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ABSTRACT 

 

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both 

temporally and spatially. Genetic defects in several spliceosome components have been linked 

to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal 

developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here 

we report that defects in spliceosome-associated protein CWC27 are associated with a 

spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole 

exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven 

unrelated families that show a range of clinical phenotypes, including retinal degeneration, 

brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, 

variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse 

models, with significant embryonic lethality and severe phenotypes in the complete knockout 

mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration 

phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its 

genetic etiology, and highlights the complexity of the spliceosomal gene network.  

  



INTRODUCTION 

 

Pre-mRNA splicing, which removes introns from eukaryotic transcripts, is an essential step in 

gene expression. Through the generation of numerous alternatively spliced transcript isoforms 

from the limited set of genes, the splicing process plays a critical role in giving rise to the protein 

diversity necessary to establish the complex structures and functions found throughout 

eukaryotes1; 2. Splicing of pre-mRNA is catalyzed by the spliceosome, a ribonucleoprotein 

(RNP) complex that is dynamically assembled on each intron and undergoes several 

rearrangement steps before excising the intron3. The core of the spliceosome is formed by five 

small nuclear RNP (snRNP) particles and proteomic studies have identified over 150 

spliceosomal proteins including snRNP-specific proteins as well as miscellaneous non-snRNP 

splicing factors4-7. Though expressed ubiquitously, most spliceosomal genes associated with 

Mendelian disease have been classified within one of two non-overlapping phenotypic groups, 

suggesting tissue-specific functional roles. Mutations in splicing factors TXNL4A [MIM: 

611595]8, RBM8A [MIM: 605313]9, SNRPB [MIM: 182282]10, EIF4A3 [MIM: 608546]11, EFTUD2 

[MIM: 603892]12, and SF3B4 [MIM: 605593]13 cause syndromes mainly involving craniofacial 

and skeletal abnormalities, while disruptions of another group of spliceosomal genes PRPF3 

[MIM: 607301]14, PRPF31 [MIM: 606419]15, PRPF4 [MIM: 607795]16, PRPF6 [MIM: 613979]17, 

PRPF8 [MIM: 607300]18, and SNRNP200 [MIM: 601664]19, lead to non-syndromic retinitis 

pigmentosa (RP), a restricted disease phenotype primarily affecting the rod photoreceptors. 

Recent next-generation sequencing approaches have allowed the identification of many of 

disease-associated splicing factors listed above, nevertheless, the structural and functional 

roles of most spliceosome components and their involvement in human disease remain 

elusive20. 

 



Here, by exome sequencing in multiple families and disease modeling of two mouse 

alleles, we show that the disruption of the spliceosomal gene CWC27 [MIM: 617170] leads to a 

spectrum of isolated to syndromic phenotypes. The syndrome features include retinal 

degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects, 

with convergence of the two aforementioned non-overlapping spliceosomopathy phenotype 

groups. This study identifies a role for CWC27 both during early development and in the 

maintenance of mature tissues and highlights the complexity of spliceosome function. 

 

 

MATERIALS AND METHODS 

 

Clinical examination of subjects 

Subjects underwent ophthalmic evaluations including best correct visual acuity, slit-lamp 

biomicroscopy, dilated indirect ophthalmoscopy, fundus photography, visual field tests 

(Octopus), optical coherence tomography (OCT) (Topcon), fundus autofluorescence 

(Heidelberg HRT II) and electroretinogram (ERG) (RetiPort ERG system, Roland Consult) using 

corneal “ERGjet” contact lens electrodes. Informed consents were obtained from all the affected 

individuals or their guardians. All the diagnostic procedures were approved by the local 

institutional review boards or ethics committees. 

 

Whole exome sequencing (WES) and bioinformatic analysis 

WES for Families 1-3 and 5-7 was performed as follows. Pre-capture Illumina libraries were 

generated as in previous literature21-23. The targeted DNA was captured, washed and recovered 



using Agilent Hybridization and Wash Kits (Agilent Technologies). WES was performed by 

capturing the DNA with the NimbleGenSeqCap EZ Hybridization and Wash kit. Captured DNA 

libraries were sequenced on an Illumina HiSeq 2000 machine (Illumina, Inc.). After sequencing, 

the reads were aligned to assembly hg19 of the human genome using BWA version 0.6.124. 

Base quality recalibration and local realignment was performed by the Genome Analysis Tool 

Kit version 3.625. Atlas-SNP2 and Atlas-Indel2 were used for variant calling26. Variant frequency 

data were obtained from public and internal control databases including the Exome Aggregation 

Consortium (ExAC) database27, CHARGE consortium28, ESP-650029 and 1000 Genome 

Project30. Autosomal recessive inheritance pattern was assumed based on pedigrees, therefore, 

variants with a minor allele frequency higher than 1/200 were filtered out. Unconserved 

synonymous and deep intronic (distance >10bp from exon-intron junctions) variants were also 

excluded from further analysis. ANNOVAR31 (version 06/17/2015) and dbNSFP suite32 (version 

2.9, includes SIFT, PolyPhen-2, LRT, MutationTaster, MutationAssessor, etc.) were used to 

annotate protein-altering effects. Reported retinal disease-causing variants were detected 

based on the HGMD professional database (version 08/15/2016). 

 

For quartet WES of Family 4 (both affected individuals and their parents), Agilent 

SureSelect libraries were prepared from 3ȝg of genomic DNA from each individual and sheared 

with a Covaris S2 Ultrasonicator. Exome capture was performed with the 50Mb SureSelect 

Human All Exon kit V3 (Agilent technologies). Sequencing was carried out on a pool of 

barcoded exome libraries using a SOLiD5500XL instrument (Life Technologies), and 75+35 

paired-end sequences were mapped to the reference human genome (GRCh37/hg19 assembly, 

NCBI) using Mapreads (LifeScope, Life Technologies). Variant calling was performed using 

SAMtools. Variants were filtered against publicly available SNPs plus variant data from in-house 

exomes (Institut Imagine). 



 

RT-PCR and Sanger sequencing of human RNA 

For Family 2 RT-PCR, mRNA was isolated from venous blood using the QIAamp RNA Blood 

Mini Kit (QIAGEN Cat. No. 75142; QIAGEN) with a fast spin-column procedure. Genomic DNA 

was eliminated by on-column treatment with DNase I using the QIAGEN RNase-Free DNase 

Set (QIAGEN Cat. No. 79254; QIAGEN). Complementary DNA synthesis was conducted using 

oligo(dT) primers, following the thermal cycling conditions in Applied Biosystems TaqMan 

Reverse Transcription kit (Applied Biosystems Cat. No. N8080234), using an ABI 9700 

thermocycler (Applied Biosystems).  PCR amplification consisted of 40 cycles of 94°C for 15 

sec, 65°C for 30 sec, and 68°C for 1 min, and 1 cycle of 68°C for 5 min was used for f inal 

extension. The primer pair for PCR was designed to encompass CWC27 exons 5 and 6 

(forward: 5’-ACATGTTGCGACTGTCAGAA-3’ and reverse: 5’-ACTTCCTCCTCTGGTTTCTCT-

3’). 

  

For Family 4 RT-PCR, total RNA was extracted from PAXgene tubes using the PAXgene 

Blood RNA Kit (Preanalytix, ref. no 762174). RNA was treated with DNase I and retro-

transcription performed on 1µg of total RNA using the Verso cDNA Synthesis Kit (Thermo 

Scientific). PCRs were performed using 1/20th of the total cDNA and Phusion DNA polymerase 

(Thermo Scientific) in a total volume of 20 µl with the following program: 98°C for 3 min; 35 

cycles of 98°C 10 sec, 64°C 15 sec, 72°C 25 sec; final elongation at 72°C for 2 min. A primer 

pair mapping to CWC27 exons 4 and 10 (forward: 5’-TTCTTCACACTGGGTCGAGC-3’ and 

reverse: 5’-TCCACTTCTCCTTCTCCAGC-3’) was used to evaluate splicing defects. PCR 

products were cloned into the TOPO Vector using the Zero Blunt TOPO PCR cloning kit 

(Invitrogen) and were subsequently sequenced with a vector-specific primer. 



 

Phenotyping of Cwc27tm1b/tm1b mice 

Heterozygous Cwc27tm1b/+ couples were bred and pregnant females were euthanized at E12.5, 

E14.5, E16.5, and E18.5. Embryos were dissected, fixed in 4% PFA for 3 to 5 hours depending 

on the size of the embryos and photographed using a Leica camera coupled with a dissection 

Leica microscope. OCT was performed on anesthetized mice as described33 using a Mikron III 

system (Phoenix Research Labs). Data were analyzed with Stream Pix 6 and Micro OCT 

V7.242. 

 

Generation of Cwc27K338fs/K338fs mice using the CRISPR-Cas9 system 

To target the Cwc27 exon 11 in mice, the sgRNA 5’-AGAAACTGCCATAAAAGTGG-3’ was 

designed using the MIT CRISPR design tool. Oligonucleotides containing the Cwc27 sgRNA 

target sequence was cloned into pDR274, a cloning vector (Addgene) to form a T7 promoter-

mediated sgRNA expression vector. BsaI digestion was performed to linearize the vector. 

Following gel purification (QIAGEN), we used the linearized expression vector as a template to 

produce sgRNA using the Maxiscript T7 kit (Life Technologies), followed by purification with 

RNA Clean and Concentrator-25 (Zymo Research). RNA concentration was measured using a 

NanoDrop ND1000. To make Cas9 mRNA, a modified pX33010 was linearized with NotI and 

used as template for RNA production (mMESSAGE mMACHINE® T7 Transcription Kit, 

Invitrogen).  

 

Cas9 mRNA (40 ng/µl) was mixed with sgRNA (20 ng/ µl) and microinjected into 

C57BL/6J embryos at the single-cell stage. Once the embryos reached blastocyst stage, they 



were transferred into the uterus of pseudo-pregnant females to obtain founder mice. Mouse 

genotyping was performed using PCR and Sanger sequencing with primer pair: 

CWC27_KO1_F: 5’-CTCGTGTAAAACGACGGCCAGTGGCACTGTGTCAGAACAGGA-3’ and 

CWC27_KO1_R: 5’-CTGCTCAGGAAACAGCTATGACCACACTTCCTCAGCCAAACA-3’. All 

animal operations were approved by the Institutional Animal Care and Use Committee at Baylor 

College of Medicine. 

 

ERG in mice 

Mice were dark-adapted overnight and then anesthetized with ketamine (22ௗmg/kg), xylazine 

(4.4ௗmg/kg) and acepromazine (0.37ௗmg/kg) by intraperitoneal injection. Tropicamide (1.0%) and 

phenylephrine (2.5%) solutions were used to dilate the pupils in red dim light and the cornea 

was anesthetized with proparacaine (1.0%). Goniosoft (2.5%) was gently applied on the cornea 

to keep it moistened and enhance the contact between the cornea and the ERG electrode. 

Scotopic ERG was performed at four flash intensities (0.1, 1, 2.5, 25 cd*s/m2). The LKC UTAS 

Visual Diagnostic System and EMWIN software (LKC Technologies) was used to digitize and 

store the recordings. ERG data were analyzed and plotted using GraphPad Prism5 software 

(GraphPad). Two-tailed unpaired t-test with Welch’s correction was performed for each light 

condition. 

 

Mouse retina hematoxylin and eosin (H&E) staining 

Mouse eyes were enucleated and fixed overnight at 4°C in fresh Davidson's fixa tive. Fixed eyes 

were processed through a series of ethanol dehydration steps (50%, 70%, 95% and 100%) for 1 

hour each. Eyes were then paraffin-embedded for sectioning. Serial paraffin sections (7 µm) 



were obtained and H&E stained according to standard protocol. H&E-stained slides were 

visualized using light microscopy (Zeiss Apotome). 

 

Mouse retina mRNA qRT-PCR 

Reverse-transcription PCR reactions were performed on 30ng of total retinal RNA and were 

primed with a mixture of oligo-dT and random hexamers. Cwc27 mRNA qPCR was performed 

according to the Universal SYBR Green Quantitative PCR Protocol (Sigma-Aldrich) using the 

Cwc27 primer pair: 5’-ATGCAAGTGCCAGTGTGAAG-3’ (forward) and 5’-

TTTCGCTGCTAAGAGTTCTCG-3’ (reverse), and the Gapdh primer pair: 5’-

CATGGCCTTCCGTGTTCCTA-3’ (forward) and 5’-CCTGCTTCACCACCTTCTTGAT-3’ 

(reverse) as the internal control. Relative mRNA quantity was calculated using the 2-∆∆Ct method 

as described previously34. 

 

Human mRNA qRT-PCR  

RNA was extracted from primary fibroblasts of the two affected individuals from Family 4 using 

Tri Reagent (Ambion). Cells of an unaffected individual were used as the control. 5µg of RNA 

were treated with 1µl of Turbo DNase (Ambion) in a final volume of 50µl. Samples were 

incubated for 30 min at 37 °C. After phenol extraction and RNA precipitation, samples were 

washed with 70% EtOH and re-suspended in the appropriate volume of H2O. Reverse 

transcription was performed on 1µg RNA using Superscript III (Invitrogen) in a final volume of 

20µl. qPCR was performed in duplicates in a 96-well plate in a Bio-Rad CFX96 Real Time 

System. 1µl cDNA and 10µl of SYBR Select Master Mix (Applied Biosystem) in a final volume of 

20µl were used. Negative controls (no reverse transcriptase or no template) were performed, 

and no Ct value was detected in either case. Primers mapping to exons 1 and 3 of CWC27 were 



used for amplicon qPCR-1 (a region in which CWC27 splicing is not affected by the mutation in 

Family 4): 5’-ATGAGCAACATCTACATCCAGGAG-3’ (forward) and 5’-

CCTTGGACTATGAAACCAGGC-3’ (reverse). Primers mapping to exons 6 and 8 of CWC27 

were used for amplicon qPCR-2 (the forward primer, mapping to exon 6, binds to a region 

skipped in the affected individuals of Family 4): 5’-AAGAAATTGAAACCCAAAGGCAC-3’ 

(forward) and 5’-CAGAACTGAGATGTGGATCATCC-3’ (reverse). GAPDH primers: 5’-

TTAAAAGCAGCCCTGGTGAC-3’ (forward) and 5’-CTCTGCTCCTCCTGTTCGAC-3’ (reverse). 

Relative mRNA quantity was calculated using the 2-∆∆Ct method as described previously34. 

 

 

RESULTS 

 

Clinical findings 

A total of ten affected individuals from seven unrelated families of diverse ethnicities were 

studied. The clinical findings of all the affected individuals are summarized in Table 1 and 

phenotypes of selected individuals are presented in Figure 1. We observed a common 

phenotype in the majority of these affected individuals, consisting of retinal degeneration (9/10), 

brachydactyly (9/10), craniofacial defects (8/10), short stature (8/10) and neurological defects 

(8/10). Clinical description of Family 2: II-1 and Family 2: II-2 has been previously reported, 

however, the genetic etiology was unknown35. In our cohort, retinal defects include RP in most 

affected individuals, with night blindness occurring at around 10 years of age, followed by 

restriction of visual fields (Figure 1B), while the affected individual Family 7: II-1 has more 

severe retinal defects and was diagnosed as Leber congenital amaurosis (LCA). Brachydactyly 

is a frequent finding, usually occurring in the distal phalanges of digits, with some affected 



individuals presenting hypoplastic nails (Figure 1C). Craniofacial anomalies include frontal 

bossing, large columella, micrognathia, down-slanting palpebral fissures, large and low-set ears 

and hypoplasia of nares. Short stature was noted, with height usually being two standard 

deviations or more below the mean. Neurological features include delays in speech, feeding and 

walking as well as intellectual disability. Notably, two affected individuals (Family 3: II-1 and 

Family 7: II-1) presented with a retinal phenotype without additional syndromic abnormalities 

except for a mild brachydactyly in Family 7: II-1. The affected individual Family 6: II-1 had not 

presented with RP at the time of clinical ascertainment at 2 months of age. 

 

Additional family-specific abnormalities were also identified (Table 1). Family 1: II-3 and 

Family 1: II-4 have café-au-lait spots while Family 2: II-1 and Family 2: II-2 show late-onset 

obesity and unspecific endocrinological dysfunction. Family 4: II-3 and Family 4: II-4 present 

extensive hair and skin problems including alopecia, absent eyebrows and eyelashes, 

ichthyosis, eczema, and keratosis. Family 5: II-1 and Family 6: II-1 also have early 

developmental defects in various organs including bladder, heart and kidney. 

 

Genetic findings 

WES was performed in these seven families to identify the underlying genetic cause for this 

phenotype spectrum. After variant filtering and prioritization, biallelic variants in CWC27, a gene 

encoding a spliceosome-associated protein, were identified in all affected individuals. Strikingly, 

all of the CWC27 variants are protein-truncating (annotation according to GenBank: 

NM_005869.3). A homozygous stop-gain variant (c.943G>T, p.Glu315*) was identified in Family 

1: II-3 and Family 1: II-4 of Yemenite origin. A homozygous synonymous variant (c.495G>A, 

p.?) was identified in Family 2: II-1 and Family 2: II-2 of Spanish origin35. This variant resides at 



the highly conserved CWC27 exon 5/intron 5 junction. It was predicted to affect splicing by 

AdaBoost and Random Forest (score 1.0 for both), which combine the output of seven splice 

site prediction algorithms36. In the non-syndromic Han Chinese RP affected individual Family 3: 

II-1, a homozygous frameshift mutation (c.1002dupA, p.Val335Serfs*13) was found. This variant 

is the most C-terminal variant identified in our cohort. Family 4 is from Morocco and a 

homozygous splicing variant at the exon 6/intron 7 junction (c.599+1G>A, p.?) was observed in 

both affected individuals Family 4: II-3 and Family 4: II-4. Interestingly, in Family 5: II-1 and 

Family 6: II-1, we identified the same compound heterozygous stop-gain variants in CWC27 

(c.[19C>T];[427C>T], p.[Gln7*]:[Arg143*]). In Family 5: II-1, the p.Gln7* mutation is maternal 

and the p.Arg143* mutation is paternal, while in Family 6: II-1, the parental origin of the alleles is 

the opposite. Both of the families are of Indian ethnicity but sequence data confirmed they are 

unrelated. Finally, in Family 7: II-1, we identified compound heterozygous protein-truncating 

mutations (c.[617C>A];[1002dupA], p.[Ser206*]:[Val335Serfs*13]), of which one (c.1002dupA, 

p.Val335Serfs*13) is recurrent in Family 3: II-1. All of the seven CWC27 variants identified are 

absent or occur only once in the heterozygous state in the ExAC and gnomAD database 

containing over 120,000 control individuals (Table S1). In addition, the allele frequency of all 

CWC27 protein-truncating variants that affect the longest CWC27 transcript (GenBank: 

NM_005869.3) is approximately 1 in 8,000 (gnomAD), strongly supporting CWC27 as a 

disease-associated gene for a rare recessive Mendelian phenotype based on Hardy-Weinberg 

equilibrium. Finally, Sanger sequencing was performed to confirm the mutations and genotype-

phenotype co-segregation in these families (Figure 2A). 

 

To confirm that the two putative splicing-disrupting variants in Family 2 and Family 4 

alter the open reading frame of CWC27, we performed RT-PCR analysis on RNA samples 

derived from the blood of affected individuals. In Family 2, a primer pair spanning CWC27 exons 



5 and 6 was used for cDNA and genomic DNA (gDNA) amplification and we observed a non-

spliced PCR product of 1,098bp in Family 2: II-1 and Family 2: II-2, while a spliced product of 

the expected size (154bp) was detected in Family 2: II-3 and another control individual (Figure 

2B). The size of the PCR product in Family 2: II-1 and Family 2: II-2 suggested an inclusion of 

the entire intron 5 in the mutated CWC27 transcript, generating a frameshift mutation 

(p.Leu167Glyfs*3), and this was confirmed by Sanger sequencing of the product. Similarly, in 

Family 4, the effect of the c.599+1G>A variant on splicing was evaluated. Two abnormal 

splicing events occurred in the samples of Family 4: II-3 and Family 4: II-4 compared with 

Family 4: I-1, Family 4: I-2 and another control: one led to the activation of a cryptic splicing site 

within exon 6 and the other caused complete skipping of exon 6 (Figure 2B). Both splicing 

changes result in a shift of the reading frame and premature stop codons. Based on the RT-

PCR and Sanger sequencing results, the protein-altering effect of the c.599+1G>A variant is 

annotated as p.[Val191Lysfs*3;Val166Lysfs*3]. 

 

Phenotype of Cwc27 knockout mice 

To recapitulate the phenotypes of affected individuals, we identified a knockout/reporter mutant 

of Cwc27 generated by the Knockout Mouse Phenotyping program (KOMP2) named B6N(Cg)-

Cwc27tm1b(KOMP)Wtsi/J (referred to as tm1b). Cwc27 exon 3 is deleted in this tm1b allele and a 

lacZ/transcription termination cassette is inserted downstream of exon 2. After backcrossing this 

mutant to C57Bl/J mice to eliminate the rd8 allele present in the C57Bl/N strain37, we analyzed 

the retina of Cwc27tm1b/+ mice at P30 and P180 and did not observe any abnormalities. 

Cwc27tm1b/tm1b mice are recorded as pre-weaning lethal by Mouse Genome Informatics (MGI) 

and we were able to obtain only three Cwc27tm1b/tm1b mice out of 56 matings that produced 180 

offspring (for Mendelian ratio, see Table S2). Two mice died unexpectedly at P2 and P32, 

respectively. The third one shows gray hair and growth retardation (Figure 3E) compared with 



the Cwc27tm1b/+ control (Figure 3A). OCT and H&E staining at P28 showed that its retina, 

particularly the photoreceptor layer, is severely dystrophic (Figure 3G and 3H).  

 

In order to investigate when the Cwc27tm1b/tm1b mutants are lost, we analyzed the 

embryos at E12.5, E14.5, E16.5, and E18.5. Seven breedings between Cwc27tm1b/+ mice 

generated 57 embryos with a ratio not different from the expected 1:2:1 Mendelian ratio (Table 

S2). All Cwc27tm1b/tm1b embryos showed abnormalities when compared with wild-type (WT) or 

Cwc27tm1b/+ (Figure 3I-L). Specifically, at E12.5, we observed marked growth retardation, neural 

tube closure failure and absence of limb buds in Cwc27tm1b/tm1b embryos with the most severe 

defects (Figure 3I). At later stages, additional anomalies were seen in the homozygous mutants 

such as exencephaly and digit separation delay (Figure 3J-L). These phenotypes, though much 

more severe than the human clinical manifestations, demonstrate the delayed growth as well as 

compromised craniofacial and limb development in the Cwc27 mutants. 

  

The Mutant Mouse Resource and Research Center (MMRRC) program at University of 

California, Davis generated another Cwc27 knockout line Cwc27tm1Lex on a different genetic 

background (129S5/SvEvBrd and C57BL6/J) and Cwc27 exon 1 is deleted in this tm1Lex allele. 

The Cwc27tm1Lex/tm1Lex mutants also show marked prenatal lethality, with only one surviving 

Cwc27tm1Lex/tm1Lex mouse and eight dead Cwc27tm1Lex/tm1Lex embryos identified from breeding 

(MMRRC). The only postnatal mutant exhibited growth retardation, retinal depigmentation and 

numerous neurological, immunological, and blood chemistry abnormalities as recorded by 

MMRRC.   

 

Characterization of Cwc27K338fs/K338fs mice to explore phenotypic variability 



It is striking that the degree of severity of the clinical phenotypes among our affected individuals 

appears to correlate with the position of the truncating mutation. Specifically, the two affected 

individuals in Family 3 and 7 present with retinal degeneration (RP/LCA) with significantly milder 

or no extraocular defects. The p.Val335Serfs*13 variant carried by these two affected 

individuals is the most C-terminal variant identified in this cohort, suggesting that residual 

CWC27 function may be retained in this scenario. Therefore, to further delineate the CWC27-

associated genotype-phenotype correlation, we utilized the CRISPR-Cas9 system to generate a 

second mouse model on the C57BL6/J background targeting Cwc27 exon 11 to mimic the 

p.Val335Serfs*13 allele in these two affected individuals (Figure 4A). One allele 

c.1011_1018delAAAAGTGG, p.Lys338Glyfs*25, GenBank: NM_026072.1 (referred to as 

K338fs) with the most similarity to the human mutation was selected for further study. Strikingly, 

we observed no significant lethality (13:27:12 for WT: Cwc27K338fs/+: Cwc27K338fs/K338fs) in 

Cwc27K338fs/K338fs mice. At 6 months of age, the mice underwent retinal phenotyping. ERG 

showed that the Cwc27K338fs/K338fs mice have about 50% reduction of a-wave and b-wave 

amplitudes compared with Cwc27K338fs/+ littermates, indicating a compromised retinal function 

(Figure 4B). H&E staining showed apparent thinning of the outer retina, specifically in the 

photoreceptor layer (Figure 4C). 

 

Cwc27/CWC27 mRNA does not undergo complete nonsense-mediated decay 

The absence of lethality observed in Cwc27K338fs/K338fs mice strongly suggests that the mouse 

K338fs allele is hypomorphic compared with the complete null allele in Cwc27tm1b/tm1b and 

Cwc27tm1Lex/tm1Lex mice. None of the commercially available CWC27 antibodies were generated 

using mouse antigen completely N-terminal to the Cwc27K338fs/K338fs frameshift site, hindering the 

possibility to detect residual CWC27-truncated proteins in the mutant mice. Therefore, we 

performed quantitative RT-PCR in mouse retina RNA and found that the Cwc27 mRNA level in 



Cwc27K338fs/K338fs mice was 45% of that in WT mice (Figure 5A), indicating that Cwc27 K338fs 

mRNA does not undergo complete nonsense-mediated decay (NMD). Furthermore, qRT-PCR 

on the RNA of the two affected individuals from Family 4 showed that the CWC27 mRNA 

quantity was only reduced by 33-43% compared with a control (Figure 5B). The mRNA 

quantification results in mice and humans are consistent and demonstrate the incomplete NMD 

of Cwc27/CWC27 mRNA for the mutant alleles tested. 

 

  

DISCUSSION 

 

CWC27 (SDCCAG10) is a peptidyl-prolyl cis-trans isomerase (PPIase) found to be associated 

with spliceosome complexes by multiple proteomic characterization studies38-40. PPIases are 

responsible for inducing protein conformational changes by catalyzing the cis/trans 

isomerization of the peptide bond that precedes proline residues41. During splicing reactions, the 

structure and composition of spliceosome complexes change rapidly, and PPIases may serve 

as molecular chaperones to assist in this task42; 43. Interestingly, structural and phylogenetic 

analysis show that the PPIase activity-determining residue at position 122 in CWC27 has 

evolved from tryptophan in protists to glutamate in most animals including human, suggesting 

CWC27 has probably lost its isomerase activity but maintains the proline-binding ability43; 44. 

Nevertheless, as a proline binder, CWC27 may mediate protein-protein interactions during the 

assembly and rearrangement of spliceosome components43. 

 



Despite detailed structural data on CWC27, its function in splicing remains undefined. 

Yeast Cwc27p was recently shown to directly interact with Prp8p (human PRPF8 homolog) and 

Brr2p (human SNRNP200 homolog) in the spliceosome Bact complex45. The association of 

CWC27/Cwc27p with the spliceosomal Bact complex and dissociation from the B* complex 

suggest its role in transitioning the spliceosome from the pre-catalytic to catalytic state38; 39; 45. 

However, complete disruption of CWC27/Cwc27p homologs in model organisms shows 

relatively milder phenotype than knockout of several other core splicing factors. Genetic and 

biochemical studies in yeast have shown that Cwc27p is not required for growth under normal 

conditions or for the splicing of model substrates in vitro46-48. Similarly, Cwc27 KO mice show 

relatively late embryonic lethality with a few surviving postnatal mutants instead of being 

completely early embryonic lethal as observed in other mouse models lacking core splicing 

factors such as PRPF3149, PRPF350 and SNRNP200 (MGI and International Mouse 

Phenotyping Consortium, IMPC). Further genetic and biochemical studies are warranted to 

explore the possible explanations for this observation. For example, CWC27 may control the 

splicing of fewer introns compared with other core splicing factors, or other proteins may 

compensate for the loss of CWC27 function. 

 

In the present study, we observed a trend for the more N-terminal CWC27 truncations to 

be associated with more severe phenotypes (Figure 6A). In mice, disruption of exon 1 (tm1Lex) 

or exon 3 (tm1b) resulted in a wide range of developmental abnormalities with nearly complete 

embryonic lethality, while the mice with a homozygous frameshift mutation in exon 11 display a 

late-onset retinal degeneration phenotype. Similarly, the affected individuals in Family 3 and 7 

with a frameshift mutation (p.Val335Serfs*13) in the C-terminal part of the protein have a milder 

phenotype, while affected individuals with earlier CWC27 protein truncations have craniofacial 

defects, brachydactyly, short stature and neurological defects as common features. We have 



shown that in the affected individuals of Family 4 and Cwc27K338fs/K338fs mice, CWC27/Cwc27 

mRNA does not undergo complete NMD. Thus, the residual function retained by the truncated 

protein may influence the phenotypic severity. In human CWC27, ten residues (Arg56, Phe61, 

Ile62, Gln64, Ala102, Asn103, Phe114, Glu122, Leu123 and His127) form the critical proline-

binding pocket43; 44. All of these essential residues are proximal to the protein-truncation site in 

human affected individuals, with the exception of p.Gln7* in Family 5 and 6 (Figure 6A). 

However, this is a compound heterozygous allele with p.Arg143*, which may still retain residual 

function. Hence it is tempting to speculate that the N-terminal proline binding region is critical for 

CWC27 function, while the C-terminal coiled-coil domain is perhaps less essential, and its 

disruption leads to milder splicing defects not tolerated primarily in the retina, as shown in the 

Family 3 and 7 affected individuals as well as the CRISPR-Cas9 mice with late-onset retinal 

degeneration. Nevertheless, the CWC27-associated genotype-phenotype correlation needs to 

be further delineated by additional genetic analysis in humans or animal models and 

biochemical studies focusing on the putative CWC27 truncated proteins. The partial NMD 

escape of CWC27 mRNA also demonstrates the complexity of NMD mechanism beyond the 

canonical 50nt rule51; 52. 

 

As a splicing factor linked to human disease, CWC27 is special in two aspects. First, 

most previously identified spliceosomopathy-associated genes exhibit a dominant inheritance 

pattern53; 54, while CWC27 mutations show recessive inheritance (Figure 6B). This suggests 

that, unlike several other core snRNP components, CWC27 might be an auxiliary factor 

predicted to function as a chaperone in the spliceosome complex, with single copy abnormality 

being tolerated. Second, retinal degeneration and craniofacial/skeletal developmental defects 

are two known non-overlapping spliceosomopathy phenotype groups53; 54, potentially due to 

tissue-specific roles for those core spliceosome components. Strikingly, the CWC27-associated 



phenotype is a spliceosome-related Mendelian disorder encompassing both retinal 

degeneration and craniofacial/skeletal developmental defects (Figure 6B). This implies CWC27 

exerts functions essential for both early tissue development and later functional maintenance. 

Furthermore, the non-syndromic RP case in Family 3 also shows that the mature retina, with a 

high rate of protein turnover and extensive alternative splicing55-57, is particularly vulnerable to 

perturbations of spliceosome assembly and functions. In addition, we observed some family-

specific symptoms outside the abovementioned two phenotypic domains, such as ectodermal 

defects in Family 4 and internal organ anomalies in Family 5 and 6, suggesting CWC27 may 

play important roles in additional tissues.          

 

To conclude, we have identified CWC27 mutations as the molecular etiology of an 

autosomal recessive disorder characterized by a spectrum of phenotypes including retinal 

degeneration, brachydactyly, craniofacial defects, short stature and neurological defects. This 

disease phenotype, together with its genetic underpinnings and biochemical implications, paves 

the way for further understanding of the pathological mechanisms that arise upon disruption of 

splicing components. 
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FIGURE TITLES AND LEGENDS 

 

Figure 1. Clinical findings in this study. 

(A) Craniofacial defects of the two affected siblings in Family 4. Note the high frontal 

hairline, sparse hair, eyebrows and eyelashes, low-set ears and thick lips. 

(B) Retinal phenotypes of affected individuals in Family 3, 5 and 7. Family 3: II-1: 

funduscopy shows wide-spread grayish and charcoal gray pigment flecks and crumbs in the 

retina. OCT shows irregular retinal structure with thickening of the fovea, and disappearance of 

the ellipsoid and interdigitation zone. Visual field test shows tunnel vision in both eyes. Family 5: 

II-1: funduscopy and fundus autofluorescence imaging show thinning of the retinal vessels and 

a reduced autofluorescence from the RPE layer consistent with outer retinal degeneration. OCT 

through the retinal fovea shows a loss of volume of the outer nuclear layer (photoreceptor 

nuclei) and complete absence of the photoreceptor outer segments throughout the field of view. 

Family 7: II-1: funduscopy demonstrates wide-spread salt and pepper pigment changes. OCT, 

optical coherence tomography; OD, oculus dexter, the right eye; OS, oculus sinister, the left 

eye. 

(C) Brachydactyly of affected individuals in Family 1, 4 and 5. Note the shortening of the 

distal phalanges and hypoplastic nails.   

 

 

Figure 2. Genetic findings in this study. 

(A) The pedigrees of seven families with recessive CWC27 mutations. Variant annotations 

were based on GenBank: NM_005869.3. 



(B) RT-PCR confirmed the protein-truncating effects of the two splice-site mutations. RT-

PCR-1 in Family 2: primer pair spanning CWC27 exon 5 to exon 6 was used. Both affected 

individuals show a 1,098bp PCR product, suggesting complete intron 5 inclusion, while controls 

show 154bp normal size PCR product. gDNA, genomic DNA as intron inclusion control; Neg, 

negative control without templates. RT-PCR-2 in Family 4: primer pair spanning CWC27 exon 4 

to exon 10 was used. In Family 4: II-3 and Family 4: II-4, two abnormal PCR bands were seen. 

Sanger sequencing showed the upper band is the result of activation of a cryptic splice site 

within exon 6, with production of a mature mRNA lacking the final 29 nucleotides of exon 6, 

leading to the frameshift p.Val191Lysfs*3. The lower band results from complete skipping of 

exon 6, leading to the frameshift p.Val166Lysfs*3. 

 

Figure 3. Cwc27tm1b/tm1b mice phenotype analysis  

(A-H)     The overall appearance (A and E), OCT scanning locations (B and F), OCT images (C 

and G) and H&E staining results (D and H) of Cwc27tm1b/+ and Cwc27tm1b/tm1b mice. The red lines 

in (B) and (F) indicate the OCT scanning section site. Arrows in (B) and (F) indicate optic discs. 

Note the retarded growth and severely dystrophic photoreceptor layer in the Cwc27tm1b/tm1b 

mouse.   

(I-L)     Photographs of mouse embryos at E12.5 (I), E14.5 (J), E16.5 (K) and E18.5 (L). 

Representative specimens of either wild-type or Cwc27tm1b/+ embryos were used to illustrate 

normal developmental state. At E12.5, some Cwc27tm1b/tm1b embryos (#20 and #10) have neural 

tube closure failure and limb buds failed to develop. From E14.5 to E18.5, some Cwc27tm1b/tm1b 

embryos present exencephaly (#35, #46 and #58) as well as iris and eyelid malformation (#35, 

#46 and #68). They also show delays in digit development (#35 and #36, indicated by arrows). 

An omphalocele, reminiscent of umbilical hernia was also seen (#68). Cwc27tm1b/tm1b embryos 



are generally less advanced in developmental stage with delay of one or more Theiler stages 

compared to control littermates. WT, wild-type; Het, Cwc27tm1b/+; Homo, Cwc27tm1b/tm1b. TS: 

Theiler staging criteria for mouse development. “#”: numbering of the embryo. Scale bar at 

E12.5 represents 1mm. Scale bars at E14.5 to E18.5 represent 5mm. 

 

Figure 4. Phenotype analysis of Cwc27K338fs/K338fs mice. 

(A)  The CRISPR-Cas9 system was used to generate mice with mutant alleles in Cwc27 

exon 11. A 20nt-long sgRNA sequence was designed to target the indicated region in Cwc27 

exon 11. The scissor indicates the theoretical Cas9 cutting site. The strikethrough indicates the 

8bp deleted in the mouse allele selected for further study (GenBank: NM_026072.1, 

c.1011_1018delAAAAGTGG, p.Lys338Glyfs*25). 

(B) ERG results show about 50% reduction of a-wave (left) and b-wave (right) response 

level in Cwc27K338fs/K338fs mice (n=6) compared to Cwc27K338fs/+ controls (n=8), indicating 

compromised retina function. Error bars indicate standard error of the mean. *, p<0.05; **, 

p<0.01. 

(C) H&E staining shows thinning of outer retina in Cwc27K338fs/K338fs mice at the age of 6 

months, suggesting photoreceptor degeneration. 

 

Figure 5. Cwc27/CWC27 mRNA does not undergo complete nonsense-mediated decay in 

mice and humans. 

(A) Quantitative RT-PCR of mouse retina RNA shows the Cwc27 mRNA level in 

Cwc27K338fs/K338fs is 45% of that in WT mice. Error bars indicate standard error of the mean (n=4 

for each genotype, biological replicates). 



(B) Quantitative RT-PCR of human fibroblast RNA shows that the CWC27 mRNA level in 

the two affected individuals from Family 4 is reduced by 33-43% compared with the control. 

qPCR-1 amplifies a region of the CWC27 mRNA unaffected by the Family 4 splice site mutation 

(exons 1-3). qPCR-2 serves as the negative control and amplifies CWC27 mRNA between 

exons 6 and 8, with the exon 6 primer falling in a region which is skipped in the affected 

individuals from Family 4. 

 

Figure 6. CWC27/Cwc27-associated genotype-phenotype correlation and the uniqueness 

of CWC27 amongst disease-associated spliceosomal genes.  

(A) The genotype-phenotype correlation of CWC27 protein defects in humans and mice. 

Human CWC27 (GenPept: NP_005860.2), mouse CWC27 (GenPept: NP_080348.1) and 

different phenotype severity groups are presented. Dashed lines indicate compound 

heterozygous combination of alleles in affected individuals. Note the severity gradient from 

severe to mild corresponding to the CWC27 variant position from N- to C-terminal. 

(B) CWC27 mutations lead to an autosomal recessive phenotype covering both non-

syndromic RP and early craniofacial/skeletal defects, thus making it a unique member among 

disease-associated spliceosomal genes. Red font indicates genes with dominant inheritance 

pattern, while black font indicates recessive inheritance. 

 

 



Affected 

individual 

Age Age of Dx 

(abnormality) 

Ethnicity Craniofacial 

defects 

Neurological Brachydactyly Ocular Growth Additional abnormalities 

Family 1: II-3 20 Unknown Yemenite + SD; DW (3 yo) + RP SS cafe-au-lait spots; 

Family 1: II-4 18 Unknown Yemenite + SD; DW (3 yo) + RP SS cafe-au-lait spots; hallux valgus both 

sides; flat feet 

Family 2: II-1 66 10 (NB) Spanish + Moderate ID, PR +  RP SS (-2SDs) Unspecific endocrinological 

dysfunction 

Family 2: II-2 64 10 (NB) Spanish 

 

+ Moderate ID +  RP SS (-2SDs) Unspecific endocrinological 

dysfunction 

Family 3: II-1 14 9 (NB) Han Chinese - - - RP Normal - 

Family 4: II-3 17 Prenatal (KC) Moroccan + ID; FD; severe PR; + Flat ERG; 

altered VEP 

SS Alopecia; absent eyebrows and 

eyelashes; ichthyosis; multiple KC; 

Family 4: II-4 12 Prenatal 

(IGUR) 

Moroccan + ID; FD; severe PR; 

CA 

+ Flat ERG; 

altered VEP 

SS (-4SDs, at 

birth) 

Alopecia; absent eyebrows and 

eyelashes; ichthyosis; ectopic testis;  

Family 5: II-1 23 8 (RP) Indian + ID; SD (6 yo); DW 

(2 yo); FD (2 yo); 

ACM type 1 

+ RP SS Neonatal hypotonia; Inguinal hernia; 

bladder cyst; heart murmur  

Family 6: II-1 2 At birth (CS) Indian + -  

(at 19 months) 

+  Normal at 2 

months 

SS (-2SDs, 19 

months) 

Bilateral SVC; 2 large VSDs; 

horseshoe kidney 

Family 7: II-1 7 1 (LCA) Han Chinese - - + (mild) LCA Height: -0.8SD - 

 

Table 1. Clinical phenotypes of affected individuals with CWC27 mutations 

Dx, diagnosis; NB, night blindness; KC, kidney cysts; IUGR, intrauterine growth restriction; RP, retinitis pigmentosa; CS, Craniosynostosis; LCA, Leber congenital amaurosis; SD, 

speech delay; DW, delay of walking; yo, years old; ID, intellectual disability; FD, feeding difficulty; PR, psychomotor retardation; CA, cortical atrophy; ACM, Arnold-Chiary malformation; 

ERG, electroretinogram signals; VEP, visual evoked potential response; SS, short stature; SD, standard deviation; SVC, superior vena cava; VSD, ventricular septal defect. 

 


