá 

RST-01 Brazil -9.04 -72.27 terra firme 2009 

San Carlos de Rio SCR-05 Venezuela 1.93 -67.04 terra firme 2012 
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Negro, MAB site, 
Yevaro, plot B 
Sucusari B SUC-02 Peru -3.25 -72.90 terra firme 2012 
Tambopata plot 3 TAM-05 Peru -12.83 -62.97 terra firme 2008 
Fazenda Tanguro, 
Querência, MT 

TAN-04 Brazil -12.92 -52.37 terra firme 2008 

Team Caxiuanã 1 * TEC-01 Brazil -1.71 -51.46 terra firme 2014 
Fazenda Vera Cruz, 
plot 2 

VCR-02 Brazil -14.83 -52.17 terra firme 2008 

Yanamono A YAN-01 Peru -3.43 -72.84 terra firme 2011 
*data from the TEAM network plot; all other data from the RAINFOR network. 643 

 644 


