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Abstract

Purely data driven approaches for machine learning present difficulties when data is scarce relative to the complexity of

the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify

and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to

parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations

to combine data driven modelling with a physical model of the system. We show how different, physically-inspired, kernel

functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility

of our approach is illustrated with three case studies from motion capture, computational biology and geostatistics.

1 Introduction

Traditionally the main focus in machine learning has been model generation through a data driven paradigm. The usual ap-

proach is to combine a data set with a (typically fairly flexible) class of models and, through judicious use of regularization,

make predictions on previously unseen data. There are two key problems with purely data driven approaches. Firstly, if data

is scarce relative to the complexity of the system we may be unable to make accurate predictions on test data. Secondly, if

the model is forced to extrapolate, i.e. make predictions in a regime in which data has not yet been seen, performance can

be poor.

Purely mechanistic models, i.e. models which are inspired by the underlying physical knowledge of the system, are com-

mon in many domains such as chemistry, systems biology, climate modelling and geophysical sciences, etc. They normally

make use of a fairly well characterized physical process that underpins the system, often represented with a set of differ-

ential equations. The purely mechanistic approach leaves us with a different set of problems to those from the data driven

approach. In particular, accurate description of a complex system through a mechanistic modelling paradigm may not be

possible. Even if all the physical processes can be adequately described, the resulting model could become extremely com-

plex. Identifying and specifying all the interactions might not be feasible, and we would still be faced with the problem of

identifying the parameters of the system.

Despite these problems, physically well characterized models retain a major advantage over purely data driven models. A

mechanistic model can enable accurate prediction even in regions where there is no available training data. For example,

Pioneer space probes can enter different extra terrestrial orbits regardless of the availability of data for these orbits.

Whilst data driven approaches do seem to avoid mechanistic assumptions about the data, typically the regularization which

is applied encodes some kind of physical intuition, such as the smoothness of the interpolant. This does reflect a weak

underlying belief about the mechanism that generated the data. In this sense the data driven approach can be seen as weakly

mechanistic whereas models based on more detailed mechanistic relationships could be seen as strongly mechanistic.

The observation that weak mechanistic assumptions underlie a data driven model inspires our approach. We suggest a

hybrid system which involves a (typically overly simplistic) mechanistic model of the system. The key is to retain sufficient

flexibility in our model to be able to fit the system even when our mechanistic assumptions are not rigorously fulfilled

in practise. To illustrate the framework we will start by considering dynamical systems as latent variable models which

incorporate ordinary differential equations. In this we follow the work of Lawrence et al. (2007) and Gao et al. (2008) who

encoded a first order differential equation in a Gaussian process (GP). However, their aim was to construct an accurate model

of transcriptional regulation, whereas ours is to make use of the mechanistic model to incorporate salient characteristics of

the data (e.g. in a mechanical system inertia) without necessarily associating the components of our mechanistic model

with actual physical components of the system. For example, for a human motion capture dataset we develop a mechanistic
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model of motion capture that does not exactly replicate the physics of human movement, but nevertheless captures salient

features of the movement. Having shown how linear dynamical systems can be incorporated in a GP, we finally show how

partial differential equations can also be incorporated for modelling systems with multiple inputs.

The paper is organized as follows. In section 2 we motivate the latent force model using as an example a latent variable

model. Section 3 employs a first order latent force model to describe how the general framework can be used in practise.

We then proceed to show three case studies. In section 4 we use a latent force model based on a second order ordinary

differential equation for characterizing motion capture datasets. Section 5 presents a latent force model for spatio-temporal

domains applied to represent the development of Drosophila Melanogaster, and a latent force model inspired in a diffusion

process to explain the behavior of pollutant metals in the Swiss Jura. Extensive related work is presented in section 6. Final

conclusions are given in section 7.

2 From latent variables to latent functions

A key challenge in combining the mechanistic and data-driven approaches is how to incorporate the model flexibility

associated with the data-driven approach within the mechanism. We choose to do this through latent variables, more

precisely latent functions: unobserved functions from the system. To see how this is possible we first introduce some well

known data driven models from a mechanistic latent-variable perspective.

Let us assume we wish to summarize a high dimensional data set with a reduced dimensional representation. For example,

if our data consists of N points in a D dimensional space we might seek a linear relationship between the data, Y =
[y1, . . . ,yD] ∈ R

N×D with yd ∈ R
N×1, and a reduced dimensional representation, U = [u1, . . . ,uQ] ∈ R

N×Q with

uq ∈ R
N×1, where Q < D. From a probabilistic perspective this involves an assumption that we can represent the data as

Y = UW⊤ +E, (1)

where E = [e1, . . . , eD] is a matrix-variate Gaussian noise: each column, ed ∈ R
N×1 (1 ≤ d ≤ D), is a multi-variate

Gaussian with zero mean and covariance Σ, this is, ed ∼ N (0,Σd). The usual approach, as undertaken in factor analysis

and principal component analysis (PCA), to dealing with the unknown latent variables in this model is to integrate out U

under a Gaussian prior and optimize with respect to W ∈ R
D×Q (although it turns out that for a non-linear variant of the

model it can be convenient to do this the other way around, see for example Lawrence (2005)). If the data has a temporal

nature, then the Gaussian prior in the latent space could express a relationship between the rows of U, utn = Γutn−1
+ η,

where Γ is a transformation matrix, η is a Gaussian random noise and utn is the n-th row of U, which we associate with

time tn. This is known as the Kalman filter/smoother. Normally the times, tn, are taken to be equally spaced, but more

generally we can consider a joint distribution for p (U|t), for a vector of time inputs t = [t1 . . . tN ]
⊤

, which has the form

of a Gaussian process,

p (U|t) =
Q∏

q=1

N
(
uq|0,Kuq,uq

)
, (2)

where we have assumed zero mean and independence across the Q dimensions of the latent space. The GP makes explicit

the fact that the latent variables are functions, {uq(t)}Qq=1, and we have now described them with a process prior. The

elements of the vector uq = [uq(t1), . . . , uq(tN )]⊤, represents the values of the function for the q-th dimension at the times

given by t. The matrix Kuq,uq
is the covariance function associated to uq(t) computed at the times given in t.

Such a GP can be readily implemented. Given the covariance functions for {uq(t)}Qq=1 the implied covariance functions

for {yd(t)}Dd=1 are straightforward to derive. In Teh et al. (2005) this is known as a semi-parametric latent factor model

(SLFM), although their main focus is not the temporal case. If the latent functions uq(t) share the same covariance, but

are sampled independently, this is known as the multi-task Gaussian process prediction model (MTGP) (Bonilla et al.,

2008) with a similar model introduced in Osborne et al. (2008). Historically the Kalman filter approach has been preferred,

perhaps because of its linear computational complexity in N . However, recent advances in sparse approximations have

made the general GP framework practical (see Quiñonero-Candela and Rasmussen (2005) for a review).

So far the model described relies on the latent variables to provide the dynamic information. Our main contribution is to

include a further dynamical system with a mechanistic inspiration. We will make use of a mechanical analogy to introduce

it. Consider the following physical interpretation of (1): the latent functions, uq(t), are Q forces and we observe the

displacement of D springs, yd(t), to the forces. Then we can reinterpret (1) as the force balance equation, YB = US⊤+Ẽ.

Here we have assumed that the forces are acting, for example, through levers, so that we have a matrix of sensitivities,

S ∈ R
D×Q, and a diagonal matrix of spring constants, B ∈ R

D×D, with elements {Bd}Dd=1. The original model is

recovered by setting W⊤ = S⊤B−1 and ẽd ∼ N
(
0,B⊤ΣdB

)
. With appropriate choice of latent density and noise
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model this physical model underlies the Kalman filter, PCA, independent component analysis and the multioutput Gaussian

process models we mentioned above. The use of latent variables means that despite this strong physical constraint these

models are still powerful enough to be applied to a range of real world data sets. We will retain this flexibility by maintaining

the latent variables at the heart of the system, but introduce a more realistic system by extending the underlying physical

model. Let us assume that the springs are acting in parallel with dampers and that the system has mass, allowing us to write,

ŸM+ ẎC+YB = US+ Ê, (3)

where M and C are diagonal matrices of masses, {Md}Dd=1, and damping coefficients, {Cd}Dd=1, respectively, Ẏ is the first

derivative of Y with respect to time (with entries {ẏd(tn)} for d = 1, . . . D and n = 1, . . . , N ), Ÿ is the second derivative

of Y with respect to time (with entries {ÿd(tn)} for d = 1, . . . D and n = 1, . . . , N ) and Ê is once again a matrix-variate

Gaussian noise. Equation (3) specifies a particular type of interaction between the outputs Y and the set of latent functions

U, namely, that a weighted sum of the second derivative for yd(t), ÿd(t), the first derivative for yd(t), ẏd(t), and yd(t) is

equal to the weighted sum of functions {uq(t)}Qq=1 plus a random noise. The second order mechanical system that this

model describes will exhibit several characteristics which are impossible to represent in the simpler latent variable model

given by (1), such as inertia and resonance. This model is not only appropriate for data from mechanical systems. There

are many analogous systems which can also be represented by second order differential equations, for example Resistor-

Inductor-Capacitor circuits. A unifying characteristic for all these models is that the system is being forced by latent

functions, {uq(t)}Qq=1. Hence, we refer to them as latent force models (LFMs). This is our general framework: combine a

physical system with a probabilistic prior over some latent variable.

One analogy for our model comes through puppetry. A marionette is a representation of a human (or animal) controlled

by a limited number of inputs through strings (or rods) attached to the character. In a puppet show these inputs are the

unobserved latent functions. Human motion is a high dimensional data set. A skilled puppeteer with a well designed puppet

can create a realistic representation of human movement through judicious use of the strings

3 Latent Force Models in Practise

In the last section we provided a general description of the latent force model idea and commented how it compares to pre-

vious models in the machine learning and statistics literature. In this section we specify the operational procedure to obtain

the Gaussian process model associated to the outputs and different aspects involved in the inference process. First, we illus-

trate the procedure using a first-order latent force model, for which we assume there are no masses associated to the outputs

and the damper constants are equal to one. Then we specify the inference procedure, which involves maximization of the

marginal likelihood for estimating hyperparameters. Next we generalize the operational procedure for latent force models

of higher order and multidimensional inputs and finally we review some efficient approximations to reduce computational

complexity.

3.1 First-order Latent Force Model

Assume a simplified latent force model, for which only the first derivative of the outputs is included. This is a particular

case of equation (3), with masses equal to zero and damper constants equal to one. With these assumptions, equation (3)

can be written as

Ẏ +YB = US+ Ê. (4)

Individual elements in equation (4) follow

dyd(t)

dt
+Bdyd(t) =

Q∑

q=1

Sd,quq(t) + êd(t). (5)

Given the parameters {Bd}Dd=1 and {Sd,q}D,Q
d=1,q=1, the uncertainty in the outputs is given by the uncertainty coming from

the set of functions {uq(t)}Qq=1 and the noise êd(t). Strictly speaking, this equation belongs to a more general set of

equations known as stochastic differential equations (SDE) that are usually solved using special techniques from stochastic

calculus (Øksendal, 2003). The representation used in equation (5) is more common in physics, where it receives the name

of Langevin equations (Reichl, 1998). For the simpler equation (5), the solution is found using standard calculus techniques

and is given by

yd(t) = yd(t0)e
−Bdt +

Q∑

q=1

Sd,qGd[uq](t) + Gd[êd](t), (6)
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where yd(t0) correspond to the value of yd(t) for t = t0 (or the initial condition) and Gd is a linear integral operator that

follows

Gd[v](t) = fd(t, v(t)) =

∫ t

0

e−Bd(t−τ)v(τ)dτ .

Our noise model Gd[êd](t) has a particular form depending on the linear operator Gd. For example, for the equation in (6)

and assuming a white noise process prior for ed(t), it can be shown that the process Gd[êd](t) corresponds to the Ornstein-

Uhlenbeck (OU) process (Reichl, 1998). In what follows, we will allow the noise model to be a more general process and

we denote it by wd(t). Without loss of generality, we also assume that the initial conditions {yd(t0)}Dd=1 are zero, so that

we can write again equation (6) as

yd(t) =

Q∑

q=1

Sd,qGd[uq](t) + wd(t). (7)

We assume that the latent functions {uq(t)}Qq=1 are independent and each of them follows a Gaussian process prior, this is,

uq(t) ∼ GP(0, kuq,uq
(t, t′)).1 Due to the linearity of Gd, {yd(t)}Dd=1 correspond to a Gaussian process with covariances

kyd,yd′
(t, t′) = cov[yd(t), yd′(t′)] given by

cov[fd(t), fd′(t′)] + cov[wd(t), wd′(t′)]δd,d′ ,

where δd,d′ corresponds to the Kronecker delta and cov[fd(t), fd′(t′)] is given by

Q∑

q=1

Sd,qSd′,q cov[f
q
d (t), f

q
d′(t

′)],

where we use fq
d (t) as a shorthand for fd(t, uq(t)). Furthermore, for the latent force model in equation (4), the covariance

cov[fq
d (t), f

q
d′(t′)] is equal to

∫ t

0

e−Bd(t−τ)

∫ t′

0

e−Bd′ (t
′−τ ′)kuq,uq

(τ, τ ′)dτ ′dτ. (8)

Notice from the equation above that the covariance between fq
d (t) and fq

d′(t′) depends on the covariance kuq,uq
(τ, τ ′). We

alternatively denote cov[fd(t), fd′(t′)] as kfd,fd′ (t, t
′) and cov[fq

d (t), f
q
d′(t′)] as kfq

d
,fq

d′
(t, t′). The form for the covariance

kuq,uq
(t, t′) is such that we can solve both integrals in equation (8) and find an analytical expression for the covariance

kfd,fd′ (t, t
′). In the rest of the paper, we assume the covariance for each latent force uq(t) follows the squared-exponential

(SE) form (Rasmussen and Williams, 2006)

kuq,uq
(t, t′) = exp

(
− (t− t′)2

ℓ2q

)
, (9)

where ℓq is known as the length-scale. We can compute the covariance kfq

d
,fq

d′
(t, t′) obtaining (Lawrence et al., 2007)

kfq

d
,fq

d′
(t, t′) =

√
πℓq
2

[hd′,d(t
′, t) + hd,d′(t, t′)], (10)

where

hd′,d(t
′, t) =

exp(ν2q,d′)

Bd +Bd′

exp(−Bd′t′)

{
exp(Bd′t)

[
erf

(
t′ − t

ℓq
− νq,d′

)
+ erf

(
t

ℓq
+ νq,d′

)]

− exp(−Bdt)

[
erf

(
t′

ℓq
− νq,d′

)
+ erf(νq,d′)

]}
, (11)

where erf(x) is the real valued error function, erf(x) = 2√
π

∫ x

0
exp(−y2)dy, and νq,d = ℓqBd/2. The covariance function

in equation (10) is nonstationary. For the stationary regime, the covariance function can be obtained by writing t′ = t + τ
and taking the limit as t tends to infinity. This is, kSTAT

fq

d
,fq

d′
(τ) = limt→∞ kfq

d
,fq

d′
(t, t + τ). The stationary covariance could

1We can allow a mean prior different from zero.
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also be obtained making use of the power spectral density for the stationary processes uq(t), Uq(ω) and the transfer function

Hd(ω) associated to hd(t − s) = e−Bd(t−s), the impulse response of the first order dynamical system. Then applying the

convolution property of the Fourier transform to obtain the power spectral density of fq
d (t), F

q
d (ω), and finally using the

Wiener-Khinchin theorem to find the solution for fq
d (t) (Shanmugan and Breipohl, 1988).

As we will see in the following section, for computing the posterior distribution for {uq(t)}Qq=1, we need the cross-

covariance between the output yd(t) and the latent force uq(t). Due to the independence between uq(t) and wd(t), the

covariance reduces to kfd,uq
(t, t′), given by

kfd,uq
(t, t′) =

√
πℓqSd,q

2
exp(ν2q,d) exp(−Bd(t− t′))

[
erf

(
t− t′

ℓq
− νq,d

)
+ erf

(
t′

ℓq
+ νq,d

)]
. (12)

3.2 Hyperparameter learning

We have implicitly marginalized out the effect of the latent forces using the Gaussian process prior for {uq(t)}Qq=1 and the

covariance for the outputs after marginalization is given by kyd,yd′
(t, t′). Given a set of inputs t and the parameters of the

covariance function,2 θ = ({Bd}Dd=1, {Sd,q}D,Q
d=1,q=1, {ℓq}

Q
q=1), the marginal likelihood for the outputs can be written as

p(y|t,θ) = N (y|0,Kf ,f +Σ), (13)

where y = vecY,3 Kf ,f ∈ R
ND×ND with each element given by cov[fd(tn), fd′(t′n′)] for n = 1, . . . , N and n′ =

1, . . . , N and Σ represents the covariance associated with the independent processes wd(t). In general, the vector of

parameters θ is unknown, so we estimate it by maximizing the marginal likelihood.

For clarity, we assumed that all outputs are evaluated at the same set of inputs t. However, due to the flexibility provided by

the Gaussian process formulation, each output can have associated a specific set of inputs, this is td = [td1, . . . , t
d
Nd

].
Prediction for a set of input test t∗ is done using standard Gaussian process regression techniques. The predictive distribution

is given by

p(y∗|y, t,θ) = N (y∗|µ∗,Ky∗,y∗
), (14)

with

µ∗ = Kf∗,f (Kf ,f +Σ)
−1

y,

Ky∗,y∗
= Kf∗,f∗ −Kf∗,f (Kf ,f +Σ)

−1
K⊤

f∗,f +Σ∗,

where we have used Kf∗,f∗ to represent the evaluation of Kf ,f at the input set t∗. The same meaning is given to the

covariance matrix Kf∗,f .

As part of the inference process, we are also interested in the posterior distribution for the set of latent forces,

p(u|y, t,θ) = N (u|µu|y,Ku|y), (15)

with

µu|y = K⊤
f ,u (Kf ,f +Σ)

−1
y,

Ku|y = Ku,u −K⊤
f ,u (Kf ,f +Σ)

−1
Kf ,u,

where u = vecU, Ku,u is a block-diagonal matrix with blocks given by Kuq,uq
. In turn, the elements of Kuq,uq

are given

by kuq,uq
(t, t′) in equation (9), for {tn}Nn=1. Also Kf ,u is a matrix with blocks Kfd,uq

, where Kfd,uq
has entries given by

kfd,uq
(t, t′) in equation (12).

3.3 Higher-order Latent Force Models

In general, a latent force model of order M can be described by the following equation

M∑

m=0

Dm[Y]Am = US⊤ + Ê, (16)

2Also known as hyperparameters.
3
x = vecX is the vectorization operator that transforms the matrix X into a vector x. The vector is obtained by stacking the columns of the matrix.
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where Dm is a linear differential operator such that Dm[Y] is a matrix with elements given by Dmyd(t) =
dmyd(t)

dmt and Am

is a diagonal matrix with elements Am,d that weights the contribution of Dmyd.

We follow the same procedure described in section 3.1 for the model in equation (16) with M = 1. Each element in

expression (16) can be written as

DM
0 yd =

M∑

m=0

Am,dDmyd(t) =

Q∑

q=1

Sd,quq(t) + êd(t), (17)

where we have introduced a new operator DM
0 that is equivalent to apply the weighted sum of operators Dm. For a

homogeneous differential equation in (17), this is uq(t) = 0 for q = 1, . . . , Q and ed(t) = 0, and a particular set of initial

conditions {Dmyd(t0)}M−1
m=0 , it is possible to find a linear integral operator Gd associated to DM

0 that can be used to solve

the non-homogeneous differential equation. The linear integral operator is defined as

Gd[v](t) = fd(t, v(t)) =

∫

T
Gd(t, τ)v(τ)dτ, (18)

where Gd(t, s) is known as the Green’s function associated to the differential operator DM
0 , v(t) is the input function for the

non-homogeneous differential equation and T is the input domain. The particular relation between the differential operator

and the Green’s function is given by

DM
0 [Gd(t, s)] = δ(t− s), (19)

with s fixed, Gd(t, s) a fundamental solution that satisfies the initial conditions and δ(t−s) the Dirac delta4 function (Griffel,

2002). Strictly speaking, the differential operator in equation (19) is the adjoint for the differential operator appearing in

equation (17). For a more rigorous introduction to Green’s functions applied to differential equations, the interested reader

is referred to Roach (1982). In the signal processing and control theory literature, the Green’s function is known as the

impulse response of the system. Following the general latent force model framework, we write the outputs as

yd(t) =

Q∑

q=1

Sd,qGd[uq](t) + wd(t), (20)

where wd(t) is again an independent process associated to each output. We assume once more that the latent forces fol-

low independent Gaussian process priors with zero mean and covariance kuq,uq
(t, t′). The covariance for the outputs

kyd,yd′
(t, t′) is given by kfd,fd′ (t, t

′) + kwd,wd′
(t, t′)δd,d′ , with kfd,fd′ (t, t

′) equal to

Q∑

q=1

Sd,qSd′,qkfq

d
,fq

d′
(t, t′), (21)

and kfq

d
,fq

d′
(t, t′) following

∫

T

∫

T ′

Gd(t− τ)Gd′(t′ − τ ′)kuq,uq
(τ, τ ′)dτ ′dτ. (22)

Learning and inference for the higher-order latent force model is done as explained in subsection 3.2. The Green’s function

is described by a parameter vector ψd and with the length-scales {ℓq}Qq=1 describing the latent GPs, the vector of hyper-

parameters is given by θ = {{ψd}Dd=1, {Sd,q}D,Q
d=1,q=1, {ℓq}

Q
q=1}. The parameter vector θ is estimated by maximizing the

logarithm of the marginal likelihood in equation (13), where the elements of the matrix Kf ,f are computed using expression

(21) with kfq

d
,fq

d′
(t, t′) given by (22). For prediction we use expression (14) and the posterior distribution is found using

expression (15), where the elements of the matrix Kf ,u, kfd,uq
(t, t′) = kfq

d
,uq

(t, t′), are computed using

Sd,q

∫

T
Gd(t− τ)kuq,uq

(τ, t′)dτ. (23)

In section 4, we present in detail a second order latent force model and show its application in the description of motion

capture data.

4We have used the same notation for the Kronecker delta and the Dirac delta. The particular meaning should be understood from the context.
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3.4 Multidimensional inputs

In the sections above we have introduced latent force models for which the input variable is one-dimensional. For higher-

dimensional inputs, x ∈ R
p, we can use linear partial differential equations to establish the dependence relationships

between the latent forces and the outputs. The initial conditions turn into boundary conditions, specified by a set of functions

that are linear combinations of yd(x) and its lower derivatives, evaluated at a set of specific points of the input space.

Inference and learning is done in a similar way to the one-input dimensional latent force model. Once the Green’s function

associated to the linear partial differential operator has been established, we employ similar equations to (22) and (23) to

compute kfd,f ′

d
(x,x′) and kfd,uq

(x,x′) and the hyperparameters appearing in the covariance function are estimated by

maximizing the marginal likelihood. In section 5, we will present examples of latent force models with spatio-temporal

inputs and a basic covariance with higher-dimensional inputs.

3.5 Efficient approximations

Learning the parameter vector θ through the maximization of expression (13) involves the inversion of the matrix Kf ,f +Σ,

inversion that scales as O(D3N3). For the single output case, this is D = 1, different efficient approximations have been

introduced in the machine learning literature to reduce computational complexity including Csató and Opper (2001); Seeger

et al. (2003); Quiñonero-Candela and Rasmussen (2005); Snelson and Ghahramani (2006); Rasmussen and Williams (2006);

Titsias (2009). Recently, Álvarez and Lawrence (2009) introduced an efficient approximation for the case D > 1, which

exploits the conditional independencies in equation (18): assuming that only a few number K < N of values of v(t) are

known, then the set of outputs fd(t, v(t)) are uniquely determined. The approximation obtained shared characteristics with

the Partially Independent Training Conditional (PITC) approximation introduced in Quiñonero-Candela and Rasmussen

(2005) and the authors of Álvarez and Lawrence (2009) refer to the approximation as the PITC approximation for multiple-

outputs. The set of values {v(tk)}Kk=1 are known as inducing variables, and the corresponding set of inputs, inducing inputs.

This terminology has been used before for the case in which D = 1.

A different type of approximation was presented in Álvarez et al. (2010) based on variational methods. It is a generalization

of Titsias (2009) for multiple-output Gaussian processes. The approximation establishes a lower bound on the marginal

likelihood and reduce computational complexity to O(DNK2). The authors call this approximation Deterministic Training

Conditional Variational (DTCVAR) approximation for multiple-output GP regression, borrowing ideas from Quiñonero-

Candela and Rasmussen (2005) and Titsias (2009).

4 Second Order Dynamical System

In Section 1 we introduced the analogy of a marionette’s motion being controlled by a reduced number of forces. Human

motion capture data consists of a skeleton and multivariate time courses of angles which summarize the motion. This motion

can be modelled with a set of second order differential equations which, due to variations in the centers of mass induced

by the movement, are non-linear. The simplification we consider for the latent force model is to linearize these differential

equations, resulting in the following second order system,

Md
d2yd(t)

dt2
+ Cd

dyd(t)

dt
+Bdyd(t) =

Q∑

q=1

Sd,quq(t) + êd(t).

Whilst the above equation is not the correct physical model for our system, it will still be helpful when extrapolating

predictions across different motions, as we shall see in the next section. Note also that, although similar to (5), the dynamic

behavior of this system is much richer than that of the first order system, since it can exhibit inertia and resonance. In what

follows, we will assume without loss of generality that the masses are equal to one.

For the motion capture data yd(t) corresponds to a given observed angle over time, and its derivatives represent angular

velocity and acceleration. The system is summarized by the undamped natural frequency, ω0d =
√
Bd, and the damping

ratio, ζd = 1
2Cd/

√
Bd. Systems with a damping ratio greater than one are said to be overdamped, whereas underdamped

systems exhibit resonance and have a damping ratio less than one. For critically damped systems ζd = 1, and finally, for

undamped systems (i.e. no friction) ζd = 0.

Ignoring the initial conditions, the solution of the second order differential equation is given by the integral operator of

equation (18), with Green’s function

Gd(t, s) =
1

ωd
exp(−αd(t− s)) sin(ωd(t− s)), (24)

where ωd =
√
4Bd − C2

d/2 and αd = Cd/2.
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According to the general framework described in section 3.2, the covariance function between the outputs is obtained by

solving expression (22), where kuq,uq
(t, t′) follows the SE form in equation (9). Solution for kfq

d
,fq

d′
(t, t′) is then given by

(Álvarez et al., 2009)

K0

[
hq(γ̃d′ , γd, t, t

′) + hq(γd, γ̃d′ , t′, t) + hq(γd′ , γ̃d, t, t
′) + hq(γ̃d, γd′ , t′, t)

− hq(γ̃d′ , γ̃d, t, t
′)− hq(γ̃d, γ̃d′ , t′, t)− hq(γd′ , γd, t, t

′)− hq(γd, γd′ , t′, t)
]

where K0 = ℓq
√
π/8ωdωd′ , γd = αd + jωd and γ̃d = αd − jωd and the functions hq(γ̃d′ , γd, t, t

′) follow

hq(γd′ , γd, t, t
′) =

Υq(γd′ , t′, t)− e−γdtΥq(γd, t
′, 0)

γd + γd′

,

with

Υq(γd′ , t, t′) = 2e

(

ℓ2qγ2
d′

4

)

e−γd′ (t−t′) − e

(

− (t−t′)2

ℓ2q

)

w(jzd′,q(t))− e

(

− (t′)2

ℓ2q

)

e(−γd′ t)w(−jzd′,q(0)), (25)

and zd′,q(t) = (t − t′)/ℓq − (ℓqγd′)/2. Note that zd′,q(t) ∈ C, and w(jz) in (25), for z ∈ C, denotes Faddeeva’s function

w(jz) = exp(z2)erfc(z), where erfc(z) is the complex version of the complementary error function, erfc(z) = 1−erf(z) =
2√
π

∫∞
z

exp(−v2)dv. Faddeeva’s function is usually considered the complex equivalent of the error function, since |w(jz)|
is bounded whenever the imaginary part of jz is greater or equal than zero, and is the key to achieving a good numerical

stability when computing (25) and its gradients.

Similarly, the cross-covariance between latent functions and outputs in equation (23) is given by

kfq

d
,uq

(t, t′) =
ℓqSd,q

√
π

j4ωd
[Υq(γ̃d, t, t

′)−Υq(γd, t, t
′)],

Motion Capture data

Our motion capture data set is from the CMU motion capture data base.5 We considered two different types of movements:

golf-swing and walking. For golf-swing we consider subject 64 motions 1, 2, 3 and 4, and for walking we consider subject

35 motions 2 and 3; subject 10 motion 4; subject 12 motions 1, 2 and 3; subject 16, motions 15 and 21; subject 7 motions

1 and 2, and subject 8 motions 1 and 2. Subsequently, we will refer to the pair subject and motion by the notation X(Y ),
where X refers to the subject and Y to the particular motion. The data was down-sampled by 4.6 Although each movement

is described by time courses of 62 angles, we selected only the outputs whose signal-to-noise ratio was over 20 dB as

explained in appendix A, ending up with 50 outputs for the golf-swing example and 33 outputs for the walking example.

We were interested in training on a subset of motions for each movement and testing on a different subset of motions for

the same movement, to assess the model’s ability to extrapolate. For testing, we condition on three angles associated to the

root nodes and also on the first five and the last five output points of each other output. For the golf-swing, we use leave-one

out cross-validation, in which one of the 64(Y ) movements is left aside (with Y = 1, 2, 3 or 4) for testing, while we use the

other three for training. For the walking example, we train using motions 35(2), 10(4), 12(1) and 16(15) and validate over

all the other motions (8 in total).

We use the above setup to train a LFM model with Q = 2. We compare our model against MTGP and SLFM, also with

Q = 2. For these three models, we use the DTCVAR efficient approximation with K = 30 and fixed inducing-points

placed equally spaced in the input interval. We also considered a regression model that directly predicts the angles of the

body given the orientation of three root nodes using standard independent GPs with SE covariance functions. Results for all

methods are summarized in Table 1 in terms of root-mean-square error (RMSE) and percentage of explained variance (R2).

In the table, the measure shown is the mean of the measure in the validation set, plus and minus one standard deviation.

We notice from table 1 that the LFM outperforms the other methods both in terms of RMSE and R2. This is particularly

true for the R2 performance measure, indicating the ability that the LFM has for generating more realistic motions.

5 Partial Differential Equations and Latent Forces

So far we have considered dynamical latent force models based on ordinary differential equations, leading to multioutput

Gaussian processes which are functions of a single variable: time. As mentioned before, the methodology can also be

5The CMU Graphics Lab Motion Capture Database was created with funding from NSF EIA-0196217 and is available at http://mocap.cs.cmu.
edu.

6We selected specific frame intervals for each motion. For 64(1), frames [120, 400]; for 64(2), frames [170, 420]; for 64(3), frames [100, 300]; and
for 64(4), frames [80, 315]. For 35(2), frames [55, 338]; for 10(4), frames [222, 499]; for 12(1), frames [22, 328]; and for 16(15), frames [62, 342].
For all other motions, we use all the frames.
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Movement Method RMSE R2 (%)

Golf swing

IND GP 21.55± 2.35 30.99± 9.67
MTGP 21.19± 2.18 45.59± 7.86
SLFM 21.52± 1.93 49.32± 3.03
LFM 18.09± 1.30 72.25± 3.08

Walking

IND GP 8.03± 2.55 30.55± 10.64
MTGP 7.75± 2.05 37.77± 4.53
SLFM 7.81± 2.00 36.84± 4.26
LFM 7.23± 2.18 48.15± 5.66

Table 1: RMSE and R2 for golf swing and walking

applied in the context of partial differential equations to recover multioutput Gaussian processes which are functions of

several inputs. We first show an example of spatio-temporal covariance obtained from the latent force model idea and then

an example of a covariance function that, using a simplified version of the diffusion equation, allows an expression for

higher-dimensional inputs.

5.1 Gap-gene network of Drosophila melanogaster

In this section we show an example of a latent force model for a spatio-temporal domain. For illustration, we use gene

expression data obtained from the Gap-gene network of the Drosophila melanogaster. We propose a linear model that can

account for the mechanistic behavior of the gene expression.

The gap gene network is responsible for the segmented body pattern of the Drosophila melanogaster. During the blastoderm

stage of the development of the body, different maternal gradients determine the polarity of the embryo along its anterior-

posterior (A-P) axis (Perkins et al., 2006).

Figure 1: Drosophila body segmentation genes. Blue stripes correspond to hunchback, green stripes to knirps and red stripes to eve-

skipped at cleavage cycle 14A, temporal class 3.

Maternal gradient interact with the so called trunk gap genes, including hunchback (hb), Krüppel (Kr), giant (gt), and knirps

(kni), and this network of interactions establish the patterns of segmentation of the Drosophila.

Figure 1 shows the gene expression of the hunchback, the knirps and the eve-skipped genes in a color-scale intensity image.

The image corresponds to cleavage cycle 14A, temporal class 3.7

The gap-gene network dynamics is usually represented using a set of coupled non-linear partial differential equations

(Perkins et al., 2006; Gursky et al., 2004)

∂yd(x, t)

∂t
= ζ(t)Pd(y(x, t))− λdyd(x, t) + Dd

∂2yd(x, t)

∂x2
,

where yd(x, t) denotes the relative concentration of gap protein of the d-th gene at the space point x and time point t. The

term Pd(y(x, t)) accounts for production and it is a function, usually non-linear, of production of all other genes. The

parameter λd represents the decay and Dd the diffusion rate. The function ζ(t) accounts for changes occurring during the

mitosis, in which the transcription is off (Perkins et al., 2006).

We linearize the equation above by replacing the non-linear term ζ(t)Pd(y(x, t)) with the linear term
∑Q

q=1 Sd,quq(x, t),
where Sd,q are sensitivities which account for the influence of the latent force uq(x, t) over the quantity of production of

7The embryo name is dm12 and the image was taken from http://urchin.spbcas.ru/flyex/.
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gene d. In this way, the new diffusion equation is given by

∂yd(x, t)

∂t
=
∑

∀q
Sd,quq(x, t)− λdyd(x, t) + Dd

∂2yd(x, t)

∂x2
.

This expression corresponds to a second order non-homogeneous partial differential equation. It is also parabolic with one

space variable and constant coefficients. The exact solution of this equation is subject to particular initial and boundary

conditions. For a first boundary value problem with domain 0 ≤ x ≤ l, initial condition yd(x, t = 0) equal to zero, and

boundary conditions yd(x = 0, t) and yd(x = l, t) both equal to zero, the solution to this equation is given by Polyanin

(2002); Butkovskiy and Pustyl’nikov (1993); Stakgold (1998)

yd(x, t) =

Q∑

q=1

Sd,q

∫ t

0

∫ l

0

uq(ξ, τ)Gd(x, ξ, t− τ)dξdτ,

where the Green’s function Gd(x, ξ, t) is given by

Gd(x, ξ, t) =
2

l
e−λdt

∞∑

n=1

sin
(nπx

l

)
sin

(
nπξ

l

)
e

(

−Ddn2π2t

l2

)

.

We assume that the latent forces uq(x, t) follow a Gaussian process with covariance function that factorizes across inputs

dimensions, this is

kuq,uq
(x, t, x′, t′) = exp

(
− (t− t′)2
(
ℓtq
)2

)
exp

(
− (x− x′)2

(
ℓxq
)2

)
,

where ℓtq represents the length-scale along the time-input dimension and ℓxq the length-scale along the space input dimension.

The covariance for the outputs yd(x, t), kfq

d
,fq

d′
(x, t, x′, t′), is computed using the expressions for the Green’s function and

the covariance of the latent forces, in a similar fashion to equation (22), leading to

kfq

d
,fq

d′
(x, t, x′, t′) =

4

ℓ2

∞∑

n=1

∞∑

m=1

ktfq

d
,fq

d′
(t, t′)kxfq

d
,fq

d′
(x, x′), (26)

where kt
fq

d
,fq

d′
(t, t′) and kx

fq

d
,fq

d′
(x, x′) are also kernel functions that depend on the indexes n and m. The kernel function

kt
fq

d
,fq

d′
(t, t′) is given by expression (10) and kx

fq

d
,fq

d′
(x, x′) is given by

kxfq

d
,fq

d′
(x, x′) = C(n,m, ℓxq ) sin(ωnx) sin(ωmx′),

where ωn = nπ
ℓ and ωm = mπ

ℓ . The term C(n,m, ℓxq ) represents a function that depends on the indexes n and m, and on

the length-scale of the space-input dimension. The expression for C(n,m, ℓxq ) is included in appendix B.

For completeness, we also include the cross-covariance between the outputs and the latent functions, which follows as

kfd,uq
(x, t, x′, t′) =

2Sd,q

l

∞∑

n=1

ktfd,uq
(t, t′)kxfd,uq

(x, x′),

where ktfd,uq
(t, t′) is given by expression (12), and kxfd,uq

(x, x′) follows

kxfd,uq
(x, x′) = sin (wnx)C(x′, n, ℓxq ),

where C(x′, n, ℓxq ) is a function of x′, the index n and the length-scale of the space input dimension. The expression for

C(x′, n, ℓxq ) is included in appendix C.

Prediction of gene expression data

We want to assess the contribution that a simple mechanistic assumption might bring to the prediction of gene expression

data when compared to a covariance function that does not imply mechanistic assumptions.

We refer to the covariance function obtained in the section before as the drosophila (DROS) kernel and compare against the

multi-task Gaussian process (MTGP) framework already mentioned in section 2. Covariance for the MTGP is a particular
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case of the latent force model covariance in equations (21) and (22). If we make Gd(t − τ) = δ(t − τ) in equation (21),

and kuq,uq
(t, t′) = ku,u(t, t

′) for all values of q, we get

kfd,fd′ (t, t
′) =

Q∑

q=1

Sd,qSd′,qku,u(t, t
′).

Our purpose is to compare the prediction performance of the covariance above and the DROS covariance function.

We use data from Perkins et al. (2006), in particular, we have quantitative wild-type concentration profiles for the protein

products of giant and knirps at 9 time points and 58 spatial locations. We work with a gene at a time and assume that the

outputs correspond to the different time points. This setup is very common in computer emulation of multivariate codes

(see Conti and O’Hagan (2010); Osborne et al. (2008); Rougier (2008)) in which the MTGP model is heavily used. For the

DROS kernel, we use 30 terms in each sum involved in its definition, in equation (26).

We randomly select 20 spatial points for training the models, this is, for finding hyperparameters according to the description

of subsection 3.2. The other 38 spatial points are used for validating the predictive performance. Results are shown in table

2 for five repetitions of the same experiment. It can be seen that the mechanistic assumption included in the GP model

considerably outperforms a traditional approach like MTGP, for this particular task.

Gene Method RMSE R2 (%)

giant
MTGP 26.56± 0.30 81.12± 0.01
DROS 2.00± 0.35 99.78± 0.01

knirps
MTGP 16.14± 8.44 91.18± 2.77
DROS 3.01± 0.81 99.60± 0.01

Table 2: RMSE and R2 for protein data prediction

5.2 Diffusion in the Swiss Jura

The Jura data is a set of measurements of concentrations of several heavy metal pollutants collected from topsoil in a 14.5
km2 region of the Swiss Jura. We consider a latent function that represents how the pollutants were originally laid down.

As time passes, we assume that the pollutants diffuse at different rates resulting in the concentrations observed in the data

set. We use a simplified version of the heat equation of p variables. The p-dimensional non-homogeneous heat equation is

represented as

∂yd(x, t)

∂t
=

p∑

j=1

κd,j
∂2yd(x, t)

∂x2
j

+Φ(x, t),

where p = 2 is the dimension of x, the measured concentration of each pollutant over space and time is given by yd(x, t),
κd,j is the diffusion constant of output d in direction p, and Φ(x, t) represents an external force, with x = {xj}pj=1.

Assuming the domain R
p = {−∞ < xj < ∞; j = 1, . . . , p} and initial condition prescribed by the set of latent forces,

u(x) =

Q∑

q=1

Sd,quq(x), at t = 0,

the solution to the system (Polyanin, 2002) is then given by

yd(x, t) =

∫ t

0

∫

Rp

Gd(x,x
′, t, τ)Φ(x′, τ)dx′dτ +

∫

Rp

Gd(x,x
′, t, 0)u(x′)dx′, (27)

where Gq(x,x
′, t, τ) is the Green’s function given by

Gd(x,x
′, t, τ) =

1

2pπp/2
√∏p

j=1 Td,j

exp


−

p∑

j=1

(xj − x′
j)

2

4Td,j


 ,

with Td,j(t, τ) = κd,j(t− τ). The covariance function we propose here is derived as follows. In equation (27), we assume

that the external force Φ(x, t) is zero, following

yd(x, t) =

Q∑

q=1

Sd,q

∫

Rp

Gd(x,x
′, t, 0)uq(x

′)dx′. (28)
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We can write again the expression for the Green’s function as

Gd(x,x
′, t) =

1

(2π)p/2
√∏p

j=1 2Td,j

exp


−

p∑

j=1

(xj − x′
j)

2

4Td,j


 =

1

(2π)p/2
√∏p

j=1 ℓd,j
exp


−

p∑

j=1

(xj − x′
j)

2

2ℓd,j


 ,

where ℓd,j = 2Td,j = 2κd,jt. The coefficient ℓd,j is a function of time. In our model for the diffusion of the pollutant

metals, we think of the data as a snapshot of the diffusion process. Consequently, we consider the time instant of this

snapshot as a parameter to be estimated. In other words, the measured concentration is given by

yd(x) =

Q∑

q=1

Sd,q

∫

Rp

G̃d(x,x
′)uq(x

′)dx′, (29)

where G̃d(x,x
′) is the Green’s function Gd(x,x

′, t) that considers the variable t as a parameter to be estimated through

ℓd,j . Expression for G̃d(x,x
′) corresponds to a Gaussian smoothing kernel, with diagonal covariance. This is

G̃d(x,x
′) =

|Pd|1/2
(2π)p/2

exp

[
−1

2
(x− x′)⊤Pd(x− x′)

]
,

where Pd is a precision matrix, with diagonal form and entries {pd,j = 1
ℓd,j

}pj=1.

If we take the latent function to be given by a GP with the Gaussian covariance function, we can compute the multiple

output covariance functions analytically. The covariance function between the output functions, kfq

d
,fq

d′
(x,x′), is obtained

as

1

(2π)p/2|Pq
d,d′ |1/2

exp

[
−1

2
(x− x′)⊤

(
P

q
d,d′

)−1

(x− x′)

]
,

where P
q
d,d′ = P−1

d +P−1
d′ +Λ−1

q , and Λq is the precision matrix associated to the Gaussian covariance of the latent force

Gaussian process prior. The covariance function between the output and latent functions, kfq

d
,uq

(x,x′), is given by

1

(2π)p/2|Pq
d|1/2

exp

[
−1

2
(x− x′)⊤ (Pq

d)
−1

(x− x′)

]
,

where P
q
d = P−1

d +Λ−1
q .

Prediction of Metal Concentrations

We used our model to replicate the experiments described in Goovaerts (pp. 248,249 1997) in which a primary variable

(cadmium, cobalt, copper and lead) is predicted in conjunction with some secondary variables (nickel and zinc for cadmium

and cobalt; copper, nickel and zinc for copper and lead).8 Figure 2 shows an example of the prediction problem. For several

sample locations we have access to the primary variable, for example cadmium, and the secondary variables, nickel and

zinc. These sample locations are usually referred to as the prediction set. At some other locations, we only have access to

the secondary variables, as it is shown in the figure by the squared regions. In geostatistics, this configuration of sample

locations is known as undersampled or heterotopic, where usually a few expensive measurements of the attribute of interest

are supplemented by more abundant data on correlated attributes that are cheaper to sample.

By conditioning on the values of the secondary variables at the prediction and validation sample locations, and the pri-

mary variables at the prediction sample locations, we can improve the prediction of the primary variables at the validation

locations. We compare results for the heat kernel with results from prediction using independent GPs for the metals, the

multi-task Gaussian process and the semiparametric latent factor model. For our experiments we made use of ten repeats to

report standard deviations. For each repeat, the data is divided into a different prediction set of 259 locations and different

validation set of 100 locations. Root mean square errors and percentage of explained variance are shown in Tables 3 and 4,

respectively.

Note from both tables that all methods outperform independent Gaussian processes, in terms of RMSE and explained

variance. For one latent function (Q = 1), the Gaussian process with Heat kernel render better results than multi-task GPs

(in this case, the multi-task GP is equivalent to the semiparametric latent factor model). However, when increasing the value

of the latent forces to two (Q = 2), performances for all methods are quite similar. There is a still a gain in performance

when using the Heat kernel, although the results are within the standard deviation. Also, when comparing the performances

for the GP with Heat kernel using one and two latent forces, we notice that both measures are quite similar. In summary,

the heat kernel provides a simplified explanation for the outputs, in the sense that, using only one latent force, we provide

better performances in terms of RMSE and explained variance.

8Data available at http://www.ai-geostats.org/.
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Nickel
Zinc

Cadmium

Figure 2: Sketch of the topsoil of Swiss Jura. Secondary variables like nickel and zinc help in the prediction of the primary variable

cadmium, in the squared-regions.

Method Cadmium (Cd) Cobalt (Co) Copper (Cu) Lead (Pb)

IND GP 0.8353± 0.0898 2.2997± 0.1388 18.9616± 3.4404 28.1768± 5.8005
MTGP (Q = 1) 0.7638± 0.1016 2.2892± 0.1792 14.4179± 2.7119 21.5861± 4.1888
HEATK (Q = 1) 0.6773± 0.0628 2.06± 0.0887 13.1788± 2.6446 17.9839± 2.9450
MTGP (Q = 2) 0.6980± 0.0832 2.1299± 0.1983 12.7340± 2.2104 17.9399± 1.9981
SLFM (Q = 2) 0.6941± 0.0834 2.172± 0.1204 12.8935± 2.6125 17.9024± 2.0966
HEATK (Q = 2) 0.6759± 0.0623 2.0345± 0.0943 12.5971± 2.4842 17.5571± 2.6076

Table 3: RMSE for pollutant metal prediction

Method Cadmium (Cd) Cobalt (Co) Copper (Cu) Lead (Pb)

IND GP 15.07± 7.43 57.81± 7.19 25.84± 7.54 23.48± 10.40
MTGP (Q = 1) 27.25± 5.89 58.45± 5.71 58.84± 8.35 56.85± 11.60
HEATK (Q = 1) 43.83± 8.71 66.19± 4.60 65.55± 8.21 71.45± 5.78
MTGP (Q = 2) 40.30± 5.17 64.13± 5.10 67.51± 8.36 69.70± 6.90
SLFM (Q = 2) 40.97± 5.15 62.49± 5.41 67.35± 8.29 70.21± 6.04

HEATK (Q = 2) 43.94± 6.56 67.17± 4.30 68.40± 6.46 70.55± 6.88

Table 4: R2 for pollutant metal prediction

6 Related work

Differential equations are the cornerstone in a diverse range of engineering fields and applied sciences. However, their use

for inference in statistics and machine learning has been less studied. The main field in which they have been used is known

as functional data analysis (Ramsay and Silverman, 2005).

From the frequentist statistics point of view, the literature in functional data analysis has been concerned with the problem

of parameter estimation in differential equations (Poyton et al., 2006; Ramsay et al., 2007): given a differential equation

with unknown coefficients {Am}Mm=0, how do we use data to fit those parameters? Notice that there is a subtle difference

between those techniques and the latent force model. While these parameter estimation methods start with a very accurate

description of the interactions in the system via the differential equation (the differential equation might even be non-linear

(Perkins et al., 2006)), in the latent force model, we use the differential equation as part of the modeling problem: the

differential equation is used as a way to introduce prior knowledge over a system for which we do not know the real

dynamics, but for which we hope some important features of that dynamics could be expressed. Having said that, we

review some of the parameter estimation methods because they also deal with differential equations with an uncertainty

background.
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Classical approaches to fit parameters θ of differential equations to observed data include numerical approximations of

initial value problems and collocation methods (references Ramsay et al. (2007) and Brewer et al. (2008) provide reviews

and detailed descriptions of additional methods).

The solution by numerical approximations include an iterative process in which given an initial set of parameters θ0 and a

set of initial conditions y0, a numerical method is used to solve the differential equation. The parameters of the differential

equation are then optimized by minimizing an error criterion between the approximated solution and the observed data. For

exposition, we assume in equation (17) that D = 1, Q = 1 and S1,1 = 1. We are interested in finding the solution y(t) to

the following differential equation, with unknown parameters θ = {Am}Mm=0,

DM
0 y(t) =

M∑

m=0

AmDmy(t) = u(t),

In the classical approach, we assume that we have access to a vector of initial conditions, y0 and data for u(t), u. We start

with an initial guess for the parameter vector θ0 and solve numerically the differential equation to find a solution ỹ. An

updated parameter vector θ̃ is obtained by minimizing

E(θ) =

N∑

n=1

‖ỹ(tn)− y(tn)‖,

through any gradient descent method. To use any of those methods, we must be able to compute ∂E(θ)/∂θ, which is

equivalent to compute ∂y(t)/∂θ. In general, when we do not have access to ∂y(t)/∂θ, we can compute it using what

is known as the sensitivity equations (see Bard (1974), chapter 8, for detailed explanations), which are solved along with

the ODE equation that provides the partial solution ỹ. Once a new parameter vector θ̃ has been found, the same steps are

repeated until some convergence criterion is satisfied. If the initial conditions are not available, they can be considered as

additional elements of the parameter vector θ and optimized in the same gradient descent method.

In collocation methods, the solution of the differential equation is approximated using a set of basis functions, {φi(t)}Ji=1,

this is y(t) =
∑J

i=1 βiφi(t). The basis functions must be sufficiently smooth so that the derivatives of the unknown func-

tion, appearing in the differential equation, can be obtained by differentiation of the basis representation of the solution,

this is, Dmy(t) =
∑

βiDmφi(t). Collocation methods also use an iterative procedure for fitting the additional parameters

involved in the differential equation. Once the solution and its derivatives have been approximated using the set of basis

functions, minimization of an error criteria is used to estimate the parameters of the differential equation. Principal differen-

tial analysis (PDA) (Ramsay, 1996) is one example of a collocation method in which the basis functions are splines. In PDA,

the parameters of the differential equation are obtained by minimizing the squared residuals of the higher order derivative

DMy(t) and the weighted sum of derivatives {Dmy(t)}M−1
m=0 , instead of the squared residuals between the approximated

solution and the observed data.

An example of a collocation method augmented with Gaussian process priors was introduced by Graepel (2003). Graepel

starts with noisy observations, ŷ(t), of the differential equation DM
0 y(t), such that ŷ(t) ∼ N (DM

0 y(t), σy). The solution

y(t) is expressed using a basis representation, y(t) =
∑

βiφi(t). A Gaussian prior is placed over β = [β1, . . . , βJ ],
and its posterior computed under the above likelihood. With the posterior over β, the predictive distribution for ŷ(t∗) can

be readily computed, being a function of the matrix DM
0 Φ with elements {DM

0 φi(tn)}N,J
n=1,i=1. It turns out that prod-

ucts DM
0 Φ

(
DM

0 Φ
)⊤

that appear in this predictive distribution have individual elements that can be written using the

sum
∑J

i=1 DM
0 φi(tn)DM

0 φi(tn′) = DM
0,tDM

0,t′
∑J

i=1 φi(tn)φi(tn′) or, using a kernel representation for the inner prod-

ucts k(tn, tn′) =
∑J

i=1 φi(tn)φi(tn′), as kDM
0,t,DM

0,t′
(tn, tn′), where this covariance is obtained by taking DM

0 derivatives of

k(t, t′) with respect to t and DM
0 derivatives with respect to t′. In other words, the result of the differential equation DM

0 y(t)
is assumed to follow a Gaussian process prior with covariance kDM

0,t,DM
0,t′

(t, t′). An approximated solution ỹ(t) can be com-

puted through the expansion ỹ(t) =
∑N

n=1 αnkDM
0,t′

(t, tn), where αn is an element of the vector (KDM
0,t,DM

0,t′
+σyIN )−1ŷ,

where KDM
0,t,DM

0,t′
is a matrix with entries kDM

0,t,DM
0,t′

(tn, tn′) and ŷ are noisy observations of DM
0 y(t).

Although, we presented the above methods in the context of linear ODEs, solutions by numerical approximations and col-

location methods are applied to non-linear ODEs as well.

Gaussian processes have been used as models for systems identification (Solak et al., 2003; Kocijan et al., 2005; Calderhead

et al., 2009; Thompson, 2009). In Solak et al. (2003), a non-linear dynamical system is linearized around an equilibrium
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point by means of a Taylor series expansion (Thompson, 2009),

y(t) =

∞∑

j=0

y(j)(a)

j!
(t− a)j ,

with a the equilibrium point. For a finite value of terms, the linearization above can be seen as a regression problem in which

the covariates correspond to the terms (t − a)j and the derivatives y(j)(a) as regression coefficients. The derivatives are

assumed to follow a Gaussian process prior with a covariance function that is obtained as k(j,j
′)(t, t′), where the superscript

j indicates how many derivative of k(t, t′) are taken with respect to t and the superscript j′ indicates how many derivatives of

k(t, t′) are taken with respect to t′. Derivatives are then estimated a posteriori through standard Bayesian linear regression.

An important consequence of including derivative information in the inference process is that the uncertainty in the posterior

prediction is reduced as compared to using only function observations. This aspect of derivative information have been

exploited in the theory of computer emulation to reduce the uncertainty in experimental design problems (Morris et al.,

1993; Mitchell and Morris, 1994).

Gaussian processes have also been used to model the output y(t) at time tk as a function of its L previous samples {y(t −
tk−l)}Ll=1, a common setup in the classical theory of systems identification (Ljung, 1999). The particular dependency

y(t) = g({y(t− tk−l)}Ll=1), where g(·) is a general non- linear function, is modelled using a Gaussian process prior and the

predicted value for the output y∗(tk) is used as a new input for multi-step ahead prediction at times tj , with j > k (Kocijan

et al., 2005). Uncertainty about y∗(tk) can also be incorporated for predictions of future output values (Girard et al., 2003).

On the other hand, multivariate systems with Gaussian process priors have been thoroughly studied in the spatial analysis

and geostatistics literature (Higdon, 2002; Boyle and Frean, 2005; Journel and Huijbregts, 1978; Cressie, 1993; Goovaerts,

1997; Wackernagel, 2003). In short, a valid covariance function for multi-output processes can be generated using the linear

model of coregionalization (LMC). In the LMC, each output yd(t) is represented as a linear combination of a series of

basic processes {uq}Qq=1, some of which share the same covariance function kuq,uq
(t, t′). Both, the semiparametric latent

factor model (Teh et al., 2005) and the multi-task GP (Bonilla et al., 2008) can be seen as particular cases of the LMC

(Álvarez et al., 2011b). Higdon (2002) proposed the direct use of a expression (18) to obtain a valid covariance function

for multiple outputs and referred to this kind of construction as process convolutions. Process convolutions for constructing

covariances for single output GP had already been proposed by Barry and Ver Hoef (1996); Ver Hoef and Barry (1998).

Calder and Cressie (2007) reviews several extensions of the single process convolution covariance. Boyle and Frean (2005)

introduced the process convolution idea for multiple outputs to the machine learning audience. Boyle (2007) developed

the idea of using impulse responses of filters to represent Gd(t, s), assuming the process v(t) was white Gaussian noise.

Independently, Murray-Smith and Pearlmutter (2005) also introduced the idea of transforming a Gaussian process prior

using a discretized version of the integral operator of equation (18). Such transformation could be applied for the purposes

of fusing the information from multiple sensors (a similar setup to the latent force model but with a discretized convolution),

for solving inverse problems in reconstruction of images or for reducing computational complexity working with the filtered

data in the transformed space (Shi et al., 2005).

There has been a recent interest in introducing Gaussian processes in the state space formulation of dynamical systems

(Ko et al., 2007; Deisenroth et al., 2009; Turner et al., 2010) for the representation of the possible nonlinear relationships

between the latent space and between the latent space and the observation space. Going back to the formulation of the

dimensionality reduction model, we have

utn = g1(utn−1
) + η,

ytn = g2(utn) + ǫ,

where η and ξ are noise processes and g1(·) and g2(·) are general non-linear functions. Usually g1(·) and g2(·) are

unknown, and research on this area has focused on developing a practical framework for inference when assigning Gaussian

process priors to both functions.

Finally, it is important to highlight the work of Calder (Calder, 2003, 2007, 2008) as an alternative to multiple-output

modeling. Her work can be seen in the context of state-space models,

utn = utn−1 + η,

ytn = Gtnutn + ǫ,

where ytn and utn are related through a discrete convolution over an independent spatial variable. This is, for a fixed tn,

ytnd (s) =
∑

q

∑
i G

tn
d (s− zi)u

tn
q (zi) for a grid of I spatial inputs {zi}Ii=1.
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7 Conclusion

In this paper we have presented a hybrid approach to modelling that sits between a fully mechanistic and a data driven ap-

proach. We used Gaussian process priors and linear differential equations to model interactions between different variables.

The result is the formulation of a probabilistic model, based on a kernel function, that encodes the coupled behavior of

several dynamical systems and allows for more accurate predictions. The implementation of latent force models introduced

in this paper can be extended in several ways, including:

Non-linear Latent Force Models. If the likelihood function is not Gaussian the inference process has to be accomplished in

a different way, through a Laplace approximation (Lawrence et al., 2007) or sampling techniques (Titsias et al., 2009).

Cascaded Latent Force Models. For the above presentation of the latent force model, we assumed that the covariances

kuq,uq
(t, t′) were squared-exponential. However, more structured covariances can be used. For example, in Honkela et al.

(2010), the authors use a cascaded system to describe gene expression data for which a first order system, like the one

presented in subsection 3.1, has as inputs uq(t) governed by Gaussian processes with covariance function (10).

Stochastic Latent Force Models. If the latent forces uq(t) are white noise processes, then the corresponding differential

equations are stochastic, and the covariances obtained in such cases lead to stochastic latent force models. In Álvarez et al.

(2010), a first-order stochastic latent force model is employed for describing the behavior of a multivariate financial dataset:

the foreign exchange rate with respect to the dollar of ten of the top international currencies and three precious metals.

Switching dynamical Latent Force Models. A further extension of the LFM framework allows the parameter vector θ to

have discrete changes as function of the input time. In Álvarez et al. (2011a) this model was used for the segmentation of

movements performed by a Barrett WAM robot as haptic input device.
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A Preprocessing for the mocap data

For selecting the subset of angles for each of the motions for the golf-swing movement and the walking movement, we use

as performance measure the signal-to-noise ratio obtained in the following way. We train a GP regressor for each output,

employing a covariance function that is the sum of a squared exponential kernel and a white Gaussian noise,

σ2
S exp

[
− (x− x′)2

2ℓ2

]
+ σ2

Nδ(x,x′),

where σ2
S and σ2

N are variance parameters, and δ(x,x′) is the Dirac delta function. For each output, we compute the

signal-to-noise ratio as 10 log10(σ
2
S/σ

2
N ).

B Expression for C(n,m, ℓx)

For simplicity, we assume Q = 1 and write ℓxq = ℓx. The expression for C(n,m, ℓx) is given by

C(n,m, ℓx) =

∫ l

0

∫ l

0

sin (wnξ) sin (wmξ′) e

[

− (ξ−ξ′)2

ℓ2x

]

dξ′dξ.

The solution of this double integral depends upon the relative values of n and m. If n 6= m, and n and m are both even or

both odd, then the analytical expression for C(n,m, ℓx) is

(
ℓxl√

π(m2 − n2)

)
{nI [W(m, ℓx)]− mI [W(n, ℓx)]} ,
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where I[·] is an operator that takes the imaginary part of the argument and W(m, ℓx) is given by

W(m, ℓx) = w(jzγm

1 )− e−(
l

ℓx
)
2

e−γmlw(jzγm

2 ),

being zγm

1 = ℓxγm

2 , zγm

2 = l
ℓx

+ ℓxγm

2 and γm = jωm.

The term C(n,m, ℓx) is zero if, for n 6= m, n is even and m is odd or viceversa.

Finally, when n = m, the expression for C(n, n, ℓx) follows as

ℓx
√
π l

2

{
R
[
W(n, ℓx)

]
− I [W(n, ℓx)]

[ℓ2xnπ
2l2

+
1

nπ

]}
+

ℓ2x
2

[
e−( l

ℓx
)2 cos(nπ)− 1

]
,

where R[·] is an operator that takes the real part of the argument.

C Expression for C(x′, n, ℓx)

As in appendix B, we assume Q = 1 and ℓxq = ℓx. The expression C(x′, n, ℓx) is as

ℓx
√
π

2
I
[
e
−
(

x′
−l

ℓx

)2

eγnlw(jzγn,x
′

2 )− e
−
(

x′

ℓx

)2

w(jzγn,x
′

1 )

]
,

with zγn,x
′

1 = x′

ℓx
+ ℓxγn

2 , zγn,x
′

2 = x′−l
ℓx

+ ℓxγn

2 , γn = jωn and I[·] is an operator that takes the imaginary part of the

argument.
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Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence. Efficient multioutput Gaussian processes

through variational inducing kernels. In Teh and Titterington (2010), pages 25–32.
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