
This is a repository copy of Engineering Trustworthy Self-Adaptive Software with Dynamic
Assurance Cases.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/120173/

Version: Accepted Version

Article:

Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260, Weyns, Danny, Gerasimou,
Simos et al. (3 more authors) (2018) Engineering Trustworthy Self-Adaptive Software with
Dynamic Assurance Cases. IEEE Transactions on Software Engineering. 8008800. pp.
1039-1069. ISSN 0098-5589

https://doi.org/10.1109/TSE.2017.2738640

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Engineering Trustworthy Self-Adaptive Software
with Dynamic Assurance Cases

Radu Calinescu, Danny Weyns, Simos Gerasimou, M. Usman Iftikhar, Ibrahim Habli, and Tim Kelly

Abstract—Building on concepts drawn from control theory, self-adaptive software handles environmental and internal uncertainties by

dynamically adjusting its architecture and parameters in response to events such as workload changes and component failures.

Self-adaptive software is increasingly expected to meet strict functional and non-functional requirements in applications from areas as

diverse as manufacturing, healthcare and finance. To address this need, we introduce a methodology for the systematic ENgineering of

TRUstworthy Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of (1) design-time and runtime modelling and

verification, and (2) industry-adopted assurance processes to develop trustworthy self-adaptive software and assurance cases arguing

the suitability of the software for its intended application. To evaluate the effectiveness of our methodology, we present a tool-supported

instance of ENTRUST and its use to develop proof-of-concept self-adaptive software for embedded and service-based systems from

the oceanic monitoring and e-finance domains, respectively. The experimental results show that ENTRUST can be used to engineer

self-adaptive software systems in different application domains and to generate dynamic assurance cases for these systems.

Index Terms—Self-adaptive software systems, software engineering methodology, assurance evidence, assurance cases.

✦

1 INTRODUCTION

Software systems are regularly used in applications charac-
terised by uncertain environments, evolving requirements
and unexpected failures. The correct operation of these
applications depends on the ability of software to adapt
to change, through the dynamic reconfiguration of its pa-
rameters or architecture. When events such as variations
in workload, changes in the required throughput or com-
ponent failures are observed, alternative adaptation options
are analysed, and a suitable new software configuration may
be selected and applied.

As software adaptation is often too complex or too
costly to be performed by human operators, its automation
has been the subject of intense research. Using concepts
borrowed from the control of discrete-event systems [91],
this research proposes the extension of software systems
with closed-loop control. As shown in Fig. 1, the paradigm
involves using an external software controller to monitor
the system and to adapt its architecture or configuration
after environmental and internal changes. Inspired by the
autonomic computing manifesto [67], [73] and by pioneer-
ing work on self-adaptive software [71], [86], this research
has been very successful. Over the past decade, numerous
research projects proposed architectures [54], [76], [124] and
frameworks [15], [43], [109], [123] for the engineering of self-
adaptive systems. Extensive surveys of this research and its
applications are available in [68], [89], [95].

In this paper, we are concerned with the use of self-
adaptive software in systems with strict functional and

• R. Calinescu, S. Gerasimou, I. Habli and T. Kelly are with the Department
of Computer Science at the University of York, UK.

• D. Weyns is with the Department of Computer Science of the Katholieke
Universiteit Leuven, Belgium.

• M. U. Iftikhar is with the Department of Computer Science at Linnaeus
University, Sweden.

Effectors Controlled
software
system

ControllerRequirements

Sensorsclosed-loop control

Fig. 1. Closed-loop control is used to automate software adaptation

non-functional requirements. A growing number of sys-
tems are expected to fit this description in the near fu-
ture. Service-based telehealth systems are envisaged to use
self-adaptation to cope with service failures and workload
variations [15], [44], [120], avoiding harm to patients. Au-
tonomous robots used in applications ranging from man-
ufacturing [40], [58] to oceanic monitoring [19], [55] will
need to rely on self-adaptive software for completing their
missions safely and effectively, without damage to, or loss
of, expensive equipment. Employing self-adaptive software
in these applications is very challenging, as it requires
assurances about the correct operation of the software in
scenarios affected by uncertainty.

Assurance has become a major concern for self-adaptive
software only recently [25], [30], [36], [37]. Accordingly,
the research in the area is limited, and often confined
to providing evidence that individual aspects of the self-
adaptive software are correct (e.g. the software platform
used to execute the controller, the controller functions, or the
runtime adaptation decisions). However, such evidence is
only one component of the established industry process for
the assurance of software-based systems [11], [81], [111]. In
real-world applications, assuring a software system requires
the provision of an assurance case, which standards such as
[112] define as

“a structured argument, supported by a body of evi-
dence, that provides a compelling, comprehensible and
valid case that a system is safe for a given application in
a given environment”.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Our work addresses this discrepancy between the state
of practice and the current research on assurances for self-
adaptive software. To this end, we introduce a generic
methodology for the joint development of trustworthy self-
adaptive software systems and their associated assurance
cases. Our methodology for the ENgineering of TRUstwor-
thy Self-adaptive sofTware (ENTRUST) is underpinned by a
combination of (1) design-time and runtime modelling and
verification, and (2) an industry-adopted standard for the
formalisation of assurance arguments [60], [102].

ENTRUST uses design-time modelling, verification and
synthesis of assurance evidence for the control aspects of
a self-adaptive system that are engineered before the sys-
tem is deployed. These design-time activities support the
initial controller enactment and the generation of a partial
assurance case for the self-adaptive system. The dynamic
selection of a system configuration (i.e., architecture and
parameters) during the initial deployment and after internal
and environmental changes involves further modelling and
verification, and the synthesis of the additional assurance
evidence required to complete the assurance case. These
activities are fully automated and carried out at runtime.

The ENTRUST methodology is not prescriptive about
the modelling, verification and assurance evidence gener-
ation methods used in its design-time and runtime stages.
This generality exploits the fact that the body of evidence
underpinning an assurance case can combine verification
evidence from activities including formal verification, test-
ing and simulation. As such, ENTRUST assurance cases can
use assurance evidence obtained through a combination of
testing, simulation and formal verification, at both design
time and runtime.

ENTRUST supports the systematic engineering and as-
surance of self-adaptive systems. In line with other research
on self-adaptive systems (see e.g. [95], [122]), we assume
that the controlled software system from Fig. 1 already
exists, and we focus on its enhancement with self-adaptation
capabilities through the addition of a high-level monitor-
analyse-plan-execute (MAPE) control loop. The components
of the controlled software system may already support low-
level, real-time adaptation to localised changes. For instance,
the self-adaptive embedded system used in one of our case
studies is a controlled unmanned vehicle that employs built-
in low-level control to maintain the speed selected by its
high-level ENTRUST controller. Mature approaches from
the areas of robust control of discrete-event systems (e.g.
[80], [91], [107], [126]) and real-time systems (e.g. [77], [82])
already exist for the engineering of such low-level control.
Thus, real-time control is outside the scope of ENTRUST.

Likewise, established assurance processes are available
for the non-self-adaptive aspects of software systems (e.g.
[10], [11], [62], [65], [94]). We do not duplicate this work.
Using these processes to construct assurance arguments
for the correct design, development and operation of the
controlled software system, and for the derivation, validity,
completeness and formalisation of the requirements from
Fig. 1 is outside the scope of our paper. Thus, ENTRUST
focuses on the correct engineering of the controller and on
the correct operation of self-adaptive system, assuming that
the controlled system and its requirements are both correct.

The main contributions of our paper are:

1) The first end-to-end methodology for (a) engineering
self-adaptive software systems with assurance evidence
for the controller platform, its functions and the adapta-
tion decisions; and (b) devising assurance cases whose
assurance arguments bring together this evidence.

2) A novel assurance argument pattern for self-adaptive
systems, expressed in the Goal Structuring Notation
(GSN) standard [60] that is widely used for assurance
case development in industry [102].

3) An instantiation of our methodology whose stages are
supported by the established modelling and verification
tools UPPAAL [7] and PRISM [79].

These contributions include four significant extensions
of complementary results from our previously separate
strands of work on developing formally verified control
loops [69], runtime probabilistic model checking [20] and
dynamic assurance cases [38]. First, the instantiation of the
ENTRUST methodology is based on a formally verifiable
controller architecture where the controller from [69] was
extended to use probabilistic model checking at runtime
[20]. Second, we introduce a set of generic properties that
ENTRUST controllers must satisfy. Third, we extend our
preliminary work from [38] with a realisation of the prin-
ciples of dynamic assurance case continuity, updatability,
proactivity, automation and formality that we suggested in
[38]. Fourth, we devise the first assurance argument pattern
for self-adaptive systems. In addition, we integrate these
extended building blocks into a complete methodology for
the engineering of self-adaptive systems.

To ensure the generality of ENTRUST, these contribu-
tions are evaluated using two case studies with differ-
ent characteristics (e.g. types of system, requirements and
adaptation actions) and belonging to different application
domains (i.e. oceanic monitoring and exchange trade). We
chose for these case studies systems that have been used
to evaluate related software engineering research [19], [55],
[57], [98], as these systems are already known to the research
community – one of them as an “exemplar” for the evalua-
tion of new approaches to engineering self-adaptive systems
[56].

The remainder of the paper is organised as follows. In
Section 2, we provide background information on assurance
cases, GSN and assurance argument patterns. Section 3 in-
troduces the self-adaptive systems used in our case studies,
and Section 4 describes the generic ENTRUST methodol-
ogy. Sections 5 and 6 present the tool-supported ENTRUST
instance and its use to develop the self-adaptive systems
from the two case studies, respectively. Section 7 presents
our evaluation results, which show that the methodology
can be used for the effective engineering of self-adaptive
systems from different domains and for the generation of
dynamic assurance cases for these systems. In Section 8, we
overview the existing approaches to providing assurances
for self-adaptive software systems, and we compare them
to ENTRUST. Finally, Section 9 concludes the paper with a
discussion and a summary of future work directions.

2 PRELIMINARIES

This section provides background information on assurance
cases, introducing the assurance-related terminology and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

{Goal Identifier}

<Goal Statement>

{Context Identifier}

<Context Statement>

J

{Justification Identifier}

<Justification Statement>

{Strategy Identifier}

<Strategy Statement>

{Solution

Identifier}

<Solution

Statement> A

{Assumption Identifier}

<Assumption Statement>

Away Goal

<Goal Statement>

<Module Identifier>

Choice

Uninstantiated
Entity

Undeveloped
Entity

Supported by

In context of

Multiplicity

Optionality

Fig. 2. Core GSN elements

concepts used in the rest of the paper. We start by defining
assurance cases and their components in Section 2.1. Next,
we introduce a commonly used notation for the specification
of assurance cases in Section 2.2. Finally, we introduce the
concept of an assurance argument pattern in Section 2.3.

2.1 Assurance Cases

An assurance case1 is a report that supports a specific claim
about the requirements of a system [10]. As an example,
the assurance case in [85] provides documented assurance
that the “implementation and operation of North European
Functional Airspace Block (NEFAB) is acceptably safe ac-
cording to ICAO, EC and EUROCONTROL safety require-
ments.” The documented assurance within an assurance
case comprises (1) evidence and (2) structured arguments
that link the evidence to the claim [10], possibly through
intermediate claims.

Assurance cases are becoming mandatory for software
systems used in safety-critical and mission-critical applica-
tions [11], [81], [111]. They are used in domains ranging
from nuclear energy [113] and medical devices [115] to air
traffic control [45] and defence [112]. A growing number of
assurance cases from these and other domains are openly
available (e.g., [85], [114]).

The development of assurance cases comprises processes
carried out at all stages of the system life cycle [111]. Re-
quirements analysis evidence and design evidence demon-
strate that system reliability, safety, maintainability, etc. are
considered in the early stages of the life cycle. Implementa-
tion, validation and verification evidence are then generated
as the system is developed. Finally, evidence collected at
runtime is used to update assurance cases during system
maintenance.

As aptly described in [111], the assurance case must
be “a living, cradle-to-grave document.” This is particularly
true for self-adaptive software systems. For these systems,
existing evidence needs to be continuously combined with
new adaptation evidence, i.e., evidence that the system will
continue to operate safely after self-adaptation activities.

1. Assurance cases developed for safety-critical systems are also
called safety cases. In this work, we are concerned with any self-adaptive
software systems that must meet strict requirements, and therefore we
talk about assurance cases and assurance arguments.

Context 1

Heating system

Strategy 1

Argument based on

addressing the safety

of system functions

Goal 1

Heating system is safe

Context 2

Control and monitor

 system functions

Goal 2

Control system

function is safe

Goal 3

All system functions

are independent

Goal 2’

Monitor system

function is safe

 Solution 1

Simulation

results

 Solution 2

Test

results

 Solution 3

Formal

proof

Fig. 3. Example of a GSN assurance argument

2.2 Goal Structuring Notation

The assurance cases for self-adaptive systems introduced
later in the paper are devised in the Goal Structuring Notation
(GSN) [72], a community standard [60] widely used for
assurance case development in industry [102]. The main
GSN elements (Fig. 2) can be used to construct an argument
by showing how an assurance claim (represented in GSN
by a goal) is broken down into sub-claims (also represented
by GSN goals), until eventually it can be supported by
GSN solutions (i.e., assurance evidence from verification,
testing, etc.). Strategies are used to partition the argument
and describe the nature of the inference that exists between
a goal and its supporting goal(s). The rationale (assumptions
and justifications) for individual elements of the argument
can be captured, along with the context (e.g. to describe the
operational environment) in which the claims are stated.

In a GSN diagram, claims are linked to strategies, sub-
claims and ultimately to solutions using ‘supported by’ con-
nectives, which are rendered as lines with a solid arrowhead
and declare inferential or evidential relationships. ‘Sup-
ported by’ connectives may be decorated with their multi-
plicity or marked as optional. The ‘in context of ’ connective,
rendered as a line with a hollow arrowhead, declares a
contextual relationship between a goal or strategy on the
one hand and a context, assumption or justification on the
other hand.

Large or complex sections of the assurance argument can
be organised into modules by means of GSN away goals
referenced in the main argument and defined separately.
Finally, GSN entities can be marked as uninstantiated to
indicate that they are placeholders that need to be replaced
with a concrete instantiation, and GSN goals can be marked
as undeveloped to indicate that they need to be further
developed into sub-goals, strategies and solutions.

As an example, Fig. 3 shows a simple GSN assurance
argument for the software part of a heating system. Its root
goal (Goal 1) claims that the system is safe at all times.
This claim is partitioned into sub-claims using a strategy
(Strategy 1) that addresses the safety of the two system
functions (i.e. control and monitoring) separately through

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

n (n=#functions)

Context 1

{System X}

Strategy 1

Argument based on

addressing the safety

of system functions

Goal 1

{System X} is safe

Context 2

{List of system

functions}

Goal 2

{Function Y} is safe

Goal 4

Interactions between

system functions are

non-hazardous

Goal 3

All system functions

are independent

1 of 2

Fig. 4. Example of a GSN assurance argument pattern

sub-claims Goal 2 (for the control system) and Goal 2’ (for
the monitor system), and includes sub-claim Goal 3 that
the two functions are independent. The three sub-claims are
supported by three solutions comprising assurance evidence
from simulation, testing and formal proof, respectively.

2.3 Assurance Argument Patterns

To reduce the significant effort required to develop assur-
ance cases, in our previous work on software assurance [62],
[64] we collaborated to the creation of a catalog of reusable
GSN assurance argument patterns [63]. Each pattern considers
the contribution made by the software to system hazards
for a particular class of systems and scenarios. The GSN
elements of a pattern that are generic to the entire class are
fully developed and instantiated, whereas the entities that
are specific to each system and scenario within the class are
left undeveloped and/or uninstantiated.

As an example, Fig. 4 depicts an assurance argument
pattern that is instantiated by the GSN assurance argument
from Fig. 3. The elements surrounded by curly brackets ‘{’
and ‘}’ in the pattern must be instantiated for each assur-
ance argument based on the pattern, as further indicated
by the triangular ‘uninstantiated’ symbol under the GSN
entities that contain them. Goal 2 is marked with both
this ‘uninstantiated’ symbol (because it contains elements
in curly brackets) and a diamond-shaped ‘undeveloped’
symbol (because, like for the ‘choice’ sub-claims Goal 3 and
Goal 4, additional GSN entities must be added underneath
to complete the assurance argument); the two symbols are
rendered overlapping under Goal 2.

In this paper, we devise a new assurance argument pat-
tern, which is applicable to self-adaptive software systems.

3 SELF-ADAPTIVE SYSTEMS USED IN THE CASE

STUDIES

This section introduces the self-adaptive software systems
from the two case studies used to illustrate and evaluate
our methodology. To assess the generality of ENTRUST,
we chose different types of systems from different do-
mains. The first system, introduced in Section 3.1, is an
embedded unmanned underwater vehicle (UUV) system
from the oceanic monitoring domain. The second system,

TABLE 1
Comparison of systems used to assess the generality of ENTRUST

UUV FX

Type embedded system service-based system

Domain oceanic monitoring exchange trade

Requirements throughput, resource use,
cost, safety

reliability, response time,
cost, safety

Sensor data UUV sensor measure- service response time
ment rate and reliability

Adaptation switch sensors on/off, change service instance
actions change speed

Uncertainty continuous-time stochas- discrete-time stochastic
modelling tic model of UUV sensors model of system

presented in Section 3.2, is a service-based system from the
foreign exchange (FX) trade domain. Table 1 lists several
additional characteristics that differ significantly between
the two systems. These characteristics include the types of
requirements, sensor data and adaptation actions of the sys-
tems, and the types of models whose verification underpins
their self-adaptation decisions.

3.1 Unmanned Underwater Vehicle (UUV) System

The self-adaptive UUV embedded system is adapted
from [55]. UUVs are increasingly used in a wide range of
oceanographic and military tasks, including oceanic surveil-
lance (e.g., to monitor pollution levels and ecosystems),
undersea mapping and mine detection. Limitations due to
their operating environment (e.g., impossibility to maintain
UUV-operator communication during missions and unex-
pected changes) require that UUV systems are self-adaptive.
These systems are often mission critical (e.g., when used
for mine detection) or business critical (e.g., they carry
expensive equipment that should not be lost).

The self-adaptive system we use consists of a UUV
deployed to carry out a data gathering mission. The UUV is
equipped with n ≥ 1 on-board sensors that can measure the
same characteristic of the ocean environment (e.g., water
current, salinity or temperature). When used, the sensors
take measurements with different, variable rates r1, r2, . . . ,
rn. The probability that each sensor produces measurements
that are sufficiently accurate for the purpose of the mission
depends on the UUV speed sp, and is given by p1, p2,
. . . , pn. For each measurement taken, a different amount
of energy is consumed, given by e1, e2, . . . , en. Finally, the
n sensors can be switched on and off individually (e.g., to
save battery power when not required), but these operations
consume an amount of energy given by eon1 , eon2 , . . . , eonn
and eoff1 , eoff2 , . . . , eoffn , respectively. The UUV must adapt to
changes in the sensor measurement rates r1, r2, . . . , rn and
to sensor failures by dynamically adjusting:

(a) the UUV speed sp

(b) the sensor configuration x1, x2, . . . , xn (where xi = 1 if
the i-th sensor is on and xi = 0 otherwise)

in order to meet the quality-of-service requirements below:

R1 (throughput): The UUV should take at least 20 mea-
surements of sufficient accuracy for every 10 metres of
mission distance.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

R2 (resource usage): The energy consumption of the sen-
sors should not exceed 120 Joules per 10 surveyed me-
tres.

R3 (cost): If requirements R1 and R2 are satisfied by mul-
tiple configurations, the UUV should use one of these
configurations that minimises the cost function

cost = w1E + w2sp
−1, (1)

where E is the energy used by the sensors to survey
a 10m mission distance, and w1, w2 > 0 are weights
that reflect the relative importance of carrying out the
mission with reduced battery usage and completing the
mission faster.2

R4 (safety): If a configuration that meets requirements R1–
R3 is not identified within 2 seconds after a sensor
rate change, the UUV speed must be reduced to 0m/s.
This ensures that the UUV does not advance more than
the distance it can cover at its maximum speed within
2 seconds without taking appropriate measurements,
and waits until the controller identifies a suitable con-
figuration (e.g., after the UUV sensors recover) or new
instructions are provided by a human operator.

3.2 Foreign Exchange Trading System

The service-based system from the area of foreign exchange
trading is taken from our recent work in [57]. This system,
which we anonymise as FX for confidentiality reasons, is
used by an European foreign exchange brokerage company.
The FX system implements the workflow shown in Fig. 5
and described below.

An FX customer (called a trader) can use the system in
two operation modes. In the expert mode, FX executes a
loop that analyses market activity, identifies patterns that
satisfy the trader’s objectives, and automatically carries
out trades. Thus, the Market watch service extracts real-
time exchange rates (bid/ask price) of selected currency
pairs. This data is used by a Technical analysis service that
evaluates the current trading conditions, predicts future
price movement, and decides if the trader’s objectives are:
(i) “satisfied” (causing the invocation of an Order service
to carry out a trade); (ii) “unsatisfied” (resulting in a new
Market watch invocation); or (iii) “unsatisfied with high
variance” (triggering an Alarm service invocation to notify
the trader about discrepancies/opportunities not covered by
the trading objectives). In the normal mode, FX assesses the
economic outlook of a country using a Fundamental analysis
service that collects, analyses and evaluates information
such as news reports, economic data and political events,
and provides an assessment on the country’s currency. If
satisfied with this assessment, the trader can use the Order
service to sell or buy currency, in which case a Notification
service confirms the completion of the trade. We assume
that the FX system has to dynamically select third-party
implementations for each service from Fig. 5, in order to
meet the following system requirements:

2. Cost (or utility) functions that employ weights to combine several
performance, reliability, resource use and other quality attributes of
software—accounting for differences in attribute value ranges and
relative importance—are extensively used in self-adaptive software
systems (e.g. [15], [43], [54], [95], [118]).

Fig. 5. Foreign exchange trading (FX) workflow

R1 (reliability): Workflow executions must complete suc-
cessfully with probability at least 0.9.

R2 (response time): The total service response time per
workflow execution must be at most 5s.

R3 (cost): If requirements R1 and R2 are satisfied by multi-
ple configurations, the FX system should use one of these
configurations that minimises the cost function:

cost = w1price + w2time, (2)

where price and time represent the total price of the
services invoked by a workflow execution and the re-
sponse time for a workflow execution, respectively, and
w1, w2 > 0 are weights that encode the desired trade-off
between price and response time.

R4 (safety): If a configuration that ensures requirements
R1–R3 cannot be identified within 2s after a change in
service characteristics is signalled by the sensors of the
self-adaptive FX system, the Order service invocation is
bypassed, so that the FX system does not carry out any
trade that might be based on incorrect or stale data.

Note that requirements R1–R3 express two constraints and
an optimisation criterion that are qualitatively different from
those specified by the requirements from our first case study
(cf. Section 3.1). Nevertheless, our tool-supported instance
of the ENTRUST methodology enabled the development of
the self-adaptive FX system as described in Section 6.

4 THE ENTRUST METHODOLOGY

The ENTRUST methodology supports the systematic engi-
neering and assurance of self-adaptive systems based on
monitor-analyse-plan-execute (MAPE) control loops. This is
by far the most common type of control loop used to devise
self-adaptive software systems [14], [36], [37], [43], [68], [78],
[83], [95]. The engineering of self-adaptive systems based on
essentially different control techniques, such as the control
theoretical paradigm [97], as for example proposed in [49],
is not supported by our methodology.

ENTRUST comprises the tool-supported design-time
stages and the automated runtime stages shown in Fig. 6,
and is underpinned by two key principles:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

1. Develop
verifiable
models

2. Verify
controller
models

4. Enact
controller

5. Deploy
self-adaptive

system

3. Partially
instantiate
arg. pattern

7. Update
assurance
argument

E
N
T
R
U
S
T

st
a
g
e
s

S
o
ft
w
a
re

a
rt
e
fa
c
ts

a
p
p
.
sp

e
c
ifi
c

re
u
sa
b
le

Incomplete
system&env.
models

Controller
model(s)

Verified
controller
platform

a
p
p
.

sp
e
c
ifi
c

re
u
sa
b
le

Controller
assurance
evidence

Assurance
argument
pattern

Controller

Dynamic
assurance
argument

Adaptation
assurance
evidence

M A P E

6. Self-adapt

Deployed
self-adaptive
system

Up-to-date
system&env.
models

Reconfigured
self-adaptive
system

Design-time stages

A
ss
u
ra
n
c
e
a
rt
e
fa
c
ts

System
requirements

Controller
model
template(s)

Generic
controller
requirements

Domain
knowledge

Controlled
system
specification

Platform
assurance
evidence

Partial
assurance
argument

Runtime stages

Controlled
system

Fig. 6. Stages and key artefacts of the ENTRUST methodology. In line with the two principles underpinning the methodology, its first stage involves
the development of verifiable models for the controller, controlled system and environment of the self-adaptive system used throughout the remaining
stages, and multiple stages reuse application-independent software and assurance artefacts.

1) Model-driven engineering is essential for developing trustwor-
thy self-adaptive systems and their assurance cases. As em-
phasised in the previous section, model-based analysis,
simulation, testing and formal verification—at design
time and during reconfiguration—represent the main
sources of assurance evidence for self-adaptive software.
As such, both the design-time and the runtime stages of
our methodology are model driven. Models of the struc-
ture and behaviour of the functional components, con-
troller and environment are the basis for the engineering
and assurance of ENTRUST self-adaptive systems.

2) Reuse of application-independent software and assurance arte-
facts significantly reduces the effort and expertise required to
develop trustworthy self-adaptive systems. Assembling an
assurance case for a software system is a costly process
that requires considerable effort and expertise. There-
fore, the reuse of both software and assurance artefacts
is essential for ENTRUST. In particular, the reuse of
application-independent controller components and of
templates for developing application-specific controller
elements also enables the reuse of assurance evidence
that these software artefacts are trustworthy.

The ENTRUST stages and their exploitation of these two
principles are described in the remainder of this section.

4.1 Design-time ENTRUST Stages

4.1.1 Stage 1: Development of Verifiable Models

In ENTRUST, the engineering of a self-adaptive system with
the architecture from Fig. 1 starts with the development of
models for:

1) The controller of the self-adaptive system;

2) The relevant aspects of the controlled software system
and its environment.

A combination of structural and behavioural models may
be produced, depending on the evidence needed to assem-
ble the assurance case for the self-adaptive system under
development. ENTRUST is not prescriptive in this respect.
However, we require that these models are verifiable, i.e.,
that they can be used in conjunction with methods such as
model checking or simulation, to obtain evidence that the
controller and the self-adaptive system meet their require-
ments. As an example, finite state transition models may be
produced for the controllers of our UUV and FX systems
from Section 3, enabling the use of model checking to verify
that these controllers are deadlock free.

The verifiable models are application-specific. As illus-
trated in Fig. 6, their development requires domain knowl-
edge,3 is based on a controlled system specification, and is in-
formed by the system requirements. As in other areas of soft-
ware engineering, we envisage that tool-supported methods
will typically be used to obtain these models. However, their
manual development or fully automated synthesis are not
precluded by ENTRUST.

In line with the “reuse of artefacts” principle, ENTRUST
exploits the fact that the controllers of self-adaptive sys-
tems implement the established MAPE workflow, and uses
application-independent controller model template(s) to devise
the controller model(s). These templates model the generic
aspects of the MAPE workflow and contain placeholders for
the application-specific elements of an ENTRUST controller.

3. The ENTRUST software and assurance artefacts that appear in
italics in the text are also shown in Fig. 6.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Given the environmental and internal uncertainty that
characterises self-adaptive systems, only incomplete system
and environment models can be produced in this ENTRUST
stage. These incomplete models may include unknown
or estimated parameters, nondeterminism (i.e., alternative
options whose likelihoods are unknown), parts that are
missing, or some combination of all of these. For example,
parametric Markov chains may be devised to enable the
runtime analysis of the requirements for our UVV and FX
systems detailed in Sections 3.1 and 3.2, respectively, by
means of probabilistic model checking or simulation.

4.1.2 Stage 2: Verification of Controller Models

The main role of the second ENTRUST stage is to produce
controller assurance evidence, i.e., compelling evidence that
a controller based on the controller model(s) from Stage 1
will satisfy a set of generic controller requirements. These are
requirements that must be satisfied in any self-adaptive sys-
tem (e.g., deadlock freeness) and are predefined in a format
compatible with that of the controller model templates and
with the method that will be used to verify the controller
models. For example, if labelled transition systems are used
to model the controller and model checking to establish its
correctness as in [40], [41], these generic controller require-
ments can be predefined as temporal logic formulae.

The controller assurance evidence must include evidence
that the system requirements for application-specific fail-
safe operating mode(s) are always satisfied. In this way, a
minimal assurance case is always available for the scenario
when the runtime assurance evidence for other system re-
quirements cannot be obtained and the self-adaptive system
needs to switch to a degraded, failsafe mode of operation.
Several fallback levels as proposed in [40] can also be
supported in this way, with only the most degraded fallback
level ensured through assurance evidence obtained in this
ENTRUST stage. For example, requirements R4 of our UUV
and FX systems from Section 3 specify failsafe operating
modes for the two systems, so we will need to show that
these requirements are always met.

The assurance evidence generated in this stage of the
methodology may be obtained using a range of methods
that include formal verification, theorem proving and sim-
ulation. The methods that can be used depend on the types
of models produced in the previous ENTRUST stage, and
on the generic controller requirements and system require-
ments for which assurance is sought. The availability of tool
support in the form of model checkers, theorem provers,
SMT solvers, domain-specific simulators, etc. will influence
the choice of these methods.

Preparing the design-time models, i.e., developing ver-
ifiable models and verifying the controller models, comes
with a cost. This cost can be reduced by using tool-
supported methods and by exploiting reusable application-
independent software, as done by the related approaches
described in Section 8. Furthermore, these related ap-
proaches that only provide a fraction of the assurances that
ENTRUST achieves (as detailed when we discuss related
work in Section 8) operate with design-time models that re-
quire a comparable effort to specify the models and provide
the controller assurance evidence.

4.1.3 Stage 3: Partial Instantiation of Assurance Argument

Pattern

This ENTRUST stage uses the controller assurance evidence
from Stage 2 to support the partial instantiation of a generic
assurance argument pattern for self-adaptive software. As
explained in Section 2.3, this pattern is an incomplete as-
surance argument containing placeholders for the system-
specific assurance evidence. A subset of the placeholders
correspond to the controller assurance evidence obtained in
Stage 2, and are therefore instantiated using this evidence.
The result is a partial assurance argument, which still con-
tains placeholders for the assurance evidence that cannot
be obtained until the uncertainties associated with the self-
adaptive system are resolved at runtime.

For example, the partial assurance argument for our
UUV and FX systems should contain evidence that their
controllers are deadlock free and that their failsafe require-
ments R4 are always satisfied. These requirements can be
verified at design time. In contrast, requirements R1–R3 for
the two systems cannot be verified until runtime, when
the controller acquires information about the measurement
rates of the UUV sensors and the third-party services avail-
able for the FX operations, respectively. Assurance evidence
that requirements R1–R3 are satisfied can only be obtained
at runtime.

In addition to the two types of placeholders, the as-
surance argument pattern used as input for this stage in-
cludes assurance evidence that is application independent.
In particular, it includes evidence about the correct opera-
tion of the verified controller platform, i.e. the software that
implements application-independent controller functional-
ity used to execute the ENTRUST controllers. This platform
assurance evidence is reusable across self-adaptive systems.

4.1.4 Stage 4: Enactment of the Controller

This ENTRUST stage assembles the controller of the self-
adaptive system. The process involves integrating the ver-
ified controller platform with the application-specific con-
troller elements, and with the sensors and effectors that
interface the controller with the controlled software system
from Fig. 1.

The application-specific controller elements must be de-
vised from the verified controller models, by using a trusted
model-driven engineering method. This can be done using
model-to-text transformation, a method that employs a trusted
model compiler to generate a low-level executable represen-
tation of the controller models. Alternatively, the ENTRUST
verified controller platform may include a trusted virtual
machine4 able to directly interpret and run the controller
models. The second, model interpretation method [101], has
the advantage that it eliminates the need to generate con-
troller code and to provide additional assurances for it.

4.1.5 Stage 5: Deployment of the Self-Adaptive System

In the last design-time stage, the integrated controller
and controlled components of the self-adaptive system are
installed, preconfigured and activated by means of an

4. Throughout the paper, the term “virtual machine” refers to a
software component capable to interpret and execute controller models,
much like a Java virtual machine executes Java code.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

application-specific process. The pre-configuration is re-
sponsible for setting the deployment-specific parameters
and architectural aspects of the system. For example, the
pre-configuration of the UUV system from Section 3.1 in-
volves selecting the initial speed and active sensor set for
the UUV, whereas for the FX system from Section 3.2 it
involves choosing initial third-party implementations for
each FX service.

The deployed self-adaptive system will be fully configured
and a complete assurance argument will be available only
after the first execution of the MAPE control loop. This
execution is typically triggered by the system activation,
to ensure that the newly deployed self-adaptive system
takes into account the current state of its environment as
described next.

4.2 Runtime ENTRUST Stages

4.2.1 Stage 6: Self-adaptation

In this ENTRUST stage, the deployed self-adaptive system
is dynamically adjusting its parameters and architecture
in line with observed internal and environmental changes.
To this end, the controller executes a typical MAPE loop
that monitors the system and its environment, using the
information obtained in this way to resolve the “unknowns”
from the incomplete system and environment models. The
resulting up-to-date system and environment models enable
the MAPE loop to analyse the system compliance with its
requirements after changes, and to plan and execute suitable
reconfigurations if necessary.

Whenever the MAPE loop produces a reconfigured self-
adaptive system, its analysis and planning steps generate
adaptation assurance evidence confirming the correctness of
the analysis results and of the reconfiguration plan devised
on the basis of these results. This assurance evidence is a by-
product of analysis and planning methods that may include
runtime verification, simulation and runtime model check-
ing. Irrespective of the methods that produce it, the adapta-
tion assurance evidence is essential for the development of
a complete assurance argument in the next ENTRUST stage.

4.2.2 Stage 7: Synthesis of Dynamic Assurance Argument

The final ENTRUST stage uses the adaptation correct-
ness evidence produced by the MAPE loop to fill in the
placeholders from the partial assurance argument, and to
devise the complete assurance case for the reconfigured
self-adaptive system. For example, runtime evidence that
requirements R1–R3 of the UUV and FX systems from
Section 3 are met will be used to complete the remaining
placeholders from their partial assurance arguments. Thus,
an ENTRUST assurance case is underpinned by a dynamic
assurance argument that is updated after each reconfiguration
of the system parameters and architecture. This assurance
case captures both the full assurance argument and the
evidence that justifies the active configuration of the self-
adaptive system.

The ENTRUST assurance case versions generated for
every system reconfiguration have two key uses. First,
they allow decision makers and auditors to understand
and assess the present and past versions of the assurance
case. Second, they allow human operators to endorse major

reconfiguration plans in human-supervised self-adaptive
systems. This type of self-adaptive systems is of particular
interest in domains where human supervision represents
an important risk mitigation factor or may be required by
regulations. As an example, UK Civil Aviation Authority
regulations [110] permit self-adaptation in certain functions
(e.g., power management, flight management and collision
avoidance) of unmanned aircraft of no more than 20 kg
provided that the aircraft operates within the visual line of
sight of a human operator.

5 TOOL-SUPPORTED INSTANCE OF ENTRUST

This section presents an instance of ENTRUST in which the
stages described in Section 4 are supported by the modelling
and verification tools UPPAAL [7] and PRISM [79]. We start
with an overview of this tool-supported ENTRUST instance
in Section 5.1, followed by a description of each of its stages
in Section 5.2.

5.1 Overview

The ENTRUST methodology can be used with different
combinations of modelling, verification and controller en-
actment methods, which may employ different self-adaptive
system architectures and types of assurance evidence. This
section presents a tool-supported instance of ENTRUST
that uses one such combination of methods. We developed
this instance of the methodology with the aim to validate
ENTRUST and to ease its adoption.

Our ENTRUST instance supports the engineering of self-
adaptive systems with the architecture shown in Fig. 7.
The reusable verified controller platform at the core of this
architecture comprises:

1) A Trusted Virtual Machine that directly interprets and
executes models of the four steps from the MAPE control
loop5 (i.e., the ENTRUST controller models).

2) A Probabilistic Verification Engine that is used to verify
stochastic models of the controlled system and its envi-
ronment during the analysis step of the MAPE loop.

Using the Trusted Virtual Machine for controller model inter-
pretation eliminates the need for a model-to-text transfor-
mation of the controller models into executable code, which
is a complex, error-prone operation. Not having to devise
this transformation and to provide assurance evidence for it
are major benefits of our ENTRUST instance. Although we
still need assurance evidence for the virtual machine, this
was obtained when we developed and verified the virtual
machine,6 and is part of the reusable platform assurance
evidence for the ENTRUST instance.

The Probabilistic Verification Engine consists of the
verification libraries of the probabilistic model checker
PRISM [79] and is used by the analysis step of the
MAPE control loop. As such, our ENTRUST instance works
with:

5. Hence the controller models are depicted as software components
in Fig. 7.

6. This assurance evidence is in the form of a comprehensive test
suite and a report describing its successful execution by the virtual
machine, both of which are available on our ENTRUST project website
at https://www-users.cs.york.ac.uk/simos/ENTRUST/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

Controller

Controlled software system

Sensors Effectors

Probabilistic

Verification Engine
Trusted

Virtual Machine

Monitor Analyzer Planner Executor

Controller models

Verified controller platform

Knowledge Repository

System
requirements

Stochastic
system&env.
models

Partial
assurance
argument

Adaptation
assurance
evidence

Dynamic
assurance
argument

Fig. 7. Architecture of an ENTRUST self-adaptive system

1) Stochastic finite state transition models of the controlled
system and the environment, defined in the PRISM
high-level modelling language. Incomplete versions of
these models are devised in Stage 1 of ENTRUST, and
have their unknowns resolved at runtime. All types of
models that PRISM can analyse are supported, including
discrete- and continuous-time Markov chains (DTMCs
and CTMCs), Markov decision processes (MDPs) and
probabilistic automata (PAs).

2) Runtime-assured system requirements expressed in the
appropriate variant of probabilistic temporal logic, i.e.,
probabilistic computation tree logic (PCTL) for DTMCs,
MDPs and PAs, and continuous stochastic logic (CSL)
for CTMCs.

This makes our instantiation of the generic ENTRUST
methodology applicable to self-adaptive systems whose
non-functional (e.g., reliability, performance, resource usage
and cost-related) requirements can be specified in the above
logics, and whose behaviour related to these requirements
can be described using stochastic models. As shown by the
recent work of multiple research groups (e.g., [15], [20],
[27], [44], [47], [50], [90], [104]), this represents a broad
and important class of self-adaptive software that includes
a wide range of service-based systems, web applications,
resource management systems, and embedded systems.

Also developed in Stage 1 of ENTRUST, the four con-
troller models form an application-specific network of inter-
acting timed automata [2], and are expressed in the mod-
elling language of the UPPAAL verification tool suite [7].

Accordingly, UPPAAL is used in Stage 2 of ENTRUST
to verify the compliance of the controller models with

the generic controller requirements and with any system
requirements that can be assured at design time. These re-
quirements are defined in computation tree logic (CTL) [31].

In Stage 3 of our ENTRUST instance, a partial assurance
argument is devised starting from an assurance argument
pattern represented in goal structuring notation (GSN) [72].

The controller enactment from Stage 4 involves integrat-
ing the timed-automata controller models with our verified
controller platform.

In Stage 5 of ENTRUST, the controlled software system
and its enacted controller are deployed, together with a
Knowledge Repository that supports the operation of the
controller. Initially, this repository contains: (i) the partial
assurance argument from Stage 3; (ii) the system require-
ments to be assured at runtime; and (iii) the (incomplete)
stochastic system and environment models from Stage 1.

During the execution of the MAPE loop in Stage 6 of
ENTRUST, the Monitor obtains information about the sys-
tem and its environment through Sensors. This information
is used to resolve the unknowns from the stochastic models
of the controlled system and its environment. Examples
of such unknowns include probabilities of transition to
‘failure’ states for a DTMC, MDP or PA, rates of transition to
‘success’ states for a CTMC, and sets of states and transitions
modelling certain system behaviours. After each update of
the stochastic system and environment models, the Analyzer
reverifies the compliance of the self-adaptive system with
its runtime-assured requirements. When the requirements
are no longer met, the Analyzer uses the verification results
to identify a new system configuration that restores this
compliance, or to find out that such a configuration does not
exist and to select a predefined failsafe configuration. The
step-by-step actions needed to achieve the new configura-
tion are then established by the Planner and implemented by
the Executor through the Effectors of the controlled system.

Using the Probabilistic Verification Engine enables the An-
alyzer and Planner to produce assurance evidence justifying
their selection of new configurations and of plans for tran-
sitioning the system to these configurations, respectively.
This adaptation assurance evidence is used to synthesise a
fully-fledged, dynamic GSN assurance argument in Stage 7
of our ENTRUST instance. As indicated in Fig. 7, versions
of the adaptation assurance evidence and of the dynamic
assurance argument justifying each reconfiguration of the
self-adaptive system are stored in the Knowledge Repository.

The implementation of the ENTRUST stages in our tool-
supported instance of the methodology is summarised in
Table 2 and described in further detail in Section 5.2.

5.2 Stage Descriptions

5.2.1 Development of Verifiable Models

Controller models. We devised two types of templates for
the four controller models from Fig. 7: (i) event triggered,
in which the monitor automaton is activated by a sensor-
generated signal indicating a change in the managed system
or the environment; and (ii) time triggered, in which the
monitor is activated periodically by an internal clock. The
event-triggered automaton templates are shown in Fig. 8
using the following font and text style conventions:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

TABLE 2
Stages of the tool-supported instance of the ENTRUST methodology

Stage Type Description Supporting tool(s)

1 tool supported Timed automata controller models developed from UPPAAL templates UPPAAL

Incomplete stochastic models of the controlled system and environment
developed based on system specification and domain knowledge

PRISM

2 tool supported Controller models verified to obtain controller assurance evidence UPPAAL

3 manual Partial assurance argument devised from GSN assurance argument pattern –

4 manual Controller enacted by integrating the verified controller models and platform –

5 manual Controlled system, controller and knowledge repository deployed –

6 automated MAPE control loop continually executed to ensure the system requirements PRISM & ENTRUST
controller platform

7 automated GSN dynamic assurance argument generated ENTRUST controller
platform

(a) Monitor

WaitP

plannerCleanup()

Application-

specific

planner

Plan

PlanCreated

startPlanning?

startExecuting!

(c) Planner

executorInit()

executorCleanup()

planExecuted!

Application-

specific

executor

WaitE

Execute

PlanExecuted

startExecuting?

<executorSignal1!>

<executorSignalm!>

… … …

(d) Executor

startAnalysis!

WaitM ProcessSensorData CheckM

process()

analysisRequired()

monitorCleanup()

<sensorSignal1?>

<sensorSignaln?>

.

.

.

MonitorFinished

analysisRequired()

StartAnalysis

Key:

Automaton state

State transition

analysisRequired() Guard

analyse()

startAnalysis!

Action

startAnalysis?

Sent signal

Received signal

Initial state

Atomic propositionPlanCreated

time=0

startPlanning!

startAnalysis?
WaitA

CheckA Analyse

StartVerif

analyse()adaptationRequired()

EndVerif

verify!

verifDone?

adaptationRequired()

Adapt

analyserCleanup()

AnalysisFinished

(b) Analyzer

WaitVerif

time ≤ MAX_TIME

time > MAX_TIME
useFailsafeConfig()

Fig. 8. Event-triggered MAPE model templates

• Sans-serif font is used to annotate states with the atomic
propositions (i.e. boolean properties) that hold in those
states, e.g. PlanCreated from the Planner automaton;

• Italics text is used for the guards that annotate state
transitions with the conditions which must hold for
the transitions to occur, e.g. time≤MAX TIME from the
Analyzer automaton;

• State transitions are additionally annotated with the
actions executed upon taking the transitions, and these
actions are also shown in sans-serif font, e.g. time=0 to
initialise a timer in the Monitor automaton;

• Bold text is used for the synchronisation channels be-
tween two automata—these channels are specified as
pairs comprising a ‘!’-decorated sent signal and a ‘?’-
decorated received signal with the same name, e.g.,
startAnalysis! and startAnalysis? from the monitor and
analyzer automata, respectively. The two transitions as-
sociated with a synchronisation channel can only be
taken at the same time.

Finally, signals in angle brackets ‘〈〉’ are placeholders for
application-specific signal names, and guards and actions
decorated with brackets ‘()’ represent application-specific C-
style functions.

To specialise these model templates for a particular

system and application, software engineers need: (a) to
replace the signal placeholders with real signal names; (b) to
define the guard and action functions; and (c) to devise the
automaton regions shaded in Fig. 8. For example, for the
monitor automaton the engineers first need to replace the
placeholders 〈sensorSignal1?〉, . . . , 〈sensorSignaln?〉 with
sensor signals announcing relevant changes in the managed
system. They must then implement the functions process(),
analysisRequired() and monitorCleanup(), whose roles are to
process the sensor data, to decide if the change specified by
this data requires the “invocation” of the analyzer through
the startAnalysis! signal, and to carry out any cleanup
that may be required, respectively. Details about the other
automata from Fig. 8 are available on our project website,
which also provides implementations of these MAPE model
templates in the modelling language of the UPPAAL verifi-
cation tool suite [7].

Parametric stochastic models. These models used by the
ENTRUST control loop at runtime are application specific,
and need to be developed from scratch. Their parameters
correspond to probabilities or rates of transition between
model states, and are continually estimated at runtime,
based on change information provided by the sensors of the
controlled system. As such, the verification of these mod-
els at runtime enables the ENTRUST analyzer to identify

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

TABLE 3
Stochastic models supported by the ENTRUST instance, with citations

of representative research that uses them in self-adaptive systems

Type of stochastic model Non-functional require-
ment specification logic

Discrete-time Markov chains
[15], [23], [44], [46], [47], [59]

PCTLa, LTLb, PCTL*c

Markov decision processes [50] PCTLa, LTLb, PCTL*c

Probabilistic automata [21], [70] PCTLa, LTLb, PCTL*c

Continuous-time Markov chains
[19], [22], [55]

CSLd

Stochastic games [26], [27] rPATLe

aProbabilistic Computation Tree Logic [9], [61]
bLinear Temporal Logic [88]
cPCTL* is a superset of PCTL and LTL
dContinuous Stochastic Logic [3], [4]
ereward-extended Probabilistic Alternating-time Temporal Logic [28]

configurations it can use to meet the system requirements
after unexpected changes, as described in detail in [15], [20],
[22], [44], [46]. The types of stochastic models supported by
our ENTRUST instance are shown in Table 3. As illustrated
by the research work cited in the table, the temporal logics
used to express the properties of these models support the
specification of numerous performance, reliability, safety,
resource usage and other non-functional requirements that
recent surveys propose for self-adaptive systems [30], [117].

To ensure the accuracy of the stochastic models de-
scribed above, ENTRUST can rely on recent advances in
devising these models from logs [59], [87] and UML activity
diagrams [17], [52], and in dynamically and accurately up-
dating their parameters based on sensor-provided runtime
observations of the controlled system [16], [23], [44], [48].

5.2.2 Verification of Controller Models

During this ENTRUST stage, a trusted model checker is
used to verify the network of MAPE automata devised in
the previous section. This verification yields evidence that
the MAPE models satisfies a set of key safety and live-
ness properties that include both generic and application-
specific properties. Table 4 shows a non-exhaustive list of
generic properties that we assembled for the current version
of ENTRUST. Although these properties are application-
independent, verifying that an ENTRUST controller sat-
isfies them is possible only after its application-specific
MAPE models were devised. This involves completing the
application-specific parts of the planner and executor au-
tomata, and implementing the functions for the guards and
actions from all the model templates.

Additionally, automata that simulate the controller sen-
sors, runtime probabilistic verification engine and effectors
from Fig. 7 need to be defined to enable this verification.
The sensors, verification engine and effectors automata have
to synchronise with the relevant monitor, analyzer and
executor signals, respectively. The sensors automaton and
verification automaton also have to exercise the possible
paths through the monitor, analyzer and planner automata
(and indirectly the executor automaton). To this end, they
can nondeterministically populate the knowledge reposi-
tory with data that satisfies all the different guard combina-
tions. Alternatively, a finite collection of the two automata

can be used to verify subsets of all possible MAPE paths,
as long as the union of all such subsets covers the entire
behaviour space of the MAPE network of automata.

Note that these application-specific elements of the
MAPE automata are much larger than the application-
independent elements from the MAPE model templates.
Therefore, we do not use compositional model checking
[32], [70] to verify the two parts of the MAPE automata
separately, with the application-independent elements ver-
ified once and for all. Such an approach would increase
the complexity of the verification task (e.g. by requiring
the identification and verification of less intuitive “assump-
tions” [33] that the application-specific parts of the automata
need to “guarantee”) without any noticeable reduction in
the verification time, almost all of which would be required
to verify the application-specific automata elements.

5.2.3 Partial Instantiation of Assurance Argument Pattern

We used the Goal Structuring Notation (GSN) introduced in
Section 2.2 to devise a reusable assurance argument pattern
(cf. Section 2.3) for self-adaptive software. Unlike all existing
assurance argument patterns [63], our new pattern captures
the fact that for self-adaptive software the assurance pro-
cess cannot be completed at design time. Instead, it is a
continual process where some design features and code
elements are dynamically reconfigured and executed during
self-adaptation. As such, the detailed claims and evidence
for meeting the system requirements must vary with self-
adaption, and thus ENTRUST assurance cases must evolve
dynamically at runtime.

The ENTRUST assurance argument pattern is shown in
Fig. 9. Its root goal, ReqsSatisfied, states that the system
requirements are satisfied at all times. These requirements
are typically allocated to the software from the higher-level
system analysis process, so the justifications of their deriva-
tion, validity and completeness are addressed as part of the
overall system assurance case (which is outside the scope
of the software assurance case). ReqsSatisfied is supported
by a sub-claim based on (i.e. in the context of) the current
configuration (ReqsConfiguration) and by a reconfiguration
sub-claim (Reconfig). That is, the pattern shows that we
are guaranteeing that the current configuration satisfies
the requirements (in the absence of changes) and that the
ENTRUST controller will plan and execute a reconfiguration
that will satisfy these requirements (should a change occur).

The pattern justifies how the system requirements are
achieved for each configuration by using a sub-goal Rx-
Achieved for each requirement Rx. Further, a new config-
uration has the potential to introduce erroneous behaviours
(e.g., deadlocks). The justification for the absence of these er-
rors is provided via the away goal NoErroneousBehaviour
(described below). The pattern concludes with the goals
RxVerified and ReqsPreservedByPlatform, which justify
the verification and the implementation of the formalised
requirements, respectively. The away goal ReqsPreserved-
ByPlatform confirms that the controlled system handles
correctly the reconfiguration commands received through
effectors. This away goal is obtained using standard assur-
ance processes, which are outside the scope of this paper.

As shown Fig. 10, the NoErroneousBehaviour away
goal is supported by two sub-claims. The FMsManaged

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

TABLE 4
Generic properties that should be satisfied by an ENTRUST controller

ID Informal description Specification in computation tree logic (CTL) [31]

P1 The ENTRUST controller is deadlock free. A� not deadlock

P2 Whenever analysis is required, the Analyser eventually
carries out this action.

A� (Monitor.StartAnalysis → A♦ Analyzer.Analyse)

P3 Whenever the system requirements are violated, a step-
wise reconfiguration plan is eventually assembled.

A� (Analyzer.Adapt → A♦ Planner.PlanCreated)

P4 Whenever a stepwise plan is assembled, the Executor
eventually implements it.

A� (Planner.PlanCreated → A♦ Executor.PlanExecuted)

P5 Whenever the Monitor starts processing the received
data, it eventually terminates its execution.

A� (Monitor.ProcessSensorData → A♦ Monitor.Finished)

P6 Whenever the Analyser begins the analysis, it eventually
terminates its execution.

A� (Analyzer.Analyse → A♦ Analyzer.AnalaysisFinished)

P7 A plan is eventually created, each time the Planner starts
planning.

A� (Planner.Plan → A♦ Planner.PlanCreated)

P8 Whenever the Executor starts executing a plan, the plan
is eventually executed.

A� (Executor.Execute → A♦ Executor.PlanExecuted)

P9 Whenever adaptation is required, the current configura-
tion and the best configuration differ.

A� (Analyzer.Adapt → currentConfig != newConfig)

number

of reqs

J

Justification: Reconfig

System supports reconfigu-
ration if current configuration

cannot meet {system

 requirements}

Context: ConfigDef

{current configuration}

Goal: ReqsSatisfied

formalised {system

requirements} satisfied

Goal: ReqsConfiguration

{system requirements}

achieved in {current

configuration}

Strategy: ConfigReqs

Argument over formalised

requirements for {current

configuration}

Goal: RxAchieved

Requirement {Rx}

achieved through using

{current configuration}

Away Goal:

NoErroneousBehaviour

Erroneous behaviours

are acceptably managed

Err. Behaviour Arg.

Context: Reqs

Requirements
formalised for {current
configuration}

Goal: RxVerified

Requirement {Rx} verified

for {current configuration}

Away Goal:

ReqsPreservedByPlatform

Requirement {Rx} verified for
{current configuration} is implemen-
ted by controlled software system

Platform Arg.

Goal: Reconfig

{system requirements}

achieved via

reconfiguration

Fig. 9. ENTRUST assurance argument pattern.

sub-claim uses the goals FMsIdentified and ReqsDerived
to state that the relevant “failure modes” for the self-
adaptive system have been identified and that the sys-
tem requirements fully address these failure modes. We
leave the two goals undeveloped, as they are achieved
using standard requirements engineering and assurance
practices. The EngErrorsAbsent sub-claim states that the
engineering of the self-adaptive system does not intro-

duce errors in the context of the ENTRUST reusable arte-
facts (i.e., of our trusted virtual machine and probabilistic
verification engine) and of the generic properties that an
ENTRUST controller has to satisfy. EngErrorsAbsent is in
turn supported by two sub-goals, NoProcessError and No-
Controller&SystemError. The former sub-goal is obtained
through using suitable software engineering processes (via
the away goal SuitableSoftEngProcess, which also cov-
ers the use of the methods mentioned in Section 5.2.1
to ensure the accuracy of the ENTRUST stochastic mod-
els) and through avoiding methodological errors by using
the ENTRUST methodology. The latter sub-goal, NoCon-
troller&SystemError, is achieved by claims about:

1) The absence of controller errors. This is supported by
(i) the controller verification evidence from Stage 2
of ENTRUST; and (ii) the reusable platform assurance
evidence, which includes (testing) evidence about the
correct operation of the model checkers UPPAAL and
PRISM, based on their long track record of successful
adoption across multiple domains and on our own expe-
rience of using them to develop self-adaptive systems.

2) The absence of controlled system errors, covered by the
ControlledSystem away goal.

The away goals SuitableSoftEngProcess and Con-
trolledSystem are obtained following existing software as-
surances processes, and thus we do not describe them here.

The partial instantiation of the assurance argument pat-
tern in the last design-time stage of ENTRUST produces
a partially-developed and partially-instantiated assurance ar-
gument [38]. This includes placeholders for items of evi-
dence that can only be instantiated and developed based
on operational data, i.e., the runtime verification evidence
that is generated by the analysis and planning steps of the
ENTRUST controller.

5.2.4 Enactment of the Controller

In this stage, the controller from Fig. 7 is assembled by
integrating the MAPE controller models discussed in Sec-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Goal: NoController&Sy
stemError

ENTRUST controller
and system do not
contain errors

Context: FailureModes

Relevant FMs for the

SAS

Context: EngErrors

 Engineering errors addressed
 by the self-adaptive system
 (e.g., P1-P9 from Table 5)

Away Goal:

NoErroneousBehaviour

Erroneous behaviours

are acceptably managed

Goal: FMsIdentified

Relevant FMs correctly
identified for the SAS

Goal: ReqsDerived

Requirements can

address identified FMs

Goal: NoProcessError

ENTRUST engineering
process does not
introduce errors

Goal: FMsManaged

System requirements ad-

dress the relevant failure

modes (FMs) of the SAS

Goal: EngErrorsAbsent

Engineering errors are
not introduced in the self-
adaptive system (SAS)

Context: ReusableArts

 Reusable software artefacts
 (trusted VM, probabilistic
 verification engine)

Goal: NoMethodologi
calError

ENTRUST methodology
does not introduce errors

Away Goal: SuitableSoft
EngProcess

Standard software engi-
neering process adopted

Soft. Eng. Process Arg.

Away Goal:
ControlledSystem

Controlled system does
not introduce errors

Controlled System Arg.

Goal:NoControllerError

ENTRUST controller
does not contain errors

 Solution:

 PlatfEvidence

 ENTRUST plat-
 form assurance
 evidence

 Solution:
 Methodology

 ENTRUST

 methodology

 Solution:

 ContrEvidence

ENTRUST con-

 troller assurance

 evidence

Fig. 10. Away goal NoErroneousBehaviour, which justifies the absence of errors due to reconfiguration and is based on the existing GSN pattern
Hazardous Contribution Software Safety Argument from the existing GSN catalogue [63]

tion 5.2.1, the ENTRUST verified controller platform and
application-specific sensor, effector and stochastic model
management components. The application-specific compo-
nents include generic functionality such as the signals
through which these components synchronise with the
MAPE automata (e.g., verify? and planExecuted?). Accord-
ingly, our current version of ENTRUST includes abstract
Java classes that provide this common functionality. These
abstract classes, which we made available on the project
website, need to be specialised for each application. Thus,
the specialised sensors and effectors must use the APIs of
the managed software system to observe its state and envi-
ronment, and to modify its configuration, respectively. The
stochastic model management component must specialise
the probabilistic verification engine so that it instantiates the
parametric stochastic models using the actual values of the
managed system and environment parameters (provided by
sensors) and analyses the application-specific requirements.

5.2.5 Deployment of the Self-Adaptive System

As explained in Section 4.1.5, the role of this stage is to
integrate the ENTRUST controller and the controlled soft-
ware system into a self-adaptive software system that is
then installed, preconfigured and set running. In particular,
the pre-configuration must select initial values for all the
parameters of the controlled system. Immediately after it
starts running and until the first execution of the MAPE
control loop, the system functions as a traditional, non-
adaptive software system. As such, a separate assurance
argument (which is outside the scope of this paper) must be
developed using traditional assurance methods, to confirm
that the initial system configuration is suitable.

The newly running software starts to behave like a
self-adaptive system with the first execution of the MAPE
control loop, as described in the next two sections.

5.2.6 Self-Adaptation

In this ENTRUST stage, the deployed self-adaptive system
is dynamically adjusting its configuration in line with the
observed internal and environmental changes. The use of
continual verification within the ENTRUST control loop
produces assurance evidence that underpins the dynamic
generation of assurance cases in the next stage of our
ENTRUST instance.

5.2.7 Synthesis of Dynamic Assurance Argument

The ENTRUST assurance case evolves in response to the
results of the MAPE process, e.g., time-triggered and event-
triggered outputs of the monitor, the outcomes of the an-
alyzer, the mitigation actions developed by the planner
and their realisation by the executor. This offers a dynamic
approach to assurance because the full instantiation of the
ENTRUST assurance argument pattern is left to runtime, i.e.
the only stage when the evidence required to complete the
argument becomes available. As such, the assurance case
resulting from this stage captures the full argument and
evidence for the justification of the current configuration of
the self-adaptive system.

6 APPLYING THE ENTRUST METHODOLOGY

6.1 Development of Verifiable Models

6.1.1 UUV System

Controller models. We instantiated the ENTRUST model
templates for the UUV system from Section 3.1, obtaining
the automata shown in Fig. 11. The signal newRate? is
the only sensor signal that the monitor automaton needs
to deal with, by reading a new UUV-sensor measurement
rate (in process()) and checking whether this rate has
changed to such extent that a new analysis is required

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

(a) Monitor

(c) Planner (d) Executor

UUV planner

ChangeSpeed

WaitP

plannerCleanup()

Plan

PlanCreated

addStepChangeSpeed()

sensorID==SENSORS-1

ChangeSensorsConfiguration

CheckSpeed

SensorsConfigurationCompleted

changeSensorsConfig() sensorID<SENSORS -1

step==TURN_ON

step==TURN_OFF

step==DO_NOTHING

changeSpeed()

changeSpeed()

changeSensorsConfig()

addStepSensorOff(sensorID)

addStepSensorOn(sensorID)

sensorID=0

step=checkConfig(sensorID)

sensorID++

startPlanning?

startExecuting!

UUV executor

WaitE

PlanExecuted

Execute

executorInit()
startExecuting?

executorCleanup()

planExecuted!

allPlanStepsExecuted()

allPlanStepsExecuted()

planStep=nextPlanStep()

data=nextPlanData()

planStep==SENSOR_ON

planStep==SENSOR_OFF

planStep==CHANGE_SPEED

ExecutePlanStep

SensorOn

SensorOff

ChangeSpeed

sensorID=data

sensorID=data

newSpeed=data

changeSpeed!

sensorOFF!

sensorON!

startAnalysis!

WaitM ProcessSensorData CheckM

process()

analysisRequired()

monitorCleanup()

newRate?

MonitorFinished

analysisRequired()

StartAnalysis

time=0

startPlanning!

startAnalysis?
WaitA

CheckA Analyse

StartVerif

analyse()adaptationRequired()

EndVerif

verify!

verifDone?

adaptationRequired()

Adapt

analyserCleanup()

AnalysisFinished

(b) Analyzer

WaitVerif

time ≤ 2

time > 2
useFailsafeConfig()

Fig. 11. UUV MAPE automata that instantiate the event-triggered ENTRUST model templates

s0 s1 s2 s3 s5

s4s6

xi

1−xi

ri pi

1−pi
1

1
1

1
eoffi

ei 1

{starti} {oni}

{offi}

{accuratei}

{donei}

{inaccuratei}

{readi}eoni

Fig. 12. CTMC model Mi of the i-th UUV sensor, adopted from [55]

(in analysisRequired()). If analysis is required, the analyzer
automaton sends a verify! signal to invoke the runtime veri-
fication engine, and thus verifies which UUV configurations
satisfy requirements R1 and R2 and with what cost . The
function analyse() uses the verification results to select a
configuration that satisfies R1 and R2 with minimum cost
(cf. requirement R3). If no such configuration exists or the
verification does not complete within 2 seconds and the
guard ‘time>2’ is triggered, a zero-speed configuration is
selected (cf. requirement R4). If the selected configuration is
not the one in use, adaptationRequired() returns true and the
startPlanning! signal is sent to initiate the execution of the
planner automaton. The planner assembles a stepwise plan
for changing to the new configuration by first switching
on any UUV sensors that require activation, then switching
off those that are no longer needed, and finally adjusting
the UUV speed. These reconfiguration steps are carried out
by the executor automaton by means of sensorON!, senso-
rOFF! and changeSpeed! signals handled by the effectors
from Fig. 7, as described in Section 5.2.4.

Parametric stochastic models. Fig. 12 shows the CTMC
model Mi of the i-th UUV sensor. From the initial state
s0, the system transitions to state s1 or s6 if the sensor is
switched on (xi = 1) or off (xi = 0), respectively. The
sensor takes measurements with rate ri, as indicated by
the transition s1 → s2. A measurement is accurate with
probability pi as shown by the transition s2 → s3; when
inaccurate, the transition s2 → s4 is taken. While the sensor

is active this operation is repeated, as modelled by the
transition s5 → s1. The model is augmented with two
reward structures. A “measure” structure, shown in a dashed
rectangular box, associates a reward of 1 to each accurate
measurement taken. An “energy” structure, shown in solid
rectangular boxes, associates the energy used to switch the
sensor on (eoni) and off (eoffi) and to perform a measurement
(ei) with the transitions modelling these events. The model
M of the n-sensor UUV is given by the parallel composition
of the n sensor models: M = M1||...||Mn; and the QoS
system requirements are specified using CSL as follows:

R1: R measure
≥20 [C≤10/sp]

R2: R energy
≤120 [C≤10/sp]

R3: minimise(w1E+w2sp
−1), where E=R energy

=? [C≤10/sp]

where 10/sp is the time taken to travel 10m at speed sp.
As requirement R4 is a failsafe requirement, we verify it at
design time as explained in Section 6.2.1, so it is not encoded
into CSL.

6.1.2 FX System

Controller models. We specialised our event-triggered
MAPE model templates for the FX system. The resulting
MAPE models are shown in Fig. 13, where the shaded areas
in Planner and Executor automata indicate the FX-specific
steps for assembling a plan and executing the adaptation,
respectively. The implementations of all guards and actions

decorated with brackets ‘()’ (which represent application-
specific C-style functions, as explained in Section 5.2.1) are
available on our project website.

Parametric stochastic models. To model the runtime be-
haviour of the FX system, we used the parametric discrete-
time Markov chain (DTMC) depicted in Fig. 14. In this
DTMC, constant transition probabilities derived from sys-
tem logs are associated with the branches of the FX work-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

(a) Monitor

(d) Executor(c) Planner

FX planner

WaitP

plannerCleanup()

Plan

PlanCreated

startPlanning?

startExecuting!

�������� �
�	��

sType==MAX_TYPE

step==DO_NOTHING

addStep(NOTIFICATION, serviceID)

step==CHANGE_NOTIFICATION

addStep(ALARM, serviceID)

step==CHANGE_ALARM

addStep(FUNDAMENTAL_ANALYSIS, serviceID)

step==CHANGE_FUNDAMENTAL_ANALYSIS

addStep(ORDER, serviceID)

step==CHANGE_ORDER

addStep(TECHNICAL_ANALYSIS, serviceID)

step==CHANGE_TECHNICAL_ANALYSIS

addStep(MARKET_WATCH, serviceID)

step==CHANGE_MARKET_WATCH

step = checkConfig() sType++

FX Executor

WaitE

PlanExecuted

Execute

executePlan()

startExecuting?

executorCleanup()

planExecuted!

allPlanStepsExecuted()

�allPlanStepsExecuted()

ChangeNotification
Service

ChangeAlarm
Service

ChangeOrder
Service

ChangeTechnical
AnalysisService

ChangeFundamental
AnalysisService

ChangeMarket
WatchService

changeService!

planStep=nextPlanStep()

serviceType=nextPlanServiceType()

serviceID=nextPlanServiceID()

planStep==

ORDER

planStep==

FUNDAMENTAL_ANALYSIS

planStep==

TECHNICAL_ANALSYSIS

planStep==

MARKET_WATCH

planStep==

ALARM

planStep==

NOTIFICATION

startAnalysis!

WaitM ProcessSensorData CheckM

process()

�analysisRequired()

monitorCleanup()

newServicesCharacteristics?

MonitorFinished

analysisRequired()

StartAnalysis

time=0

startPlanning!

startAnalysis?
WaitA

CheckA Analyse

StartVerif

analyse()adaptationRequired()

EndVerif

verify!

verifDone?

�adaptationRequired()

Adapt

analyserCleanup()

AnalysisFinished

(b) Analyzer

WaitVerif

time ≤ 2

time > 2
useFailsafeConfig()

Fig. 13. FX MAPE automata that instantiate the event-triggered ENTRUST model templates

flow from Fig. 5. In contrast, state transitions that model the
success or failure of service invocations are associated with
parameterised probabilities, which are unknown until the
runtime selection of the FX services. Likewise, the “price”
and (response) “time” reward structures (shown in solid
and dashed boxes, respectively) are parametric and depend
on the combination of FX services dynamically selected by
the ENTRUST controller.

Finally, we formalised requirements R1–R3 in
rewards-augmented probabilistic computational tree
logic (PCTL):

R1: P≥0.9[F done]

R2: R time
≤5 [F done]

R3: minimise(w1price + w2time), where
price = R price

=? [F done] and time = R time
=? [F done]

6.1.3 Discussion

The ENTRUST controller model templates supported the
development of the UUV and FX controller models with
structural changes confined to the Planner and Executor
automata. Despite the differences between the sensor data
used by the two systems (cf. Table 1), the Monitor and Ana-
lyzer automata could be instantiated with all application-
specific functionality provided by the guard and action
functions associated with the automata transitions. Different
types of stochastic models were required for the two systems
(continuous time for the UUV system, and discrete time for
the FX system) as the differences in their requirements and
uncertainties needed the modelling of different aspects of
their behaviour.

Fig. 14. Parametric DTMC model of the FX system; pMW, pTA, . . . ,
timeMW, timeTA, . . . , and priceMW, priceTA, . . . , represent the reliability
(i.e. success probability), the response time and the price, respectively,
of the implementations used for the MW, TA, . . . system services.

6.2 Verification of Controller Models

6.2.1 UUV System

We used the UPPAAL model checker [7] to verify that the
network of MAPE automata from Fig. 11 (which we made
available on our project website) satisfies all the generic cor-
rectness properties from Table 4, as well as the application-
specific property

R4: A� (Analyzer.Analyse ∧ Analyzer.time>2 →
A♦ Planner.Plan ∧ newConfig.speed==0),

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

which represents the CTL encoding of requirement R4. To
carry out this verification, we defined simple sensors, veri-
fication engine and effectors automata as described above.
We used a simple one-state effectors automaton with tran-
sitions returning to its single state for each of the received
signals sensorON?, sensorOFF? changeSpeed? and planEx-
ecuted?; and a finite collection of sensor–verification engine
automata pairs that together exercised all possible paths of
the MAPE automata from Fig. 11. These auxiliary UPPAAL
automata are available on the project website.

6.2.2 FX System

We used the model checker UPPAAL to verify that the
MAPE automata network from Fig. 13 satisfies the generic
controller correctness properties in Table 4, and a FX-specific
CSL property corresponding to the failsafe requirement R4
of the FX system:

R4: A� (Analyzer.Analyse ∧ Analyzer.time>2 →
A♦ Planner.Plan ∧ newConfig.Order==NoSvc),

where ‘newConfig.Order==NoSvc’ signifies that no service
is used to implement the Order operation (i.e., the operation
is skipped).

6.2.3 Discussion

The availability of a set of generic properties that must be
satisfied by all ENTRUST controllers (cf. Table 4) meant
that an additional CSL property was only needed for the
application-specific failsafe requirement. For both systems,
this additional property corresponds to the scenario where
a suitable new configuration cannot be obtained timely, sug-
gesting that using a property template may be feasible for
this and potentially for other types of failsafe requirements.

6.3 Partial Instantiation of Assurance Argument Pattern

6.3.1 UUV System

Fig. 15 shows the partially-instantiated assurance argument
pattern for the self-adaptive UUV system, in which we
shaded the (partially) instantiated GSN elements. To keep
the diagram clear, we only show the expansion for require-
ments R1 and R4, leaving R2 and R3 undeveloped. The
goal R1Achieved (which needs to be further instantiated
when the system configuration is dynamically selected) is
supported by: (a) sub-claim R1Verified, whose associated
solution placeholder R1Result remains uninstantiated and
should constantly be updated by the ENTRUST controller at
runtime; and (b) the away goal ReqsPreservedByPlatform
described earlier in this section. The undeveloped and par-
tially instantiated goals R2Achieved and R3Achieved have
the same structure as R1Achieved. In contrast, the (failsafe)
goal R4Achieved is fully instantiated because the solution
R4Result, comprising UPPAAL verification evidence that
R4 is achieved irrespective of the configuration of the self-
adaptive system, was obtained in the second ENTRUST
stage (verification of controller models), cf. Section 6.2.1.

6.3.2 FX System

We partially instantiated the ENTRUST assurance argument
pattern for our self-adaptive FX system, as shown in Fig. 16.

J

Justification: Reconfig

System supports reconfigu-
ration if current configuration

cannot meet UUV

 requirements

Context: ConfigDef

{current configuration

Goal: ReqsConfiguration

UUV requirements

achieved in {current

configuration}

Goal: ReqsSatisfied

Formalised UUV

requirements satisfied

Goal: Reconfig

UUV requirements

achieved via

reconfiguration

Away Goal:

NoErroneousBehaviour

Erroneous behaviours

are acceptably managed

Err. Behaviour Arg.

Context: Reqs

Requirements formal-
ised for {current
configuration}

Goal: R1Achieved

Requirement R1

achieved through using

{current configuration}

Goal: R4Achieved

Requirement R4

achieved for any

configuration

Goal: R2Achieved

Requirement R2

achieved through using

{current configuration}

Goal: R3Achieved

Requirement R3

achieved through using

{current configuration}

Away Goal:

ReqsPreservedByPlatform

Requirement R1 verified
for {current configuration} is
implemented by controlled
software system

Platform Arg.

 Solution:
 R4Result

Verification result

 for CTL encod-

 ing of R4

Goal: R1Verified

Requirement R1

verified for {current

configuration}

Goal: R4Verified

Requirement R4

verified for any

configuration

Away Goal:

ReqsPreservedByPlatform

Requirement R4 verified
for any configuration is
implemented by controlled
software system

Platform Arg.

 Solution:
 R1Result

Verification result

 for R1

Strategy: ConfigReqs

Argument over formal-

ised requirements for

{current configuration}

 Solution:
 CtrlVerResult

Verification result
for controller and

 failsafe prop-

 erties

Fig. 15. Partially-instantiated assurance argument for the UUV system

6.3.3 Discussion

As shown in Figs. 15 and 16, roughly the top half of the
partially instantiated assurance argument pattern comes
from ENTRUST assurance pattern in Fig. 9. This part of the
assurance argument captures assurance elements generic
to all self-adaptive systems, allowing the developers of a
self-adaptive system to focus on the application-specific
elements, which they are often more familiar with.

6.4 Enactment of the Controller

6.4.1 UUV System

To assemble an ENTRUST controller for the UUV system,
we implemented Java classes that extend the functionality
of the abstract Sensors, Effectors and VerificationEngine

classes from the ENTRUST distribution. In addition to
synchronising with the relevant application-specific signals
from the MAPE automata (e.g., newRate?), the specialised
sensors and effectors invoke the relevant API methods of
our UUV simulator. The specialised verification engine in-
stantiates the parametric sensor models Mi from Fig. 12,
1≤ i≤ n, and verifies the CSL-encoded requirements from
Section 6.1.1.

6.4.2 FX System

To assemble the ENTRUST controller for the FX system,
we combined the controller and stochastic models from

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

J

Justification: Reconfig

System supports reconfigu-
ration if current configuration

cannot meet UUV

 requirements

Context: ConfigDef

{current configuration

Goal: ReqsConfiguration

FX requirements

achieved in {current

configuration}

Goal: ReqsSatisfied

Formalised FX

requirements satisfied

Goal: Reconfig

FX requirements

achieved via

reconfiguration

Away Goal:

NoErroneousBehaviour

Erroneous behaviours

are acceptably managed

Err. Behaviour Arg.

Context: Reqs

Requirements formal-
ised for {current
configuration}

Goal: R1Achieved

Requirement R1

achieved through using

{current configuration}

Goal: R4Achieved

Requirement R4

achieved for any

configuration

Goal: R2Achieved

Requirement R2

achieved through using

{current configuration}

Goal: R3Achieved

Requirement R3

achieved through using

{current configuration}

Away Goal:

ReqsPreservedByPlatform

Requirement R1 verified
for {current configuration} is
implemented by controlled
software system

Platform Arg.

 Solution:
 R4Result

Verification result

 for CTL encod-

 ing of R4

Goal: R1Verified

Requirement R1

verified for {current

configuration}

Goal: R4Verified

Requirement R4

verified for any

configuration

Away Goal:

ReqsPreservedByPlatform

Requirement R4 verified
for any configuration is
implemented by controlled
software system

Platform Arg.

 Solution:
 R1Result

Verification result

 for R1

Strategy: ConfigReqs

Argument over formal-

ised requirements for

{current configuration}

 Solution:
 CtrlVerResult

Verification result

for controller and

 failsafe prop-

 erties

Fig. 16. Partially-instantiated assurance argument for the FX system; the
elements (partially) instantiated in Stage 3 of ENTRUST are shaded.

Stage 1 with our generic controller platform, and with FX-
specific Java classes that we implemented to specialise the
abstract Sensors, Effectors and VerificationEngine abstract
classes of ENTRUST. The Sensors class synchronises with
the Monitor automaton from Fig. 13 through the newSer-
vicesCharacteristics! signal (issued after changes in the
properties of the FX services are detected). In addition, the
Sensors and Effectors classes use the relevant API methods
of an FX implementation that we developed as explained in
Section 6.5.2. The specialised VerificationEngine instantiates
the parametric DTMC model from Fig. 14 at runtime, and
verifies the PCTL formulae devised for requirements R1–R3
from Section 6.1.2.

6.4.3 Discussion

The controller enactment comprises typical software devel-
opment (i.e. specialisation of Java classes) and integration
tasks. A considerable part of the required functionality
is application-independent, and already provided by the
reusable abstract Java classes available with ENTRUST.

6.5 Deployment of the Self-Adaptive System

6.5.1 UUV System

We used the open-source MOOS-IvP7 platform (oceanai.
mit.edu/moos-ivp) for the implementation of autonomous
applications on unmanned marine vehicles [8] to develop a
fully-fledged three-sensor UUV simulator that is available
on the ENTRUST website. We then exploited the publish-
subscribe architecture of MOOS-IvP to interface the EN-
TRUST sensors and effectors (and thus the controller from
Section 6.4.1) with the UUV simulator, we installed the
controller and the controlled system on a computer with
a similar spec to that of the payload computer of a mid-
range UUV, and we preconfigured the system to start with
zero speed and all its sensors switched off. We chose this
configuration, corresponding to initial UUV parameter val-
ues (x1, x2, x3, sp) = (0, 0, 0, 0), to ensure that the system
started with a configuration satisfying its failsafe require-
ment R4 (cf. Section 3.1).8

6.5.2 FX System

We implemented a prototype version of the FX system using
Java web services deployed in Tomcat/Axis, and a Java FX
workflow that we integrated with the ENTRUST controller
from Stage 4. Our self-adaptive FX system (whose code
is available on our project website) could select from two
functionally equivalent web service implementations for
each of the six FX services from Fig. 5, i.e. from 12 web
services with the initial characteristics shown in Table 5.
For simplicity and without loss of generality, we installed
the components of the self-adaptive FX system on a single
computer with the characteristics detailed in Section 7.1, and
we preconfigured the system to start by using the first web
service implementation available for each service (i.e. MW0,

TA0, etc.), except for the Order service. For Order, NoSvc

was selected initially, to ensure that the failsafe requirement
R4 was satisfied until a configuration meeting requirements
R1–R3 was automatically selected by the first execution of
the MAPE loop, shortly after the system started.

6.5.3 Discussion

This stage involved a typical deployment of the managed
systems and of their controllers, except that both self-
adaptive systems were preconfigured to start with a config-
uration satisfying their failsafe requirement. Note that such
a configuration always exists because the compliance of the
two systems with their failsafe requirements was formally
verified in the second ENTRUST stage (cf. Section 6.2).

6.6 Self-Adaptation

6.6.1 UUV System

The dynamic reconfiguration of the self-adaptive UUV sys-
tem is described in detail in Section 7.1.1. Here we illustrate
the process by considering a scenario in which the UUV
system comprises n = 3 sensors with: initial measurement

7. Mission-Oriented Operating Suite – Interval Programming
8. The use of a failsafe initial configuration is our recommended ap-

proach for ENTRUST self-adaptive systems. When this is not possible,
an execution of the MAPE loop must be initiated as part of the system
start-up, to ensure that an initial configuration meeting the system
requirements is selected.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

TABLE 5
Initial characteristics of the service instances used by the FX system

Operation: Market Watch Technical Analysis Fundam. Analysis Alarm Order Notification
Service ID: MW0 MW1 TA0 TA1 FA0 FA1 Al0 Al1 Or0 Or1 No0 No1

response time [s] .5 .5 .6 1.0 1.6 .7 .6 .9 .6 1.3 1.8 .5
reliability .976 .995 .998 .985 .998 .99 .995 .99 .995 .95 .99 .99
price 5 10 6 4 23 25 15 9 25 20 5 8

1 2 3 4 5
speed [m/s]

0

40

80

120

160

200

240

280

E
xp

e
ct

e
d

 e
n

e
rg

y
u

sa
g

e
 p

e
r

1
0

m
 [
J]

(a)

1 2 3 4 5
speed [m/s]

0

20

40

60

80

E
xp

e
ct

e
d

 a
cc

u
ra

te
 m

e
a

su
re

m
e

n
ts

 p
e

r
1

0
m

1 2 3 4

speed [m/s]

160

200

240

280

co
st

Key: x1=1, x2=1, x3=1x1=1, x2=0, x3=1x1=0, x2=0, x3=1x1=1, x2=0, x3=0 x1=0, x2=1, x3=0 x1=0, x2=1, x3=1x1=1, x2=1, x3=0

(b) (c)

Fig. 17. Verification results for requirement (a) R1, (b) R2, and (c) cost of the feasible configurations; 21 speed values between 1m/s and 5m/s are
considered for each of the seven combinations of active sensors, corresponding to 21× 7 = 147 alternative configurations. The best configuration
(circled) corresponds to x1 = x2 = 1, x3 = 0 (i.e. UUV using only its first two sensors) and sp = 3.2m/s, and the shaded regions correspond to
requirement violations.

rates r1 = 5s−1, r2 = 4s−1, r3 = 4s−1; energy consumed
per measurement e1 = 3J, e2 = 2.4J, e3 = 2.1J; and energy
used for switching a sensor on and off eon1 = 10J, eon2 = 8J,
eon3 = 5J and eoff1 = 2J, eoff2 = 1.5J, eoff3 = 1J, respectively.
Also, suppose that the current UUV configuration is (x1, x2,
x3, sp)=(0, 1, 1, 2.8), and that sensor 3 experiences a degra-
dation such that rnew3 =1s−1. The ENTRUST controller gets
this new measurement rate through the monitor. As the sen-
sor rates differ from those in the knowledge repository, the
guard analysisRequired() returns true and the startAnalysis!
signal is sent. Upon receiving the signal, the analyser model
invokes the probabilistic verification engine, whose analysis
results for requirements R1–R3 are depicted in Fig. 17. The
analyse() action filters the results as follows: configurations
that violate requirements R1 or R2, i.e., the shaded areas
from Fig. 17a and Fig. 17b, respectively, are discarded.9 The
remaining configurations are feasible, so their cost (1) is
computed for w1 = 1 and w2 = 200. The configuration
minimising the cost (i.e., (x1, x2, x3, sp)= (1, 1, 0, 3.2) – cir-
cled in Fig. 17a-c) is selected as the best configuration. Since
the best and the current configurations differ, the analyzer

9. Note that R1 and R2 are “conflicting” requirements, in the sense
that the configurations that satisfy R1 by the widest margin violate
R2, and the other way around. In such scenarios, ENTRUST supports
the selection of configurations based on trade-offs between the con-
flicting requirements, as specified by a cost (or utility) function. If
either requirement became much stricter (e.g. if R1 required over 50
measurements per every 10m), no configuration would satisfy both
R1 and R2. In this case, ENTRUST would choose the configuration
specified by the failsafe requirement R4, i.e. would reduce the UUV
speed to 0m/s, and would record the probabilistic model checking
evidence showing the lack of a suitable non-failsafe configuration.

invokes the planner to assemble a stepwise reconfiguration
plan with which i) sensor 1 is switched on; ii) next, sensor
3 is switched off; and iii) finally the speed is adjusted to
3.2m/s. Once the plan is assembled, the executor is enforc-
ing this plan to the UUV system. The adaptation results from
Fig. 17 provide the evidence required for the generation of
the assurance case as described in Section 6.7.1.

6.6.2 FX System

In this stage, the self-adaptive FX system dynamically recon-
figures in response to observed changes in the characteristics
of the web services it uses. Several such reconfigurations are
described later in the paper, in Section 7.1.2 and in Fig. 22.
To illustrate this process in detail, consider the system con-
figuration immediately after change C from Fig. 22, where
the FX workflow uses the services MW1, TA0, FA0, Al0, Or0
and No1. This configuration is reached after the FX services,
initially operating with the characteristics from Table 5, ex-
perience degradations in the reliability of MW0 (pnew

MW0
= 0.9,

change B in Fig. 22) and in the response time of FA1

(timenewFA1
= 1.2s, change C in Fig. 22). With the FX system

in this configuration, suppose that the Market Watch service
MW0 recovers, i.e., pnew

MW0
= 0.976 as in Table 5. Under these

circumstances, which correspond to change D from Fig. 22,
the ENTRUST controller receives the updated characteristics
of MW0 via its monitor. As the new service characteristics
differ from those in the knowledge repository, the guard
analysisRequired() holds and the startAnalysis! signal is sent.
The analyser model receives the signal and invokes the
runtime probabilistic verification engine, whose analysis of
the FX requirements R1–R3 over the 26=64 possible system

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

19

(a)

R
e

lia
b

ili
ty

Configuration index

0.950

0.925

0.900

0.875

0 20 40 60

(b)

Configuration index

R
e

s
p

o
n

s
e

 T
im

e
 [
s
]

0 20 40 60

6.5

6.0

5.5

5.0

(c)

Configuration index

c
o

s
t

0 20 40 60

85

80

75

70

Fig. 18. Runtime verification results for FX requirement (a) R1, (b) R2, and (c) R3—cost of the feasible configurations, where the configuration index
i1i2i3i4i5i6 in number base 2 corresponds to the FX configuration that uses services MWi1

, TAi2
, FAi3

, Ali4 , Ori5 and Noi6
. The best configuration

(circled) has index 5(10) = 000101(2), corresponding to MW0, TA0, FA0, Al1, Or0 and No1. Shaded regions correspond to requirement violations.

configurations (corresponding to six services each provided
by two implementations) is shown in Fig. 18. As part of this
analysis, configurations that violate requirements R1 or R2
(i.e., those from the shaded areas in Fig. 18a and Fig. 18b,
respectively) are discarded. The remaining configurations
are feasible, so their cost is calculated (for w1 = 1 and
w2 = 2) as shown in Fig. 18c. The feasible configuration
using services MW0, TA0, FA0, Al1, Or0 and No1 has the
lowest cost and is thus selected as the best system configura-
tion. Since the best and the current configurations differ, the
guard adaptationRequired() holds and the analyser invokes
the planner through the startPlanning! signal to assemble
a stepwise reconfiguration plan through which: (i) MW0

replaces MW1; and (ii) Al1 replaces Al0. Once the plan is
ready, the executor automaton receives the startExecuting?
signal and is ensuring the implementation of this plan by
sending the signal changeService! to the system effectors.

6.6.3 Discussion

Both self-adaptive systems reconfigured in response to
application-specific changes (more of which are described
in Section 7). Selecting the new configurations involved
the runtime probabilistic model checking of different types
of stochastic models, to generate assurance evidence that
system requirements were satisfied after each change.

6.7 Synthesis of Dynamic Assurance Argument

6.7.1 UUV System

In this stage, the partially-instantiated assurance argument
pattern for the UUV system (Fig. 15) is fully instantiated
after every selection of a new UUV configuration by the
ENTRUST controller. For instance, after the ENTRUST con-
troller activities described in Section 6.6.1 conclude with
the selection of the UUV configuration (x1, x2, x3, sp) =
(1, 1, 0, 3.2) and the generation of runtime verification ev-
idence that this configuration satisfies requirements R1–
R3, this partially-instantiated assurance argument pattern
is fully instantiated as shown in Fig. 19.

⋮

Goal: ReqsSatisfied

Formalised UUV

requirements satisfied

J

Justification: Reconfig

System supports reconfigu-
ration if current configuration

cannot meet UUV

 requirements

Goal: Reconfig

UUV requirements

achieved via

reconfiguration

Goal: ReqsConfiguration

UUV requirements

achieved in configuration

(1, 1, 0, 3.2)

Goal: R2Achieved

Requirement R2

achieved through using

configuration (1, 1, 0, 3.2)

Goal: R3Achieved

Requirement R3

achieved through using

configuration (1, 1, 0, 3.2)

Away Goal:

ReqsPreservedByPlatform

Requirement R1 verified for
configuration (1, 1, 0, 3.2) is
implemented by controlled
software system

Platform Arg.

 Solution:
 R1Result

R1 result
(measurements:
 21)

 Solution:
 R4Result

Verification result

 for CTL encod-

 ing of R4

Goal: R1Verified

Requirement R1

verified for config-

uration (1, 1, 0, 3.2)

Goal: R4Verified

Requirement R4

verified for config-

uration (1, 1, 0, 3.2)

Away Goal:

ReqsPreservedByPlatform

Requirement R4 verified for
configuration (1, 1, 0, 3.2) is
implemented by controlled
software system

Platform Arg.

Context: ConfigDef

(x
1
, x

2
, x

3
, s) = (1, 1, 0, 3.2)

Goal: R1Achieved

Requirement R1

achieved through using

configuration (1, 1, 0, 3.2)

Goal: R4Achieved

Requirement R4

achieved through using

configuration (1, 1, 0, 3.2)

⋮

Away Goal:

NoErroneousBehaviour

Erroneous behaviours

are acceptably managed

Err. Behaviour Arg.

Context: Reqs

Requirements formal-
ised for configuration
(1, 1, 0, 3.2)

Strategy: ConfigReqs

Argument over formal-

ised requirements for

configuration (1, 1, 0, 3.2)

 Solution:
 CtrlVerResult

Verification result
for controller and

 failsafe prop-

 erties

Fig. 19. Fully-instantiated assurance argument for the UUV system; the
subgoals for R2Achieved and R3Achieved (not included due to space
constraints) are similar to those for R1Achieved, and shading is used to
show the elements instantiated at runtime

6.7.2 FX System

The partially instantiated FX assurance pattern from Fig. 16
is updated into a full assurance argument after each selec-
tion of a new configuration by the ENTRUST controller.
This involves using the new evidence generated by the
runtime probabilistic verification engine to complete the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

20

⋮

Goal: ReqsSatisfied

Formalised FX

requirements satisfied

J

Justification: Reconfig

System supports reconfigu-
ration if current configuration

cannot meet FX

 requirements

Goal: Reconfig

FX requirements

achieved via

reconfiguration

Goal: ReqsConfiguration

FX requirements

achieved in configuration
(MW0, TA0, FA0, Al1, Or0, No1)

Goal: R2Achieved

Requirement R2
achieved through using
configuration (MW0, TA0,
FA0, Al1, Or0, No1)

Goal: R3Achieved

Requirement R3
achieved through using
configuration (MW0, TA0,
FA0, Al1, Or0, No1)

Away Goal:

ReqsPreservedByPlatform

Requirement R1 verified for
configuration (MW0,TA0,FA0,Al1,

Or0, No1) is implemented by
controlled software system

Platform Arg.

 Solution:
 R1Result

R1 result
(reliability:
 0.926)

 Solution:
 R4Result

Verification result

 for CTL encod-

 ing of R4

Goal: R1Verified

Requirement R1
verified for config-

uration (MW0, TA0, FA0,

Al1, Or0, No1)

Goal: R4Verified

Requirement R4
verified for config-

uration (MW0, TA0, FA0,

Al1, Or0, No1)

Away Goal:

ReqsPreservedByPlatform

Requirement R4 verified for
configuration (MW0,TA0,FA0,Al1,

Or0, No1) is implemented by
controlled software system

Platform Arg.

Context: ConfigDef

(MW, TA, FA, Al, Or, No)
= (MW0, TA0, FA0, Al1, Or0,
 No1)

Goal: R1Achieved

Requirement R1
achieved through using
configuration (MW0, TA0,
FA0, Al1, Or0, No1)

Goal: R4Achieved

Requirement R4
achieved through using
configuration (MW0, TA0,
FA0, Al1, Or0, No1)

⋮

Away Goal:

NoErroneousBehaviour

Erroneous behaviours

are acceptably managed

Err. Behaviour Arg.

Context: Reqs
Requirements formal-
lised for configuration
(MW0, TA0, FA0, Al1, Or0,
_ No1)

Strategy: ConfigReqs

Argument over formal-
ised requirements for

configuration (MW0, TA0,
FA0, Al1, Or0, No1)

 Solution:
 CtrlVerResult

Verification result
for controller and

 failsafe prop-

 erties

Fig. 20. Fully-instantiated assurance argument for the FX system; the
subgoals for R2Achieved and R3Achieved (not included due to space
constraints) are similar to those for R1achieved, and shading is used to
show the elements instantiated at runtime

instantiation of the assurance pattern. As an example, Fig. 20
shows the complete assurance pattern synthesised as part
of the configuration change that we used to illustrate the
previous stage of ENTRUST in Section 6.6.2.

6.7.3 Discussion

For both the UUV system and the FX system, integrating
the dynamically generated assurance evidence required the
updating of only a few uninstantiated GSN ‘solutions’ from
the partially instantiated assurance arguments. In contrast,
instantiating the current system configurations in the two
assurance arguments involved multiple but small updates
of ‘context’, ‘strategy’ and ‘goal’ GSN elements. The right-
most branches of the assurance arguments ensure the goals
associated with the failsafe requirements of the two systems,
and therefore remained unchanged in this ENTRUST stage.

7 EVALUATION

To evaluate the effectiveness and generality of ENTRUST,
we used our methodology to engineer the self-adaptive
software systems from Section 3. The two systems were
developed as described in Section 6, and were deployed
in a realistic environment seeded with simulated changes
specific to their application domains. Finally, we examined
the correctness and efficiency of the adaptation and of

the assurance cases produced by ENTRUST in response
to each of these unexpected environmental changes. The
aim of our evaluation was to answer the following research
questions.

RQ1 (Correctness): Are ENTRUST self-adaptive systems
making the right adaptation decisions and generating
valid assurance cases?

RQ2 (Efficiency): Does ENTRUST provide design-time and
runtime assurance evidence with acceptable overheads
for realistic system sizes?

RQ3 (Generality): Does ENTRUST support the develop-
ment of self-adaptive software systems and dynamic
assurance cases across application domains?

As the focus of our evaluation was the ENTRUST method-
ology and its tool-supported instance, we necessarily made
a number of assumptions. In particular, we assumed that
established assurance processes could be used to construct
assurance arguments for all aspects of the controlled sys-
tems from our case studies, including their correct design,
development, operation, ability to respond to effector re-
quests, and any real-time considerations associated with
achieving the new configurations decided by the ENTRUST
controller. As such, these aspects are outside the scope of
ENTRUST and are not covered in our evaluation. We further
assumed that the derivation, validity, completeness and
formalisation of the self-adaptive system requirements are
addressed as part of the overall system assurance cases for
the two case studies, and therefore also outside the scope of
our evaluation of ENTRUST.

The experiments carried out to address the three research
questions are described in Sections 7.1–7.3, and the main
threats to validity are discussed in Section 7.4.

7.1 RQ1 (Correctness)

To answer the first research question, we carried out exper-
iments that involved running the UUV and FX systems in
realistic environments comprising (simulated) unexpected
changes specific to their domains. For the UUV system,
the experiments were seeded with failures including sud-
den degradation in the measurement rates of sensors and
complete failures of sensors, and with recoveries from these
problems. For the FX system, we considered variations in
the response time and the probability of successful comple-
tion of third-party service invocation. All the experiments
were run on a MacBook Pro with 2.5 GHz Intel Core i7
processor, and 16 GB 1600 MHz DDR3 RAM.

7.1.1 UUV System

For the UUV system, we described a concrete change sce-
nario and the resulting self-adaptation process and gener-
ation of an assurance case in Sections 6.6.1 and 6.7.1. The
complete set of change scenarios we used in this experiment
is summarised in Fig. 21, which depicts the changes in
the sensor rates and the new UUV configurations selected
by the ENTRUST controller. The labels A–H from Fig. 21
correspond to following key events:

A) The UUV starts with the initial state and configuration
from Section 6.6.1;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

21

s
p

 [
m

/s
]

Time [s]

r 3
 [

s
-1
]

GCB

r 1
 [

s
-1
]

A
r 2

 [
s

-1
]

D E F H

Fig. 21. Change scenarios for the self-adaptive UUV system over 2100
seconds of simulated time. Extended shaded regions indicate the sen-
sors switched on at each point in time, and narrow shaded areas show
the periodical testing of sensors switched off due to degradation (to
detect their recovery).

B) Sensor 3 experiences the degradation described in Sec-
tion 6.6.1 (rnew3 = 1), so the higher-rate but less energy
efficient sensor 1 is switched on (allowing a slight in-
crease in speed to sp=3.2m/s) and sensor 3 is switched
off;

C) Sensor 3 recovers and the initial configuration is re-
sumed;

D) Sensor 2 experiences a degradation, and is replaced by
sensor 1, with the speed increased to sp=3.1m/s;

E) Sensor 2 recovers and the initial configuration is re-
sumed;

F) Both sensor 2 and sensor 3 experience degradations, so
sensor 1 alone is used, with the UUV travelling at a lower
speed sp=2.1m/s;

G) Periodic tests (which involve switching sensors 2 and 3
on for short periods of time) are carried out to detect a
potential recovery of the degraded sensors;

H) Sensors 2 and 3 resume operation at nominal rates and
the initial UUV configuration is reinstated.

If the UUV system was not self-adaptive, it would have
to operate with a fixed configuration, which would lead
to requirement violations for extended periods of time. To
understand this drawback of a non-adaptive UUV, consider
that its fixed configuration is chosen to coincide with the
initial UUV configuration from Fig. 21 (i.e. (x1, x2, x3, sp) =
(0, 1, 1, 2.8)) – a natural choice because manual analysis
can be used to find that this configuration satisfies the
UUV requirements at deployment time. However, with this
fixed configuration, the UUV will violate its throughput
requirement R1 whenever one or both of UUV sensors 1
and 2 experience a non-trivial degradation, i.e. in the time
intervals B–C (only 13 measurements per 10m instead of the
required 20 measurements, according to additional analysis
we carried out), D–E (only 15 measurements per 10m)
and F–H (only 7 measurements per 10m) from Fig. 21.

Although a different fixed configuration may always meet
requirement R1, such a configuration would violate other
requirement(s), e.g. having all three UUV sensors switched
on meets R1 but violates the resource usage requirement R2
at all times.

Finally, we performed experiments to assess how the
adaptation decisions may be affected by changes in the
weights w1, w2 from the UUV cost (1) and the energy
usage of the n UUV sensors. We considered UUVs with
n ∈ {3, 4, 5, 6} sensors, and for each value of n we carried
out 30 independent experiments with the weights w1, w2

randomly drawn from the interval [1, 500], and the energy
consumption for taking a measurement and switching on
and off a sensor (i.e., ei, e

on
i and eoffi , 1 ≤ i ≤ n) randomly

drawn from the interval [0.1J, 10J]. The experimental re-
sults (available, together with the PRISM-generated assur-
ance evidence, on the project website) show that ENTRUST
successfully reconfigured the system irrespective of the
weight and energy usage values. In particular, if a config-
uration satisfying requirements R1–R3 existed for a specific
change and system characteristics combination, ENTRUST
reconfigured the UUV system to use this configuration.
As expected, the configuration minimising the cost (1) de-
pended both on the values of the weights w1, w2 and on
the sensor energy usage. When no configuration satisfying
requirements R1–R3 was available, ENTRUST employed the
zero-speed failsafe configuration from requirement R4 until
configurations satisfying requirements R1–R3 were again
possible after a sensor recovery.

7.1.2 FX System

For the FX system, a concrete change scenario is detailed in
Section 3.2, and the complete set of change scenarios used
in our experiments is summarised in Fig. 22, where labels
A–G correspond to the following events:

A) The FX starts with the initial services characteristics
from Table 5 and uses a configuration comprising the
services MW0, TA0, FA0, Al1, Or0 and No1, which satisfies
requirements R1 and R2 and optimises R3;

B) The Market Watch service MW0 experiences a significant
reliability degradation (pnew

MW0
= 0.9), so FX starts using

the significantly more reliable MW1, and thus “affords”
to also switch to the slightly less reliable but faster
Fundamental Analysis service FA1 in order to minimise
the cost defined in requirement R3;

C) Due to an increase in response time of Fundamental
Analysis service FA1 (timenewFA1

= 1.2s), the FX switches
to using FA0 and also replaces the Alarm service Al1 with
the faster but more expensive service Al0 (to meet the
timing requirement R2);

D) The Market Watch service MW0 recovers, so FX switches
back to this services and also resumes using the less
reliable Alarm service Al1;

E) The Technical Analysis service TA0 and the Notification
service No1 exhibit unexpected degradations in reliabil-
ity (pnew

TA0
= 0.98) and in response time (timenewNo1

= 1s),
respectively, so the FX system self reconfigures to use
MW0, TA1, FA1, Al0, Or0 and No0;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

22

Time [s]

FA0

FA1

Fundamental
Analysis C

B
MW0

MW1

Market
Watch

D

TA0

TA1

Technical
Analysis

E F

Al0

Al1
Alarm A

Or0

Or1

Order F G

No0

No1

Notification E
G

Fig. 22. Change scenarios for the self-adaptive FX system, with the
initial services characteristics shown in Table 5. The thick continuous
lines depict the services selected at each point in time.

F) As a result of a reliability degradation in the Order
service Or0 (pnew

Or0
= 0.91) and recovery of the Technical

Analysis service TA0, the FX system replaces services
MW0, TA1, FA1 and Or0 with MW1, TA0, FA0 and Or1,
respectively;

G) All the degraded services recover, so the initial configu-
ration MW0, TA0, FA0, Al1, Or0 and No1 is reinstated.

As in the case of the UUV system, a non-adaptive FX
version will fail to meet the system requirements for ex-
tended periods of time. For example, choosing to always
use the initial FX configuration from Fig. 22 would lead to
a violation of the reliability requirement R1 while service
MW0 experiences a significant reliability degradation in the
time interval B–D. While using service MW1 instead of MW0

would avoid this violation, MW1 is more expensive but no
faster than MW0 (cf. Table 5) so its choice would increase the
cost (2), thus violating the cost requirement R3 in the time
interval A–B.

7.1.3 Discussion

For each change scenario from our experiments within
the two case studies (cf. Figs. 21 and 22), we performed
two checks. For the former check, we confirmed that the
ENTRUST controller operated correctly. To this end, we
established that the change was accurately reported by the
sensors and correctly processed by the monitor, leading the
analyzer to select the right new configuration, for which a
correct plan was built by the planner and implemented by
the executor.

For the latter check, we determined the suitability of the
ENTRUST assurance cases. We started from the guidelines
set by safety and assurance standards, which highlight the
importance of demonstrating, using available evidence, that
an assurance argument is compelling, structured and valid
[34], [81], [112]. Also, we considered the fact that ENTRUST
has been examined experimentally but has not been tested
in real-world scenarios to generate the industrial evidence
necessary before approaching the relevant regulator. How-
ever, our preliminary results show, based on formal design-
time and runtime evidence, that the primary claim of EN-

TRUST assurance cases is supported by a direct and robust
argument. Firstly, the argument assures the achievement
of the requirements either based on a particular active
configuration or through reconfiguration, while maintaining
a failsafe mechanism. Secondly, the argument and patterns
are well-structured and conform to the GSN community
standard [60]. Thirdly, ENTRUST provides rigorous assess-
ments of validity not only at design time but also through-
life, by means of monitoring and continuous verification
that assess and challenge the validity of the assurance case
based on actual operational data. This continuous assess-
ment of validity is a core requirement for safety standards,
as highlighted recently for medical devices [93]. As such, our
approach satisfies five key principles of dynamic assurance
cases [38]:

• continuity and updatability, as evidence is generated and
updated at runtime to ensure the continuous validity
of the assurance argument (e.g. the formal evidence for
solution R1Result from the UUV argument in Fig. 19,
which satisfies a system requirement given the current
configuration);

• proactivity, since the assurance factors that provide the
basis for the evidence in the assurance argument are
proactively identified (e.g. the ConfigDef context from
the UUV argument in Fig. 19, which captures the pa-
rameters of the current configuration);

• automation, because the runtime evidence is dynamically
synthesised by the MAPE controller;

• formality, as the assurance arguments are formalised
using the GSN standard.

In conclusion, subject to the limitations described above,
our experiments provide strong empirical evidence that
ENTRUST self-adaptive systems make the right adaptation
decisions and generate valid assurance cases.

7.2 RQ2 (Efficiency)

To assess the efficiency of the ENTRUST generation of
assurance evidence, we measured the CPU time taken by
(i) the design-time UPPAAL model checking of the generic
controller properties from Table 4; and (ii) the runtime
probabilistic model checking performed by the ENTRUST
analyzer. Fig. 23 shows the time taken to verify the generic
controller properties from Table 4 for a three-sensor UUV
system, and for an FX system comprising two third-party
implementations for each workflow service. With typical
CPU times of several minutes per property and a maximum
below 12 minutes, the overheads for this design-time, once-
only verification of all controller properties are entirely
acceptable.

The CPU times required for the runtime probabilistic
model checking of the QoS requirements for alternative
configurations of the two systems (Fig. 24) have values
below 1.5s and 2s, respectively. These runtime overheads,
which correspond to under 10ms for the verification of a
UUV configuration and under 30ms for the verification of
an FX configuration, are acceptable because ENTRUST is
intended for scenarios where:

1) failures and other changes requiring system reconfig-
urations are, on average, much less frequent than the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

23

ENTRUST controller generic properties

100

140

180

220

P1 P2 P3 P4 P5 P6 P7 P8 P9

C
P

U
 T

im
e
 [
s
]

300

400

500

600

700

P1 P2 P3 P4 P5 P6 P7 P8 P9

UUV System FX System

Fig. 23. CPU time for the UPPAAL verification of the generic controller
properties in Table 4 (box plots of 10 independent measurements)

frequency with which the runtime verification can be
executed (i.e. every 1.5–2s for our two systems);

2) failsafe configurations can be temporarily assumed if
needed during the infrequent reverifications of the EN-
TRUST stochastic models.

These assumptions ensure that, most of the time, ENTRUST
adaptation decisions are reached before new changes occur
and can be applied. They also ensure that any time spent in
failsafe configurations is small compared to the time when
the system employs “useful” configurations.

As shown in Fig. 24, we also ran experiments to assess
the increase in runtime overhead with the system size
and number of alternative configurations, by considering
UUVs with up to six sensors, and FX system variants with
up to five implementations per service. Typical for model
checking, the CPU time increases exponentially with these
system characteristics. This makes the current implemen-
tation of our ENTRUST instance suitable for self-adaptive
systems with up to hundreds of configurations to analyse
and select from at runtime. However, our recent work
on compositional [21], incremental [70], caching-lookahead
[55] and distributed [19] approaches to probabilistic model
checking and on metaheuristics for probabilistic model syn-
thesis [57] suggests that these more efficient model check-
ing approaches could be used to extend the applicability
of our ENTRUST instance to much larger configuration
space sizes. As an example, in [55] we used caching of
recent runtime probabilistic model checking results and
anticipatory verification of likely future configurations (i.e.
lookahead) to significantly reduce the mean time required to
select new configurations for a variant of our self-adaptive
UUV system (by over one order of magnitude in many
scenarios). Integrating ENTRUST with these approaches is
complementary to the purpose of this paper and represents
future work.

7.3 RQ3 (Generality)

We used ENTRUST to develop an embedded system from
the oceanic monitoring domain, and a service-based system
from the exchange trade domain. As previously mentioned
in Section 3 and summarised in Table 1, self-adaptation
within these systems was underpinned by the verification of
continuous- and discrete-time Markov chains, respectively;
and the requirements and types of changes for the two sys-
tems differed. Finally, the ENTRUST assurance arguments

UUV System FX System

Fig. 24. CPU time for the runtime probabilistic model checking of the
QoS requirements after changes (box plots based on 10 system runs
comprising seven changes each—70 measurements in total)

for the two systems were based on assurance evidence
obtained using multiple verification techniques:

1) testing evidence for the correct operation of trusted
virtual machine;

2) model checking evidence for the correctness of the
MAPE controller and the failsafe system requirements;

3) probabilistic model checking evidence for the remaining
system requirements.

Although evaluation in additional areas is needed, these
results indicate that our ENTRUST instance can be used
across application domains.

To assess the overall generality of ENTRUST, we note
that probabilistic model checking can effortlessly be re-
placed with simulation in our experiments, because the
probabilistic model checker PRISM can be configured to
use discrete-event simulation instead of model checking
techniques. Using this PRISM configuration requires no
change to the Markov models or probabilistic temporal logic
properties we analysed at runtime. As for any simulation,
the analysis results would be approximate, but would be
obtained with lower overheads than those from Fig. 24.

The uncertainties that affect self-adaptive systems are
often of a stochastic nature, and thus the use of stochastic
models and probabilistic model checking to analyse the be-
haviour of these systems is very common (e.g. [15], [20], [27],
[44], [47], [50], [90], [104]). As such, our ENTRUST instance
is applicable to a broad class of self-adaptive systems.

Nevertheless, other methods have been used to synthe-
sise MAPE controllers and to support their operation. Many
such methods (e.g. based on formal proof, traditional model
checking, other simulation techniques and testing) are de-
scribed in Section 8. Given the generality of ENTRUST,
these methods could potentially be employed at design
time and/or at runtime by alternative instantiations of
ENTRUST, supported by different modelling paradigms, re-
quirement specification formalisms, and tools. For example,
the use of the (non-probabilistic) graph transformation mod-
els or dynamic tests proposed in [6] and [51], respectively, in
the self-adaptation ENTRUST stage is not precluded by any
of our assumptions (cf. Section 4.2.1), although the method
chosen for this stage will clearly constrain the types of
requirements for which assurance evidence can be provided
at runtime.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

24

7.4 Threats to Validity

Construct validity threats may be due to the assumptions
made when implementing our simple versions of the UUV
and FX systems, and in the development of the stochastic
models and requirements for these systems. To mitigate
these threats, we implemented the two systems using the
well-established UUV software platform MOOS-IvP and
(for FX) standard Java web services deployed in Tom-
cat/Axis. The model and requirements for the UUV system
are based on a validated case study that we are familiar with
from previous work [55], and those for the FX system were
developed in close collaboration with a foreign exchange
expert.

Internal validity threats can originate from how the
experiments were performed, and from bias in the interpre-
tation of the results due to researcher subjectivity. To address
these threats, we reported results over multiple independent
runs; we worked with a team comprising experts in all the
key areas of ENTRUST (self-adaptation, formal verification
and assurance cases); and we made all experimental data
and results publicly available to enable replication.

External validity threats may be due to the use of only
two systems in our evaluation, and to the experimental eval-
uation having been done by only the authors’ three research
groups. To reduce the first threat, we selected systems from
different domains with different requirements. The evalua-
tion results show that ENTRUST supports the development
of trustworthy self-adaptive solutions with assurance cases
for the two different settings. To reduce the second threat,
we based ENTRUST on input from, and needs identified
by, the research community [25], [30], [36], [37]. In addition,
we fine tuned ENTRUST based on feedback from industrial
partners involved in the development of mission-critical
self-adaptive systems, and these partners are now using
our methodology in planning future engineering activities.
Nevertheless, additional evaluation is required to confirm
generality for domains with characteristics that differ from
those in our evaluation (e.g., different timing patterns and
types of requirements and disturbances) and usability by a
larger number of users.

8 RELATED WORK

Given the uncertain operating conditions of self-adaptive
systems, a central aspect of providing assurances for such
systems is to collect and integrate evidence that the re-
quirements are satisfied during the entire lifetime. To this
end, researchers from the area of self-adaptive systems have
actively studied a wide variety of assurance methods and
techniques applicable at design time and/or at runtime [30],
[36], [84], [108], [119], [122], [128]. Tables 6 and 7 summarise
the state of the art, partitioned into categories based on the
main method used to provide assurances, e.g. formal proof,
model checking or simulation. We consider as the main
method of a study from our analysis the method that the
study primarily focuses on; the approaches from these stud-
ies may implicitly use additional methods, such as testing
of their platforms and tools, but this is not emphasised by
their authors. We summarise the representative approaches
included in each category according to their:

1) Assurances evidence, comprising separate parts for the
methods used to provide assurance evidence for: (i) the
correctness of the platform used to execute the controller,
(ii) the correctness of the controller functions, and (iii) the
correctness of the runtime adaptation decisions;

2) Methodology, comprising three parts: the engineering
process (i.e. a methodical series of steps to provide the
assurances), tool support (i.e., tools used by engineers to
provide evidence at design time and tools used at run-
time by the controller, e.g. during analysis or planning),
and other reusable components (i.e. third-party libraries
and purpose-built software components used as part of
the controller, and other artefacts that can be used at
design time or at runtime, including models, templates,
patterns, algorithms).

Providing assurances for self-adaptive systems with strict
requirements requires covering all these aspects, as well as
an assurance argument that integrates the assurance evidence
into a compelling, comprehensible and valid case that the
system requirements are satisfied. Unlike ENTRUST (Ta-
ble 8), the current research disregards this need for an assur-
ance argument. We discuss below the different approaches
and point out limitations that we overcome with ENTRUST.

Formal proof establishes theorems to prove properties of
the controller or the system under adaptation. Proof was
used to provide evidence for safety and liveness proper-
ties of self-adaptive systems with different semantics (one-
point adaptation, overlap adaptation, and guided adapta-
tion) [127]. Formal proof was also used to provide evidence
for properties of automatically synthesised controllers, e.g.
the completeness and soundness of synthesised behavioral
models that satisfy an expressive subset of liveness prop-
erties [42] and correctness and deadlock free adaptations
performed by automatically synthesised controllers [74]. Fi-
nally, formal proof was used to demonstrate the correctness
of adaptation effects, e.g. proofs for safety, no deadlock, and
no starvation of system processes as a result of adaptation
[13], and guarantees for the required qualities of adapta-
tions, e.g. proofs for optimised resource allocation, while
satisfying quality of service constraints [1]. The focus of all
these approaches is on providing assurance evidence for
particular aspects of adaptation. All of them offer reusable
components, however, these solutions require complete
specifications of the system and its environment, and—
unlike ENTRUST—cannot handle aspects of the managed
system and its environment that are unknown until runtime.

Model checking enables verifying that a property holds
for all reachable states of a system, either offline by en-
gineers and/or online by the controller software. Model
checking was used to ensure correctness of the adaptation
functions that are modeled as interacting automata, with
the verified models directly interpreted during execution
by a thoroughly tested virtual machine [69]. Model check-
ing was also used to provide guarantees for automatic
controller synthesis and enactment, e.g. to assure that a
synthesised controller and reusable model interpreter have
no anomalies [12]. Model checking has extensively been
used to provide guarantees for the effects of adaptation
actions on the managed system, e.g. for safety properties
of the transitions of a managed system that is modeled as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

25

TABLE 6
Overview of related research on assurances for self-adaptive systems - part I

Approach

Assurance evidence Methodology

Controller Controller Adaptation Engineering Tool Other reusable

platform functions decisions process support components

Formal proof

Adaptation
semantics [127]

Proof of safety and liveness
properties of adaptive programs

and program compositions

Model checking
algorithm

Synthesis of
behavioral
models [42]

Proof of completeness and
soundness of synthesized

behavioral models

Controller
synthesis
technique

Controller
synthesis [74]

Proof that controller synthesis
algorithm generates controllers

that guarantee correct and
deadlock free adaptations

Controller
synthesis

process only

Tool to generate
controller offline

Controller
synthesis
algorithm

Correctness
adaptation
effects [13]

Proof of safety, no deadlock,
and no starvation of system

processes as a result of
adaptation

Verified middle-
ware that ensures

safety and liveness
of monitored system

Guaranteed
qualities [1]

Proof of optimizing resource
allocation under QoS constraints

Ad-hoc solver of op-
timisation problem

Model checking

Correct
adaptation

functions [69]

Thoroughly
tested virtual

machine used to
interpret and run
controller models

UPPAAL model checking of
interacting timed automata to

ensure controller deadlock
freeness, liveness, etc. and

functional system requirements

UPPAAL used
to verify

controller
models at

design time

Tested reusable
virtual machine;
controller model

templates

Controller
synthesis and
enactment [12]

Synthesised controller that is
guaranteed not to be

anomalous

Tool used for
controller
synthesis

Reusable inter-
preter and config-
uration manager

for controller
enactment

Safe adaptation
configurations

[6]

Verification of safety properties
of system transitions using a
graph transformation model

Symbolic
verification
procedure

Guaranteed
qualities [18]

Probabilistic model checking of
continually updated stochastic

models of the controlled system
and the environment to ensure

non-functional requirements

PRISM verification
library for analysis

of stochastic
system and envir-

onment models

Resilience to
controller

failures [24]

Probabilistic model checking of
resilience properties of

synthesized Markov models of
the managed system

Procedure to
check resilience

to controller
failures

Reusable
operational

profiles to check
resilience

a graph transformation system [6], to ensure non-functional
requirements by runtime verification of continually updated
stochastic models of the controlled system and the environ-
ment [18], and to provide evidence for resilience properties
of synthesized Markov models of the managed system [24].
Again, the focus of all the approaches is on providing
assurance evidence for particular aspects of adaptation. The
ENTRUST instance presented in Section 5 uses two of these
techniques (i.e., [69] and [18]) to verify the correctness of
the MAPE logic at design time and to obtain evidence that
adaptation decisions are correct at runtime, respectively.
In addition, ENTRUST offers a process for the systematic
engineering of all components of the self-adaptive system,
which includes employing an industry-adopted standard
for the formalization of assurance arguments.

Simulation approaches provide evidence by analysing the
output of the execution of a model of the system. Simulation
was used to evaluate novel self-adaptation approaches, e.g.
to ensure the scalability and robustness to node failures and
message loss of a self-assembly algorithm [106], and to sup-
port the design of self-adaptive systems, e.g., to check if the
performance of a latency-aware adaptation algorithm falls
within predicted bounds [27]. Recently some efforts have
been made to let the controller exploit simulation at runtime

to support analysis, e.g. runtime simulation of stochastic
models of managed system and environment has been used
to ensure non-functional requirements with certain level
of confidence [121]. The primary focus of simulation ap-
proaches has been on providing assurance evidence for the
adaptation actions (either as a means to check the controller
effects or to make a prediction of the expected effects of
different adaptation options). The approaches typically rely
on established simulators.

Testing is a standard method for assessing if a software
system performs as expected in a finite number of scenarios.
Testing was used to test the effectiveness of adaptation
frameworks, e.g. checking whether a self-repair framework
applied to a client-server system keeps the latencies of
clients within certain bounds when the network is over-
loaded [54]. Testing was used to provide evidence for
the robustness of controllers by injecting invalid inputs at
the controller’s interface and use the responses to classify
robustness [24]. Several studies have applied testing at
runtime, e.g. to validate safe and correct adaptations of
the managed system based on adapt test cases generated
in response to changes in the system and environment
[51]. While simulation and testing approaches can be em-
ployed within the generic ENTRUST methodology to obtain

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

26

TABLE 7
Overview of related research on assurances for self-adaptive systems - part II

Approach

Assurance evidence Methodology

Controller Controller Adaptation Engineering Tool Other reusable

platform functions decisions process support components

Simulation

Evaluation
novel approach

[106]

Offline simulation to ensure the
scalability and robustness to

node failures and message loss

Support for
design [27]

Offline simulations to check if
the performance of a

latency-aware adaptation
algorithm falls within predicted

bounds

OMNeT++
simulator for

checking
algorithm

performance

Runtime
analysis [121]

Runtime simulation of
stochastic models of managed

system and environment to
ensure non-functional

requirements with certain level
of confidence

UPPAAL-SMC
used for online
simulation of

stochastic system
and environment

models

Testing

Test
effectiveness of

adaptation
framework [54]

Offline stress testing in
client-server system, showing
that self-repair significantly

improves system performance

Rainbow
framework to

realise
self-adaptation

Test controller
robustness [24]

Robustness testing of controller
by injecting invalid inputs at
the controller’s interface and
employ responses to classify

robustness

Robustness
testing

procedure only

Probabilistic
response

specification
patterns for

robustness testing

Runtime
testing [51]

Dynamic tests to validate safe
and correct adaptation of

system using test cases adapted
to changes in the system and

environment

One-stage
process for test
case adaptation

Other approaches

Control-
theoretic

approaches,
e.g., [49]

Control-theoretic guarantees
for one goal (setpoint) using

automatically synthesised
controller at runtime

Controller guarantees for
stability, overshoot, setting time

and robustness of system
operating under disturbances

ARPE tool to build
online a first-order

model of the
system

Kalman filter and
change point

detection
procedure for

model updates

Runtime
verification

[103]

Online verification of the
probability that a temporal
property is satisfied given a

sample execution trace

TRACE-
CONTRACT tool

used for trace
analysis

Sanity checks
[116]

Sanity checks evaluate the
correctness of resource sharing
decisions made by a reasoning

engine

CHAMELEON
tool providing
performance
guarantees

TABLE 8
Comparison of ENTRUST to related research on assurances for self-adaptive systems

Approach

Assurance evidence Methodology

Controller Controller Adaptation Assurance Engineering Tool Other reusable

platform functions decisions argument process support components

Generic
ENTRUST

methodology

Reuse of verified
application-
independent

controller
functionality

Verification of
controller
models to

ensure generic
controller

requirements
and some

system
requirements

Automated
synthesis of
adaptation
assurance

evidence during
the analysis and
planning steps
of the MAPE
control loop

Development of
partial

assurance
argument at

design time, and
synthesis of

dynamic
assurance
argument

during
self-adaptation

Seven-stage process
for the systematic
engineering of all
components of the

self-adaptive system,
and of an assurance

case arguing its
suitability for the

intended application

Tools specific to each
ENTRUST instance

Reusable software
artefacts: controller
platform, controller

model templates;
Reusable assurance
artefacts: platform

assurance evidence,
generic controller

requirements,
assurance argument

pattern

Tool-
supported
ENTRUST

instance

Reuse of
thoroughly

tested virtual
machine to

directly
interpret and
run controller
models, and of

established
probabilistic

model checking
engine

UPPAAL model
checking of
interacting

timed automata
models to

ensure controller
deadlock-
freeness,

liveness, etc.
and functional

system
requirements

PRISM
probabilistic

model checking
of continually

updated stochastic
models of the

controlled
system and the
environment to

ensure
non-functional
requirements

Assurance
argument

synthesised
using the
industry-

adopted Goal
Structuring

Notation (GSN)
standard

Seven-stage process
for the systematic
engineering of all
components of the

self-adaptive system,
and of an assurance

case arguing its
suitability for the

intended application

UPPAAL used to
verify controller

models; PRISM used
to verify stochastic

system and
environment models

Reusable controller
platform (virtual

machine, probabilistic
verification engine),

timed automata
controller model

templates; Reusable
platform assurance

evidence, CTL generic
controller require-

ments, GSN assurance
argument pattern

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

27

assurance evidence for particular aspects of self-adaptive
systems, they need to be complemented by assurances for
other components of a self-adaptive system and integrated
in a systematic process as provided by ENTRUST.

Other approaches. We highlight some other related ap-
proaches that have been used to provide assurances for
self-adaptive systems. Recently, there has been a growing
interest in applying control theory to build “correct by
construction” controllers [97]. The approach was used to
automatically synthesise controllers at runtime, providing
control-theoretic guarantees for stability, overshoot, setting
time and robustness of system operating under disturbances
[49]. Although promising, this research is at an early stage,
and its potential to deliver solutions for real-world systems
and scenarios has yet to be confirmed. In contrast, EN-
TRUST relies on proven software engineering techniques
for modelling and analysing software systems and assuring
their required properties. Runtime verification is a well-
studied lightweight verification technique based on extract-
ing information from a running system to detect whether
certain properties are violated. For example, sequences of
events can be modeled as observation sequences of a Hid-
den Markov Model allowing to verify the probability that
a temporal property is satisfied by a run of a system given
a sampled execution trace [103]. Sanity checks are another
approach to check the conformance of requirements of
adaptive systems. Sanity checks have been used to evaluate
the correctness of resource sharing decisions made by a
reasoning engine [116]. Approaches such as runtime verifi-
cation and sanity checks are often supported by established
tools. However, these approaches provide only one piece of
evidence. Such approaches can also be used by our generic
ENTRUST methodology, which supports the integration
of assurance evidence from multiple sources in order to
continuously generate an assurance case.

Another line of related research (not specifically target-
ting self-adaptation and thus not included in Table 7) is
runtime certification, proposed in [94] and further developed
in [75], [96]. Runtime certification involves the proactive
runtime monitoring of the assumptions made in the assur-
ance case, thereby providing early warnings for potential
failures. ENTRUST goes beyond the mere monitoring of
assumptions, to evolving the arguments and evidence dy-
namically based on the runtime verification data, particu-
larly for self-adaptive software assurance. ENTRUST also
extends existing work on assurance argument patterns [39]
by enabling runtime instantiation.

The ENTRUST methodology and the other research
summarised in this section also build on results from the
areas of configurable software, configuration optimisation,
and performance tuning. For instance, symbolic evaluation
has been used to understand the behaviour of configurable
software systems [92], dedicated support to automatically
verify the correctness of dynamic updates of client-server
systems has been proposed [66], and specification languages
have been devised to help program library developers ex-
pose multiple variations of the same API using different
algorithms [35]. Research in this area has been applied to
realise self-adaptive software systems. For example, it has
been used to deal with the problem of configurability of
multi-tenant cloud settings by using a game theoretic ap-

proach that maximises tenants’ preferences satisfaction [53],
to find workarounds and add configuration guards to pre-
vent particular failures [105], and to model the variability of
cloud systems and identify reconfigurations that meet given
criteria using temporal constraints and reconfiguration op-
erations [99]. While these approaches address adaptation of
highly configurable systems at runtime, they provide only
specific pieces of evidence. Runtime testing as mentioned
above (e.g. [51]) is one interesting approach to ensure that
such systems continue to execute in a safe and correct
manner when adapting to handle changing environmental
conditions. Such an approach could be integrated in the
generic ENTRUST methodology as part of the analysis
phase to provide guarantees about the runtime decision
making process of self-adaptation.

Finally, assurance cases and GSN in particular are related
to goal modeling. Several approaches exist that provide
alternative means to specify goal models for self-adaptive
systems; we discuss a representative selection. RELAX offers
a textual language that allows requirements to be temporar-
ily relaxed to deal with uncertainty in adaptation [125].
RELAX has been integrated with traditional goal modeling
using KAOS [29]. FLAGS provides both crisp goals spec-
ified in linear temporal logic and fuzzy goals specified in
fuzzy temporal language [5]. Adaptations are triggered by
violated goals and the goal model is modified accordingly
to maintain a coherent view of the system and enforce
adaptation on the running system. Other researchers specify
requirements for adaptive systems as two complementary
types: awareness requirements and evolution requirements
[100]. Awareness requirements indicate the situations that
require adaptation and evolution requirements prescribe
what to do in these situations. The development of GSN
was influenced by the research on goal modeling. Similar
to the approaches discussed above, the notation is used
to represent and decompose system goals, but in addition
to that explicitly incorporate rationale arguments for the
decomposition.

The sparsity of Tables 6 and 7 makes clear that existing
approaches are confined to providing correctness evidence
for specific aspects of the self-adaptive software. In contrast
to existing work on assurances for self-adaptive systems,
Table 8 shows that ENTRUST offers an end-to-end method-
ology for the development of trustworthy self-adaptive
software systems. Unique to our approach, this includes
the development of assurance arguments. The upper part
of Table 8 shows how the generic ENTRUST methodology
covers the whole spectrum of aspects that are required
to provide assurances for self-adaptive systems with strict
requirements. The lower part of Table 8 shows a concrete
tool-supported instantiation of ENTRUST and summarises
how the various assurances aspects are covered for this
instance. Details about the information summarised in the
table are provided in Sections 4 and 5.

9 CONCLUSION

We introduced ENTRUST, the first end-to-end methodology
for the engineering of trustworthy self-adaptive software
systems and the dynamic generation of their assurance
cases. ENTRUST and its tool-supported instance presented

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

28

in the paper include methods for the development of verifi-
able controllers for self-adaptive systems, for the generation
of design-time and runtime assurance evidence, and for the
runtime instantiation of an assurance argument pattern that
we devised specifically for these systems.

The future research directions for our project include
evaluating the usability of ENTRUST in a controlled ex-
periment, extending the runtime model checking of system
requirements to functional requirements, and reducing the
runtime overheads by exploiting recent advances in proba-
bilistic model checking at runtime [19], [21], [46], [55], [70].
In addition, we are planning to explore the applicability of
ENTRUST to other systems and application domains.

REFERENCES

[1] J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Tru-
bian, “Resource management in the autonomic service-oriented
architecture,” in 2006 IEEE International Conference on Autonomic
Computing, June 2006, pp. 84–92.

[2] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking
continuous-time Markov chains,” ACM Trans. on Computational
Logic, vol. 1, no. 1, pp. 162–170, 2000.

[4] C. Baier, B. R. Haverkort, H. Hermanns, and J. P. Katoen, “Model-
checking algorithms for continuous-time Markov chains,” IEEE
Trans. Softw. Eng., vol. 29, no. 6, pp. 524–541, 2003.

[5] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation,” in 18th IEEE International Re-
quirements Engineering Conference, 2010, pp. 125–134.

[6] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling, “Symbolic
invariant verification for systems with dynamic structural adap-
tation,” in 28th International Conference on Software Engineering.
ACM, 2006, pp. 72–81.

[7] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson,
W. Yi, and M. Hendriks, “UPPAAL 4.0,” in QEST’06, 2006, pp.
125–126.

[8] M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, “Auton-
omy for unmanned marine vehicles with MOOS-IvP,” in Marine
Robot Autonomy. Springer, 2013, pp. 47–90.

[9] A. Bianco and L. de Alfaro, “Model checking of probabilistic and
nondeterministic systems,” in FSTTCS’95, 1995, pp. 499–513.

[10] P. Bishop and R. Bloomfield, “A methodology for safety case
development,” in Industrial Perspectives of Safety-critical Systems.
Springer, 1998, pp. 194–203.

[11] R. Bloomfield and P. Bishop, “Safety and assurance cases: Past,
present and possible future — an Adelard perspective,” in Mak-
ing Systems Safer. Springer, 2010, pp. 51–67.

[12] V. Braberman, N. D’Ippolito, N. Piterman, D. Sykes, and S. Uchi-
tel, “Controller synthesis: From modelling to enactment,” in 35th
International Conference on Software Engineering, 2013, pp. 1347–
1350.

[13] O. Brukman, S. Dolev, and E. K. Kolodner, “A self-stabilizing
autonomic recoverer for eventual byzantine software,” J. Syst.
Softw., vol. 81, no. 12, pp. 2315–2327, Dec. 2008.

[14] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Engineering self-
adaptive systems through feedback loops,” in Software Engineer-
ing for Self-Adaptive Systems, B. H. Cheng, R. Lemos, H. Giese,
P. Inverardi, and J. Magee, Eds. Springer, 2009, pp. 48–70.

[15] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic QoS management and optimization in
service-based systems,” IEEE Trans. Softw. Eng., vol. 37, no. 3, pp.
387–409, 2011.

[16] R. Calinescu, K. Johnson, and Y. Rafiq, “Using observation ageing
to improve Markovian model learning in QoS engineering,” in
2nd ACM/SPEC Intl. Conf. on Performance Engineering, 2011, pp.
505–510.

[17] ——, “Developing self-verifying service-based systems,” in Au-
tomated Software Engineering (ASE), 2013 IEEE/ACM 28th Interna-
tional Conference on, Nov 2013, pp. 734–737.

[18] R. Calinescu, “General-purpose autonomic computing,” in Auto-
nomic Computing and Networking, M. K. Denko, L. T. Yang, and
Y. Zhang, Eds. Springer, 2009, pp. 3–30.

[19] R. Calinescu, S. Gerasimou, and A. Banks, “Self-adaptive soft-
ware with decentralised control loops,” in FASE’15, ser. LNCS.
Springer, 2015, vol. 9033, pp. 235–251.

[20] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola,
“Self-adaptive software needs quantitative verification at run-
time,” Commun. ACM, vol. 55, no. 9, pp. 69–77, Sep. 2012.

[21] R. Calinescu, S. Kikuchi, and K. Johnson, “Compositional reveri-
fication of probabilistic safety properties for large-scale complex
IT systems,” in Large-Scale Complex IT Systems, ser. LNCS, vol.
7539. Springer, 2012, pp. 303–329.

[22] R. Calinescu and M. Z. Kwiatkowska, “Using quantitative anal-
ysis to implement autonomic IT systems,” in ICSE’09, 2009, pp.
100–110.

[23] R. Calinescu, Y. Rafiq, K. Johnson, and M. E. Bakir, “Adaptive
model learning for continual verification of non-functional prop-
erties,” in 5th ACM/SPEC International Conference on Performance
Engineering, 2014, pp. 87–98.

[24] J. Camara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira,
“Robustness-driven resilience evaluation of self-adaptive soft-
ware systems,” IEEE Transactions on Dependable and Secure Com-
puting, vol. PP, no. 99, pp. 1–1, 2015.

[25] J. Cámara, R. de Lemos, C. Ghezzi, and A. Lopes, Eds., Assurances
for Self-Adaptive Systems - Principles, Models, and Techniques, ser.
Lecture Notes in Computer Science. Springer, 2013, vol. 7740.

[26] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey, “Optimal plan-
ning for architecture-based self-adaptation via model checking
of stochastic games,” in 30th Annual ACM Symposium on Applied
Computing, 2015, pp. 428–435.

[27] J. Cámara, G. A. Moreno, D. Garlan, and B. Schmerl, “Analyzing
latency-aware self-adaptation using stochastic games and simu-
lations,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 10, no. 4, pp. 23:1–23:28, Jan. 2016.

[28] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis,
“Automatic verification of competitive stochastic systems,” in
18th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, C. Flanagan and B. König, Eds.
Springer, 2012, pp. 315–330.

[29] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A goal-
based modeling approach to develop requirements of an adap-
tive system with environmental uncertainty,” in 12th International
Conference on Model Driven Engineering Languages and Systems.
Springer-Verlag, 2009, pp. 468–483.

[30] B. H. C. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu,
H. A. Müller, P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe,
D. Schneider, F. Trollmann, and N. M. Villegas, “Using models
at runtime to address assurance for self-adaptive systems,” in
Models@run.time: Foundations, Applications, and Roadmaps, N. Ben-
como, R. France, B. H. C. Cheng, and U. Aßmann, Eds. Springer,
2014, pp. 101–136.

[31] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications,” ACM Trans. Program. Lang. Syst., vol. 8, no. 2, pp.
244–263, Apr. 1986.

[32] E. Clarke, D. Long, and K. McMillan, “Compositional model
checking,” in Proc. 4th Intl. Symp. Logic in Computer Science, 1989,
pp. 353–362.

[33] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu, “Learn-
ing assumptions for compositional verification,” in 9th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2003, pp. 331–346.

[34] Common Criteria Recognition Arrangement, “ISO/IEC 15408 –
Common Criteria for Information Technology Security Evalua-
tion, Version 3.1, Revision 4,” September 2012.

[35] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth, “Active Har-
mony: Towards automated performance tuning,” in ACM/IEEE
Conference on Supercomputing, 2002, pp. 1–11.

[36] R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, “Software
Engineering for Self-Adaptive Systems: Assurances (Dagstuhl
Seminar 13511),” Dagstuhl Reports, vol. 3, no. 12, pp. 67–96, 2014.

[37] R. de Lemos, H. Giese, H. A. Muller, M. Shaw et al., “Soft-
ware engineering for self-adaptive systems: A second research
roadmap,” in Software Engineering for Self-Adaptive Systems II, ser.
LNCS. Springer, 2013, vol. 7475, pp. 1–32.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

29

[38] E. Denney, I. Habli, and G. Pai, “Dynamic safety cases for
through-life safety assurance,” in ICSE’15, 2015, pp. 587–590.

[39] E. Denney and G. Pai, “A formal basis for safety case patterns,” in
Comp. Safety, Reliability, and Security, ser. LNCS. Springer, 2013,
vol. 8153, pp. 21–32.

[40] N. D’Ippolito, V. Braberman, J. Kramer, J. Magee, D. Sykes, and
S. Uchitel, “Hope for the best, prepare for the worst: Multi-
tier control for adaptive systems,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 688–699.

[41] N. D’Ippolito, V. A. Braberman, N. Piterman, and S. Uchitel,
“Synthesis of live behaviour models for fallible domains,” in 33rd
International Conference on Software Engineering, 2011, pp. 211–220.

[42] N. R. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel,
“Synthesis of live behaviour models,” in 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
2010, pp. 77–86.

[43] A. Elkhodary, N. Esfahani, and S. Malek, “FUSION: a framework
for engineering self-tuning self-adaptive software systems,” in
FSE’10, 2010, pp. 7–16.

[44] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” in 31st International
Conference on Software Engineering, 2009, pp. 111–121.

[45] European Organisation for the Safety of Air Navigation, “Safety
case development manual,” 2006.

[46] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient
probabilistic model checking,” in ICSE’11, 2011, pp. 341–350.

[47] ——, “A formal approach to adaptive software: continuous as-
surance of non-functional requirements,” Formal Asp. Comput.,
vol. 24, no. 2, pp. 163–186, 2012.

[48] A. Filieri, L. Grunske, and A. Leva, “Lightweight adaptive filter-
ing for efficient learning and updating of probabilistic models,”
in 37th IEEE/ACM International Conference on Software Engineering,
2015, pp. 200–211.

[49] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design
of self-adaptive software with control-theoretical formal guaran-
tees,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014,
pp. 299–310.

[50] V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, and M. Ujma,
“Incremental runtime verification of probabilistic systems,” in
Runtime Verification, ser. LNCS, vol. 7687. Springer, 2012, pp.
314–319.

[51] E. M. Fredericks, B. DeVries, and B. H. C. Cheng, “Towards run-
time adaptation of test cases for self-adaptive systems in the
face of uncertainty,” in 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2014, pp. 17–
26.

[52] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Quality
prediction of service compositions through probabilistic model
checking,” in Proc. 4th International Conference on the Quality of
Software-Architectures, QoSA 2008, ser. LNCS, S. Becker, F. Plasil,
and R. Reussner, Eds., vol. 5281. Springer, 2008, pp. 119–134.

[53] J. Garcı́a-Galán, L. Pasquale, P. Trinidad, and A. Ruiz-Cortés,
“User-centric adaptation of multi-tenant services: Preference-
based analysis for service reconfiguration,” in Proceedings of
the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, ser. SEAMS 2014. New
York, NY, USA: ACM, 2014, pp. 65–74. [Online]. Available:
http://doi.acm.org/10.1145/2593929.2593930

[54] D. Garlan, S.-W. Cheng, A. C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: architecture-based self-adaptation with
reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, Oct
2004.

[55] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime
quantitative verification using caching, lookahead, and nearly-
optimal reconfiguration,” in SEAMS’14, 2014, pp. 115–124.

[56] S. Gerasimou, R. Calinescu, S. Shevtsov, and D. Weyns, “UN-
DERSEA: An exemplar for engineering self-adaptive unmanned
underwater vehicles (artifact),” in SEAMS’17, 2017.

[57] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based
synthesis of probabilistic models for quality-of-service software
engineering,” in 30th Intl. Conf. Automated Softw. Eng. (ASE’15),
2015.

[58] L. Gherardi and N. Hochgeschwender, “RRA: Models and tools
for robotics run-time adaptation,” in Intelligent Robots and Systems

(IROS), 2015 IEEE/RSJ International Conference on, Sept 2015, pp.
1777–1784.

[59] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli, “Mining
behavior models from user-intensive web applications,” in 36th
International Conference on Software Engineering, 2014, pp. 277–287.

[60] GSN Working Group Online, “Goal structuring notation stan-
dard, version 1,” November 2011.

[61] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp.
512–535, 1994.

[62] R. Hawkins, I. Habli, and T. Kelly, “The principles of software
safety assurance,” in 31st Intl. System Safety Conf., 2013.

[63] R. Hawkins, K. Clegg, R. Alexander, and T. Kelly, “Using a
software safety argument pattern catalogue: Two case studies,”
in Comp. Safety, Reliability, and Security. Springer, 2011, pp. 185–
198.

[64] R. Hawkins, I. Habli, and T. Kelly, “Principled construction of
software safety cases,” in SAFECOMP 2013 Workshop on Next
Generation of System Assurance Approaches for Safety-Critical Sys-
tems, 2013.

[65] R. Hawkins, I. Habli, T. Kelly, and J. McDermid, “Assurance cases
and prescriptive software safety certification: A comparative
study,” Safety Science, vol. 59, pp. 55–71, 2013.

[66] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and
J. S. Foster, “Specifying and verifying the correctness of
dynamic software updates,” in International Conference on
Verified Software: Theories, Tools, Experiments, ser. VSTTE’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 278–293. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-27705-4 22

[67] P. Horn, “Autonomic computing: IBM’s perspective on the state
of information technology,” 2001.

[68] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing—degrees, models, and applications,” ACM Comput.
Surv., vol. 40, no. 3, pp. 1–28, 2008.

[69] M. U. Iftikhar and D. Weyns, “ActivFORMS: Active formal mod-
els for self-adaptation,” in 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2014, pp. 125–
134.

[70] K. Johnson, R. Calinescu, and S. Kikuchi, “An incremental veri-
fication framework for component-based software systems,” in
16th Intl. ACM Sigsoft Symposium on Component-Based Software
Engineering, 2013, pp. 33–42.

[71] G. Karsai and J. Sztipanovits, “A model-based approach to self-
adaptive software,” Intelligent Syst. and their Applications, IEEE,
vol. 14, no. 3, pp. 46–53, May 1999.

[72] T. Kelly and R. Weaver, “The goal structuring notation – a safety
argument notation,” in Assurance Cases Workshop, 2004.

[73] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, pp. 41–50, 2003.

[74] N. Khakpour, F. Arbab, and E. Rutten, “Synthesizing structural
and behavioral control for reconfigurations in component-based
systems,” Formal Aspects of Computing, vol. 28, no. 1, pp. 21–43,
2016.

[75] J. Knight, J. Rowanhill, and J. Xiang, “A safety condition moni-
toring system,” in 3rd Intl. Workshop on Assurance Cases for Softw.
Intensive Syst., 2015.

[76] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in Future of Software Engineering, 2007. FOSE ’07, May
2007, pp. 259–268.

[77] C. M. Krishna, Real-Time Systems. John Wiley & Sons, Inc., 2001.
[78] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and

C. Becker, “A survey on engineering approaches for self-
adaptive systems,” Pervasive and Mobile Computing, vol. 17,
Part B, pp. 184–206, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S157411921400162X

[79] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifi-
cation of probabilistic real-time systems,” in CAV’11, ser. LNCS,
vol. 6806. Springer, 2011, pp. 585–591.

[80] M. Lahijanian, S. B. Andersson, and C. Belta, “Formal verification
and synthesis for discrete-time stochastic systems,” IEEE Trans.
Automat. Contr., vol. 60, no. 8, pp. 2031–2045, 2015.

[81] B. Littlewood and D. Wright, “The use of multilegged arguments
to increase confidence in safety claims for software-based sys-
tems,” IEEE Trans. Softw. Eng., vol. 33, no. 5, pp. 347–365, 2007.

[82] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control
real-time scheduling: Framework, modeling, and algorithms*,”
Real-Time Systems, vol. 23, no. 1, pp. 85–126, 2002.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

30

[83] F. D. Macı́as-Escrivá, R. Haber, R. del Toro, and V. Hernandez,
“Self-adaptive systems: A survey of current approaches, research
challenges and applications,” Expert Systems with Applications,
vol. 40, no. 18, pp. 7267–7279, 2013.

[84] J. Magee and T. Maibaum, “Towards specification, modelling
and analysis of fault tolerance in self managed systems,” in
SEAMS’06, 2006, pp. 30–36.

[85] North European Functional Airspace Block, “NEFAB Project—
Safety Case Report, Version 3.01,” Dec. 2011.

[86] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf,
“An architecture-based approach to self-adaptive software,” IEEE
Intelligent Syst., vol. 14, no. 3, pp. 54–62, May 1999.

[87] D. Perez-Palacin, R. Calinescu, and J. Merseguer, “Log2Cloud:
Log-based prediction of cost-performance trade-offs for cloud
deployments,” in 28th Annual ACM Symposium on Applied Com-
puting, 2013, pp. 397–404.

[88] A. Pnueli, “The temporal logic of programs,” in 18th Annual
Symposium on Foundations of Computer Science, 1977, pp. 46–57.

[89] H. Psaier and S. Dustdar, “A survey on self-healing systems:
approaches and systems,” Computing, vol. 91, no. 1, pp. 43–73,
2011.

[90] T. Quatmann, C. Dehnert, N. Jansen, S. Junges, and J. Katoen,
“Parameter synthesis for markov models: Faster than ever,” in
14th International Symposium on Automated Technology for Verifica-
tion and Analysis (ATVA), 2016, pp. 50–67.

[91] P. J. G. Ramadge and W. M. Wonham, “The control of discrete
event systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98,
Jan 1989.

[92] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, “Using
symbolic evaluation to understand behavior in configurable soft-
ware systems,” in ACM/IEEE International Conference on Software
Engineering. ACM, 2010, pp. 445–454.

[93] Royal Academy of Engineering, “Establishing High-Level Evi-
dence for the Safety and Efficacy of Medical Devices and Sys-
tems,” January 2013.

[94] J. Rushby, “The interpretation and evaluation of assurance cases,”
Comp. Science Laboratory, SRI International, Tech. Rep. SRI-CSL-
15-01, 2015.

[95] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4,
no. 2, pp. 14:1–14:42, May 2009.

[96] D. Schneider and M. Trapp, “Conditional safety certification of
open adaptive systems,” ACM Trans. Auton. Adapt. Syst., vol. 8,
no. 2, pp. 8:1–8:20, Jul. 2013.

[97] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “System-
atic literature review on control-theoretical software adaptation,”
IEEE Trans. Softw. Eng., 2017.

[98] S. Shevtsov and D. Weyns, “Keep it simplex: Satisfying multiple
goals with guarantees in control-based self-adaptive systems,”
in 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’16), 2016, pp. 229–241.

[99] G. Sousa, W. Rudametkin, and L. Duchien, “Extending dynamic
software product lines with temporal constraints,” in 12th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2017.

[100] V. E. Souza, A. Lapouchnian, K. Angelopoulos, and J. My-
lopoulos, “Requirements-driven software evolution,” Comput.
Sci., vol. 28, no. 4, pp. 311–329, Nov. 2013.

[101] D. Spinellis, “Notable design patterns for domain specific lan-
guages,” Journal of Systems and Software, vol. 56, no. 1, pp. 91–99,
Feb. 2001.

[102] J. Spriggs, GSN – The Goal Structuring Notation. A Structured
Approach to Presenting Arguments. Springer, 2012.

[103] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund,
S. A. Smolka, and E. Zadok, “Runtime verification with state
estimation,” in Proceedings of the Second International Conference
on Runtime Verification, ser. RV’11. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 193–207.

[104] G. Su, T. Chen, Y. Feng, D. S. Rosenblum, and P. S. Thiagara-
jan, “An iterative decision-making scheme for Markov decision
processes and its application to self-adaptive systems,” in 19th
International Conference on Fundamental Approaches to Software
Engineering (FASE), 2016, pp. 269–286.

[105] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Fire-
stone, “Beyond the Rainbow: Self-adaptive failure avoidance
in configurable systems,” in 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering. ACM, 2014,
pp. 377–388.

[106] D. Sykes, J. Magee, and J. Kramer, “Flashmob: Distributed adap-
tive self-assembly,” in 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 2011,
pp. 100–109.

[107] P. Tabuada, Verification and Control of Hybrid Systems. Springer,
2009.

[108] G. Tamura and et al., “Towards practical runtime verification
and validation of self-adaptive software systems,” in Software
Engineering for Self-Adaptive Systems II, ser. LNCS. Springer, 2013,
vol. 7475.

[109] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley,
J. O. Kephart, and S. R. White, “A multi-agent systems approach
to autonomic computing,” in Third Intl. Conf. on Autonomous
Agents and Multiagent Syst., 2004, pp. 464–471.

[110] UK Civil Aviation Authority, “Unmanned aircraft system opera-
tions in UK airspace — Guidance. CAP 722. Sixth edition,” 2015.

[111] UK Health & Safety Commission, “The use of computers in
safety-critical applications,” 1998.

[112] UK Ministry of Defence, “Defence Standard 00-56, Issue 4: Safety
Management Requirements for Defence Systems,” June 2007.

[113] UK Office for Nuclear Regulation, “The Purpose, Scope, and
Content of Safety Cases, Rev. 3,” July 2013.

[114] University of Virginia Dependability and Security Research
Group, “Safety case repository,” 2014.

[115] US Dept. Health and Human Services, Food and Drug Adminis-
tration, “Infusion Pumps Total Product Life Cycle—Guidance for
Industry & FDA Staff,” 2014.

[116] S. Uttamchandani, L. Yin, G. A. Alvarez, J. Palmer, and G. A.
Agha, “Chameleon: A self-evolving, fully-adaptive resource ar-
bitrator for storage systems,” in USENIX Annual Technical Confer-
ence, General Track, 2005, pp. 75–88.

[117] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, and R. Casal-
las, “A framework for evaluating quality-driven self-adaptive
software systems,” in 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, 2011, pp. 80–
89.

[118] W. Walsh, G. Tesauro, J. Kephart, and R. Das, “Utility functions
in autonomic systems,” in IEEE International Conference on Auto-
nomic Computing, 2004, pp. 70–77.

[119] D. Weyns, N. Bencomo, R. Calinescu, J. Cámara, C. Ghezzi,
V. Grassi, L. Grunske, P. Inverardi, J.-M. Jezequel, S. Malek, R. Mi-
randola, M. Mori, and G. Tamburrelli, “Perpetual Assurances in
Self-Adaptive Systems,” in Software Engineering for Self-Adaptive
Systems IV, Lecture Notes in Computer Science, R. de Lemos, D. Gar-
lan, C. Ghezzi, and H. Giese, Eds. Springer, 2016.

[120] D. Weyns and R. Calinescu, “Tele Assistance: A self-adaptive
service-based system examplar,” in 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
2015, pp. 88–92.

[121] D. Weyns and M. U. Iftikhar, “Model-based simulation at runtime
for self-adaptive systems,” in Proceedings of the 11th International
Workshop on Models@Run.time, ser. MODELS 2016, 2016.

[122] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad, “A
survey of formal methods in self-adaptive systems,” in C3S2E’12,
2012, pp. 67–79.

[123] D. Weyns, S. Malek, and J. Andersson, “FORMS: Unifying refer-
ence model for formal specification of distributed self-adaptive
systems,” ACM Trans. Auton. Adapt. Syst., vol. 7, no. 1, p. 8, 2012.

[124] S. R. White, D. M. Chess, J. O. Kephart, J. E. Hanson, and
I. Whalley, “An architectural approach to autonomic computing,”
in Intl. Conf. on Autonomic Computing. IEEE Computer Society,
2004, pp. 2–9.

[125] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J. M.
Bruel, “Relax: Incorporating uncertainty into the specification of
self-adaptive systems,” in 17th IEEE International Requirements
Engineering Conference, Aug 2009, pp. 79–88.

[126] M. Zamani, N. van de Wouw, and R. Majumdar, “Backstepping
controller synthesis and characterizations of incremental stabil-
ity,” Systems & Control Letters, vol. 62, no. 10, pp. 949–962, 2013.

[127] J. Zhang and B. H. Cheng, “Using temporal logic to specify
adaptive program semantics,” Journal of Syst. and Softw., vol. 79,
no. 10, pp. 1361 – 1369, 2006.

[128] P. Zoghi, M. Shtern, M. Litoiu, and H. Ghanbari, “Designing
adaptive applications deployed on cloud environments,” ACM
Trans. Auton. Adapt. Syst., vol. 10, no. 4, pp. 25:1–25:26, Jan. 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TSE.2017.2738640

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

