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ABSTRACT 

We propose a novel method to estimate capability to make bicycle journeys, specifically 

considering the individual physical capability (IPC) of entire populations of individuals from all 

population segments of an area, not just current cyclists. IPC considers the physical constraints 

on the maximum distance people could cycle given the typical topography of where they live 

(Distance IPC), and then estimates their ability to make a particular journey (Journey IPC). IPC, 

when estimated in this way for a particular point in time, may be informed by antecedent 

behavioural choices and capabilities, and may be a constraint or enabler of subsequent 

capabilities, potential adaptations and behaviour. 

The focus of the present paper is on explaining a generic method of estimating Distance IPC and 

Journey IPC by constructing an individually based spatially fine-grained model. We show how 

such an individual-level model may be implemented for a population resident in many small 

spatial zones by use of spatial microsimulation (population synthesis), to generate the individual 

attributes required as inputs to the model. We present a case-study for the city of Leeds, UK. We 

explain the range of data sources used, explore sensitivity of the results to assumptions of the 
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model, and illustrate the ability of the model to simulate the effects of policies. Finally, we 

identify several possible application areas and opportunities to further develop the model. 

Key words 

Cycling, capability, active travel, spatial microsimulation, accessibility, transport & health. 
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1 INTRODUCTION 

The objective of the present paper is to develop methods for producing estimates of the 

capability of a population, living in the small zones that make up a larger area, to make bicycle 

journeys. We are interested in understanding whether people could make bicycle journeys 

irrespective of current use, focussing on their individual physical capabilities (IPC). IPC 

considers the physical constraints on the maximum distance people could cycle, and their ability 

to make a particular journey by bicycle. The methodological justification for the current paper is 

the continued need to develop improved models of cycling, particularly those considering 

variations in individuals (Handy et al., 2014; Krizek et al., 2009; Lam and Sumalee, 2013). In 

addition to the methodological justification, in the field of sustainable transportation there is a 

range of potential applications of an estimate of capability to complete journeys by cycling, as 

we illustrate towards the end of the paper. 

The paper is structured as follows. In Section 2 we review existing literature which informs 

construction of the IPC model. The scope of the IPC model and definition of the measures and 

indicators produced are described in Section 3. Section 4 outlines the modelling process. Section 

5 explains the method by which we generate a synthetic population of individuals as input to the 

IPC model, using spatial microsimulation. Section 6 explains how the model estimates the 

individual measures and zonal summary indicators of IPC, as defined in Section 3. A case study 

based on Leeds in the UK is described in Section 7. In Section 8 we illustrate some potential 

applications of the method, before drawing conclusions in Section 9. 
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2 LITERATURE INFORMING CONSTRUCTION OF THE IPC MODEL 

We begin by reviewing the various individual aspects of IPC which have been considered in 

previous work, in order to inform our subsequent development of the IPC model in which several 

such aspects are integrated. 

There has been a great deal of research which has considered the relation between how far 

people cycle and their travel choices (Dill and Carr, 2003; Ehrgott et al., 2012; García-

Palomares et al., 2012; Habib et al., 2014; Landis et al., 1997; Larsen et al., 2013; Parkin, 

2004; Parkin et al., 2007; Pooley, 2013; Rybarczyk and Wu, 2010; Stinson and Bhat, 2004; 

Smith and Kauermann, 2011; Wadud, 2014). In these works, physical capability may be assumed 

to have been an implicit constraint in the making of choices, but was not considered explicitly. 

On the other hand, there exist a number of studies that have explicitly modelled some aspects of 

IPC, such as: physical capabilities (British Medical Association and Hillman, 1992; Parkin 

and Rotheram, 2010); variation in fitness across populations (Dickinson et al., 2003; McArdle, 

2010; Menghini et al., 2010; Rendall et al., 2011; Rietveld, 2000); environmental factors 

affecting cycling (Milakis and Athanasopoulos, 2014; Phung and Rose, 2007; Keay, 1992); and 

the impact of topographic factors on walkability (Klein et al., 2015). In addition, recent work 

has considered the interaction between distance, environmental factors and perceptions (Yang 

and Zacharias, 2016). Outside the transport literature, work on physical and physiological 

constraints has been developed in the sports science literature (e.g. Taylor and Johnson, 2008) 

and has been applied in studies of working environments (e.g. Mohamed and Alginahi, 2009). 

Thus, while some aspects of IPC have been considered in the wider literature physical effort is 
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generally poorly considered in models used in transport (Parkin, 2008; Parkin and Rotheram, 

2010). To this end, Larsen et al. (2013) have called for more accurate measures of the ability to 

make a journey by bike to be used in transport planning applications. Menghini et al. (2010) 

argue that further research should investigate the heterogeneity of cyclists in more detail, in this 

respect. Individual attributes specifically: age, gender, Body Mass Index (BMI) and levels of 

physical activityare known to be key determinants of fitness and thus the capability to cycle 

(e.g. McArdle, 2010). The Health Survey for England shows considerable variation in these 

determining factors across the population (Craig et al., 2009). In addition, topography and wind 

speed also have a significant impact on IPC, yet are rarely considered. 

3 DEFINITION AND SCOPE OF THE IPC MEASURES AND 

INDICATORS THAT WE WISH TO ESTIMATE 

The literature reviewed in Section 2 suggests a lack of suitable existing indicators of Individual 

Physical Capability which capture the heterogeneity of cyclists and non-cyclists across the entire 

population. A key implication of such evidence of inter-personal variation is that aggregate/mean 

measures of fitness and physical capability are likely to give us a poor summary of the cycling 

capability of a population in any area, since we neglect those with poor fitness or limited 

mobility. These latter people are likely to be of particular interest to policy makers, as they 

bound the influence of any travel or behavioural change measure. Therefore, capturing individual 

heterogeneity is a key aspect of our work. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 0
1:

36
 2

7 
Se

pt
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 6 

On the other hand, as our ultimate focus is on transport planning applications, we must 

understand how capability is also influenced by spatial heterogeneity, such as topographic 

conditions in the area where an individual resides (where, we suppose, the individual is most 

likely to make cycling journeys). A difficulty here is that many transport models conventionally 

use large zones, e.g. UK administrative Wards or Middle layer Super Output Areas. These zone 

sizes are appropriate for modelling car journeys but not for cycling. Modelled estimates of 

journeys typically use zone centroids as the origin points for journeys; this introduces error 

because not all journeys originate at a zone centroid (Iacono et al., 2010). This is particularly 

important when modelling cycling journeys where many journeys are short, and makes any 

indicator particularly susceptible to the biases of the Modifiable Unit Area Problem (Openshaw, 

1984). Therefore, in addition to modelling heterogeneity in physical attributes, we also require a 

fine grain level for considering geographic heterogeneity
1
. 

The proposed model therefore takes into account the twin considerations of individual 

heterogeneity in capability and spatial heterogeneity. It is able to express IPC as both an 

individual measure, capturing individual heterogeneity, and as a spatially fine grained zonal 

summary indicator. In this paper, to refer to the various aspects of IPC, we will adopt the terms 

defined in Table 1. 

The individual measures and zonal summary indicators have narrow temporal scope as they hold 

all antecedent behaviour and lifestyle choices constant for an instant in time. In the present paper 

                                                   

1 Such spatially fine grained indicators also have the advantage of facilitating the design of more effective, locally-
targeted policy interventions; see: Ballas et al. (2013) and Openshaw (1995). 
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our focus will be on estimating IPC at the time at which our survey data on explanatory variables 

were collected, and so in our case the ‘antecedent conditions’ refer to those preceding the 

relevant surveys. However, the same principles could also be applied to explanatory variables 

generated by a model, forecast or scenario of behaviour at some point in the future (though this is 

beyond the scope of the present paper). In a different direction, we might also imagine the IPC 

model being used to generate inputs to a model estimating subsequent capabilities, adaptive 

capacities or behaviours. As we focus on estimating (current) IPC in the present paper, it is 

beyond our scope either to make an explicit consideration either of antecedent conditions to IPC 

or to develop subsequent models in which IPC may be an input. However, considering these 

wider possibilities is useful for positioning the scope of our work within the wider field of 

modelling active travel (Figure 1). 

Estimation of the IPC measures and indicators demand a range of individual and geographical 

data inputs. To establish relevance for policy makers it should be possible to construct an initial 

version of the IPC measures and indicators from relatively straightforward data sources which 

keep overall data requirements to a minimum. 

For example, though of potential future interest (See Section 8) use of Big Data, and network 

data to generate a fine grained OD matrix and individual routes are beyond the scope of this 

paper. 
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4 OUTLINE OF MODELLING PROCESS 

The method we propose uses data about individuals’ physical attributes to estimate two metrics: 

maximum possible trip length (distance IPC and the summary indicator zone distance IPC) and 

capability to make a specific journey (journey IPC and the summary indicator zone journey IPC). 

Figure 2 gives an outline of the model used to estimate IPC and derive related indicators. The 

estimation process is rather nuanced, since it depends on individual demographic attributes, 

derived attributes of these individuals, geographical factors of an area, and their complex 

interactions. The dashed boxes in Figure 2 list data used in the case study, which is discussed in 

Section 7.2. 

There is a practical barrier to calculating this model for an entire population: geo-referenced data 

on the health and fitness of individuals are not placed in the public domain for reasons of 

confidentiality (Hermes and Poulsen, 2012). This type of data is sometimes referred to as spatial 

micro-data. For this reason we generate a synthetic population of individuals, using spatial 

microsimulation. This precursor to estimating the metrics and indicators is shown at the top of 

Figure 2. The spatial microsimulation process is described in Section 5. 

5 SPATIAL MICROSIMULATION: GENERATING A POPULATION OF 

INDIVIDUALS FOR WHOM IPC CAN BE MEASURED 

Spatial microsimulation is a proven technique used in geography and spatial analysis to conduct 

What-if policy analysis (Ballas et al., 2013; Tanton and Edwards, 2012). It has been used to 

generate synthetic populations in, among other areas, activity based models of transport demand 
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(Beckman et al., 1996; Guo and Bhat, 2007; Frick and Axhausen, 2004), the study of social 

policy and inequality (Bonsall and Kelly, 2003), and the analysis of commuter fuel poverty 

(Lovelace and Philips, 2014). 

We explain the basic principles of spatial microsimulation below. For those wishing to build and 

apply the model, software and further literature are available (Ballas et al., 2005; Harland, 

2013; Philips et al., 2017). The general principle of spatial microsimulation is to link two types 

of data. The first type is aspatial, anonymous micro-data about individuals from a survey. An 

example of this would be the Health Survey for England
2
. Other countries conduct large panel 

surveys and release anonymised individualised data
3
 which may be suitable for applying this 

model more generally. This data is rich in attributes, but we do not know where the people live. 

The second type of data is the national census. It has fine spatial detail but has a smaller range of 

attributes than a survey, for example it does not collect data on physical activity or Body Mass 

Index (BMI). The census publishes count data such as the number of males and females living in 

a zone or the counts of people by age group. 

Some attributes are common to both the survey data and the census, such as age group and 

gender. In the literature these are called constraint or linking attributes. Age group and gender 

are highly correlated to fitness and BMI (McArdle, 2010) which are only found in the survey 

                                                   

2 http://discover.ukdataservice.ac.uk/series/?sn=2000021 

3 E.g. US PUMS:  http://www.census.gov/acs/www/data_documentation/public_use_microdata_sample/ 

GESIS: German microdata services http://www.gesis.org/en/services/data-analysis/official-microdata/  

Australian health survey: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4324.0.55.001main+features12011-12 

Spanish health survey:  http://www.msssi.gob.es/en/estadEstudios/estadisticas/solicitud.htm 
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(they are called unconstrained attributes). The common constraints and the correlations to 

unconstrained attributes allow the linking of spatial and aspatial data (Williamson, 2012). There 

are several spatial microsimulation algorithms that are able to make this linkage. Simulated 

annealing based combinatorial optimisation, it has been found, performs well particularly when 

small zones are required (Harland et al., 2012; Williamson, 2012), such as is the case for UK 

census Output Areas. 

Figure 3 shows a simple example of a spatial aggregate constraint dataset and a sample 

population table. The steps of the simulated annealing algorithm are shown. In the diagram, the 

algorithm begins by selecting individuals at random from the sample population and setting a 

temperature (number of iterations). The algorithm checks how the attribute counts fit the 

attributes in the census table by summing the counts of each attribute measured by the Total 

Absolute Error (TAE). The algorithm attempts to reduce the error by replacing an individual at 

random and does this for ‘m’ iterations. Improvements are accepted, but if there is no 

improvement then a poorer result might be accepted. This is more likely if the temperature is 

high, e.g. if there are still a lot of iterations to run. This procedure gives a better chance of 

finding an overall combination of individuals to form the synthetic population with zero TAE. In 

the simple example in Figure 3 TAE is reduced to zero, with the same number of old and young 

people as in the aggregate table. The use of multiple constraints captures the joint distribution of 

attributes found in the real population. 
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6 ESTIMATING THE IPC MEASURES AND INDICATORS 

We now estimate the IPC measures and indicators using a synthetic population, as described in 

Section 5. In this section the parameters are linked to the model stages shown in Figure 2 as 

follows: Equations 1--4 explain the derivation of pedalling power; Equation 5 deals with 

geographic factors; Equations 6 and 7 with estimating the maximum distance an individual can 

cycle each day (distance IPC); Equation 8 describes estimation of distance to activity; Equation 9 

describes estimation of journey IPC for an individual and Equation 10 describes how journey 

IPC is summarised for each zone to produce the zone journey IPC indicator (the % of the 

population of each zone with IPC to complete a specified journey by bicycle on a daily basis). 

6.1 Individual attributes and linking attributes 

Individual attributes are: Body Mass Index (BMI), height, weight, physical activity (based on 

survey reported vigorous activity), age, gender, and residential location. These individual 

attributes are simulated for every member of the population using spatial microsimulation 

techniques. The individual attributes age and gender are also linking attributes for spatial 

microsimulation (see Section 5). We appreciate that actual data availability may vary between 

locations and applications. We account for this by using a restricted group of datasets, as 

explained in Section 3. 

6.2 Derived attributes 

Figure 2 shows that from Individual attributes we calculate Derived Attributes. The derived 

attributes discussed in this section and the geographical factors discussed in the next section are 

needed to estimate distance IPC. 
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6.2.1 Fitness using the measure VO2max 

Fitness is a key determinant of the maximum distance a person can travel by bicycle. VO2max 

measured in ml of oxygen uptake / kg of body weight / minute is a commonly used measure of 

cardio-vascular fitness (McArdle, 2010). It is a measure of the maximum rate at which a person’s 

body can make use of oxygen to convert chemicals in the body into energy. In our study it was 

estimated using the regression model calibrated in the study by Wier et al. (2006). This study 

involved 2417 respondents, with a BMI ranging from severely underweight (16) to extremely 

obese (48), and with VO2max ranging from very unfit (15) to very fit (66). The final model had 

an R
2
 of 0.8. The coefficients are shown in Table 2. 

A particular advantage of the chosen study is that it is transferable to the general population, 

rather than being only applicable to a particular segment of it. In contrast the 2008 Health Survey 

for England carried out a VO2max, test with only a sub-group of respondents(Craig et al., 2009) 

and it deliberately excluded obese individuals. Other empirical studies tend only to study 

particular population segments (e.g. Hulens et al., 2003). 

6.2.2 Pedalling power 

Equations 1--4 in this section will explain how pedalling power can be estimated. Not all the 

energy used by a person on a bike can be used to turn the cranks, nor can a person work at their 

VO2max for more than a couple of minutes. Pedalling power, measured in Watts, is the portion of 

a person’s energy expenditure (per second) which contributes to applying force through the 

cranks of the bicycle. 
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When cycling, some of the energy expended is used to power the metabolic systems (metabolic 

power consumption), and some is available to move the body. Jones and Poole (2004) explain 

that this can be estimated as follows. For any individual, their total oxygen uptake depends only 

on their cardio-vascular fitness (as measured by their VO2max) and their mass, and does not 

additionally depend on other environmental factors (e.g. location). Jones and Poole estimate that 

an oxygen uptake of 10░ml/min can produce 1 Watt of output power. Therefore, we may 

suppose that the total power output Oi (in Watts) for any individual i is given by: 

2max     
 

10

i i
i

VO Mass
O


  [1] 

Some of Oi lifts the legs against gravity to the top of the pedal stroke. This is referred to as the 

Baseline Power Requirement bi in Equation 2. There are differences in the Baseline Power 

Requirement of overweight (e.g. BMI >25) and non-overweight people, who are otherwise 

physiologically similar (Lafortuna et al., 2006). As Jones and Poole, (2004) estimate that a 

healthy weight individual has a 50░W Baseline Power Requirement, a simple estimation to take 

some account of the effect of either obesity or being underweight on the Baseline Power 

Requirement for individual i in Watts is shown in Equation 2. Using Equation 2, the Baseline 

Power Requirement estimate is 96░W for the most obese individual in the sample with a BMI of 

48 and 30░W for the most underweight individual with a BMI of 15. 

       50
25

i
i i

BMI
Baseline Power Requirement b    [2] 
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A person cannot work at their maximum rate for long enough to make most transport journeys. 

Equation 3 estimates the rate at which a person can work for the duration of a journey, and yet 

not be too tired to then complete normal day to day activities such as employment and domestic 

tasks. We refer to this rate here as the upper threshold. This upper threshold li is expressed as a 

proportion of VO2max, and is related to Body Mass Index BMIi and the number of minutes of 

vigorous exercise per week qi (Bircher and Knechtle, 2004; Kim et al., 1991; Cerretelli et al., 

1975 and Farrell et al., 1993). Equation 3 shows that obese people (BMI > 30) and severely 

underweight people (BMI < 19) cannot work as close to their maximum exertion as fit healthy 

weight people (19  BMI  25) who do large volumes of vigorous exercise. Upper threshold 

estimates are based on the mean of the estimates from Jones and Poole (2004) and Pringle and 

Jones (2002). 

0.48 19    30 

0.55 25 30    75

0.55 19 25    75
 

0.6 19 30   75 180

0.6 25 30      180

0.7 19 25    180

i i

i i

i i

i

i i

i i

i i

BMI or BMI

BMI and q

BMI and q
l

BMI and q

BMI and q

BMI and q




  
   


   

   


  

 

[3] 

Equations 1 -3 estimate elements required to estimate pedalling power. In Equation 4 we can 

now estimate pedalling power Wi in Watts using total power output Oi,(Watts) the estimate of the 

upper threshold li and the Baseline Power Requirement bi (Watts). 

       i i i iW O l b    
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[4] 

6.2.3 Physiological constraint on time which individuals are capable of cycling 

If we hold antecedent conditions constant and examine IPC at a specific moment in time, the 

body’s cardio-vascular and musculo-skeletal systems determine the limit on the time that a 

person may be capable of cycling each day without risk of injury. 

A cardio-vascular physical limit on time that can be spent cycling is estimated as follows. Sport 

and exercise science literature on exercise intensity domains (e.g. Jones and Poole, 2004; Pringle 

and Jones, 2002; Whipp and Rossiter, 2005) suggests the length of time and the power output 

that a non-athlete individual is physically capable of cycling for. From this work we infer that 

this limit is one hour for an outward journey to an activity, then after this activity cycling home 

for one hour. We acknowledge that this does include simplifying assumptions: we have not 

accounted for variation in the time constraint arising from individual variation in tolerance of 

different exercise intensity domains. We have also assumed that the activity travelled to is a rest 

from cycling. We have also assumed that an individual needs to repeat trips daily. 

Individuals who are not already regular cyclists may be affected by saddle soreness, muscular 

and joint pain. Discomfort is likely to be felt within an hour by those beginning cycling. 

Christiaans and Bremner, (1998) found almost 60% of 453 Dutch volunteers experienced some 

discomfort during riding on journeys of less than one hour’s duration. One hour outward and one 

hour return travel per day would seem to be an upper limit for the general population to avoid 

injury (the majority of whom are sedentary and not regular cyclists). Mobility difficulties and 
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disability are also considered part of the physical constraint. This is accounted for in the spatial 

microsimulation process by making use the census attribute Limiting Long Term Illness. 

6.2.4 Bicycle type and characteristics 

The mass of a bicycle, the riding position (which affects aerodynamics) and the friction of tyres 

affect the speed at a given pedalling power (Wilson 2004). These factors vary between different 

types of bikes. However to the authors’ knowledge there was no detailed, openly available 

dataset describing the UK bike fleet, its characteristics and its ownership by socio-demographic 

group, and so we were not able to incorporate this information into our subsequent case study. In 

the absence of such data, previous research by Parkin (2008) used typical utility bike values 

based on Wilson (2004) which we have also used. 

6.3 Geographic factors 

The geographic factors included in the model (see Figure 2) are: gradient, slope profile, wind 

speed, and route network circuity (an estimate of the ratio of network distance to distance as the 

crow flies averaged across an area). 

6.3.1 Gradient and slope profile 

At a given pedalling power speeds are lower as gradient increases. Digital elevation datasets are 

used to estimate the mean gradient within 5░km of each zone centroid (a possible data source is 

the NASA SRTM dataset which is freely available with coverage of much of the globe). The 

method to be described below captures differences in gradient likely to be experienced by trips 

originating in different zones. We report here this simple approach to accounting for gradient, 

because this method can be used if reliable network routing data are not available for all journeys 
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(e.g. if only origin and not destination data were available or there was a need to minimise 

computing resources). 

The proportion of uphill, flat and down-hill along a given route varies based on location and is 

associated with gradient (Philips 2014). If route data is not available for all individuals then a 

simplifying assumption about the slope profile may have to be made e.g. based on the data in 

Table 3 taken from Philips, (2014). Case studies in other regions may require analysis of 

gradient. The velocity of the cyclist is calculated for each situation: going up, down and on the 

flat (using Equation 7 below). For example, a person living where the gradient is 3--4% is 

assumed to spend 47.5% of their time cycling at their uphill velocity, 5% of the time cycling at 

their flat velocity (flat is assumed to be terrain with a gradient <0.5%) and 47.5% of their time 

cycling at their downhill velocity. 

6.3.2 Wind speed 

Wind speed affects the speed of a cyclist at a given pedalling power. It is difficult to consider 

wind speed because of its complex continual variation in both magnitude and direction. We use a 

similar summary wind speed approach to that used by Parkin (2004). The wind power industry 

has developed datasets of mean annual wind speed above ground. The wind speed at 1.2░m 

above ground can be estimated. 1.2░m is a height intersecting the torso of most cyclists, which 

is the part of the body offering greatest contribution to frontal area and wind resistance. The 

friction of the ground affects the wind speed; the closer to the ground, the lower the mean wind 

speed. The rougher the ground, the more the wind is slowed. The processes at work are 

explained in detail in McIlveen (2010). To estimate the wind at 1.2░m above the ground, the 

logarithmic wind profile is used. It depends on several factors, h1.2j is the wind speed (m/s) at 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ee
ds

] 
at

 0
1:

36
 2

7 
Se

pt
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 18 

1.2░m above the ground in zone j, V10 is the known reference wind speed at 10░m, f is the 

roughness length, a parameter set depending upon the ground cover. This relationship is shown 

in Equation 5 as follows: 

1.2 10

1.2
ln 

   
10

ln 

j

f
h V

f

 
 
 
 
 
 

 

[5] 

This approach is not without issues. Firstly, it is the mean wind speed for an entire year. We 

acknowledge that wind speed will vary greatly from day to day. Though we have used this 

approach in the case study it would be possible to use the same equation to estimate IPC on a 

specific day with specific wind speed data. Secondly, due to turbulence, eddies, funnelling and 

many complex movements of air around obstacles, localised wind speeds and direction will vary. 

The prevailing wind direction could be used as a simple proxy, probability of wind direction on a 

given day could be derived from a wind rose for each location. However neither of these 

approaches account for the complex micro-effects on wind speed and direction, but they do 

introduce considerable extra complications to the modelling process. The issue of modelling the 

effect of wind on cyclists is a complex issue and we acknowledge that our approach is a simple 

first step in doing so. 

6.3.3 Route network circuity. 

Circuity is the ratio of journey network distance to Euclidean distance (the latter also known as 

the distance as the crow flies) averaged across an area. Euclidean distances from origins may be 
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more easily available than network distances. The circuity factor depends upon the case study 

area. It may be a single number average for all zones (Ballou et al., 2002; Newell, 1980) or a 

logarithmic relationship between circuity and journey distance (Levinson and El-Geneidy, 2009). 

In the case study which is UK based we use the UK estimate of 1.4 given by Ballou (2002). 

6.4 Distance IPC (Maximum distance an individual could cycle) 

Distance IPC can now be calculated using the individual and derived attributes and the 

geographic factors described above. Distance IPC for individual i resident in zone j, sij
bike

 is 

calculated in km. It is equal to the velocity of the bike in km/hr, vij
bike

, multiplied by the 

physiological constraint on time which individuals are capable of cycling in minutes tij. As a 

result: 

          bike bike

ij ij ijs v t   

[6] 

The calculation of velocity V is dealt with in Equation 7. A person’s velocity Vi can be expressed 

in terms of pedalling power (Wilson, 2004). In Equation 7, the pedalling power is iW  which was 

calculated in Equation [4], Vi is the velocity of cyclist i, mi is the mass of the bike and rider, g is 

gravity, r is the coefficient of rolling resistance of cyclists’ tyres, θ j  is the percentage slope in 

zone j, iŋ  is the mechanical efficiency of the bike, iD  is the cyclist’s aerodynamic drag 

coefficient, iA  is their frontal area and h1.2j is the wind speed at 1.2░m above ground estimated 

for zone j. In the absence of bike fleet data, the values in Table 4 can be used as a simplifying 

assumption. The values are used in (Wilson 2004 p139). These are applied to Equation 7. If a 
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slope profile assumption is assumed (as discussed in Section 6.3.1), Equation 7 is calculated for 

each of the uphill, flat and downhill portions of the journey. 

  
2

1.2

θ
    0.5

100

ji i
i i i i i i j

i

V V
W m g r D A V h

   
     

   ŋ ŋ
 

[7] 

Equation 7 (after Wilson 2004) gives an expression for pedalling power iW as a cubic function of 

velocity Vi. We wish to use the inverse relationship, namely to derive a velocity corresponding to 

a given pedalling power. In all cases we considered, we verified that there was a single positive 

real root to this cubic equation within a viable range for cycling speeds (i.e. under 40░km/h). 

This root was analytically calculated using the method originally described in Cardano (1545). 

6.5 Distance to activity 

Distance to activity is the distance from the individual’s residential location to the activity of 

interest. The current distance to the activity for an individual derived from secondary data 

sources is measured as a Euclidean distance between origin and destination points. The model 

requires this distance to be converted to a network distance. To account for circuity (as defined 

above), the Euclidean journey distance for person i in zone j, Xij is multiplied by the circuity 

factor z. The distance to activity, Cij, accounting for circuity, can be expressed as follows: 

     ij ijC X z   

[8] 
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6.6 Journey IPC (capability of an individual to complete a journey by bicycle) 

Journey IPC is estimated by comparing distance IPC calculated in Equation 6 and distance to 

activity estimated in Equation 8. For an individual i who lives in zone j their journey IPC Kij is 1 

if their distance IPC sij
bike

 .is greater than or equal to the distance to the activity Cij. The 

relationship can be shown as follows: 

1
         

0

bike

ij ij

ij bike

ij ij

s C
K

s C


 


 

[9] 

The indicator zone journey IPC (%Kj) is derived as a summary of the percentage of individuals 

with journey IPC; it is still a measure of individual variation and is calculated in Equation 10 as 

follows. The sum of those individuals with journey IPC equal to 1 is divided by the relevant 

population of zone j (e.g. the relevant population would be employed individuals if commuting 

were being examined, or children and carers if journeys to school were being examined) and 

converted to a percentage. 

%     100
         

ij

j

K
K

relevant population of zone j
 


 

[10] 
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7 CASE STUDY 

This section proceeds as follows, first we introduce the case study area. We then describe the 

specification of the test indicator and data used, before giving the results. Following this, we 

specify the sensitivity tests carried out before describing the results (including comparisons with 

the zone journey IPC indicator). 

7.1 Description of case study area 

The case study of Leeds is included to test the practicalities of implementing the modelling 

process explained in Sections 4, 5 and 6. Leeds is a city in Northern England with a population 

of 751,500 (ONS 2015). It is a useful case study because it is contained within a single local 

authority area and it is of sufficient size as to have significant social and demographic variation. 

It also has varied topography and it is not dissimilar to the other major cities in the region, 

Manchester and Sheffield. 

7.2 Specification of case study and data used 

The construction of the IPC measures and indicators in the case study area required a large 

number of data sources. The data sources used to construct the case study are shown in the 

dashed boxes in Figure 2. The requirement in Section 3 to construct the model using data sources 

available to local practitioners without expensive fieldwork means we rely on secondary data 

sources and parameter values derived from the literature. The Health Survey for England and the 

UK census achieve a level of transferability of data to the study area. In the spatial 

microsimulation, candidate constraint variables associated with BMI and physical activity 

were identified in the literature (Craig et al., 2009; IPSOS MORI, 2007; McArdle, 2010; NOO, 
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2010). We examined these relationships in the 2008 HSE data. Age has a correlation of 0.25 

and -0.3 with BMI and physical activity respectively. Analysis of variance (ANOVA) tests of 

BMI with the categorical variables economic activity and limiting long term illness were 

significant at the 0.05 level. ANOVA tests of physical activity with economic activity, 

limiting long term illness, socio-economic status and education were also significant at the 

0.05 level. 

In terms of circuity we use the UK estimate of 1.4 given by Ballou (2002). We use the 

parameters describing bike and rider characteristics based on Wilson (2004) because they have 

been adopted and transferred to other UK studies (e.g. Parkin, 2004; Parkin and Rotheram, 

2010). Our case study illustrates distance IPC and journey IPC for one example destination. 

Potential further applications are discussed in Section 8. 

7.3 Results of test indicators. 

In Step 1 we estimate distance IPC for each individual and derive the indicator zone distance 

IPC. The mean zone distance IPC is 4.57░km with a standard deviation of 0.48░km. Zone 

distance IPC is generally higher in the flatter east of the city than the hillier west. The spatial 

distribution is shown in Figure 4. 

The mean of the zone journey IPC indicator is 57% (the percentage of individuals in a given OA 

capable of completing, on a daily basis, a specific journey by bicycle, in this case study Leeds 

city centre). The results of zone journey IPC are summarised in the first row of Table 5. The 

range in zone journey IPC between Output Areas was 100%. The standard deviation was 30%. 

The spatial variation in zone journey IPC values is shown in the map in Figure 5. 
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Zone journey IPC is generally highest at the centre (81-100%) and lower towards the edge of the 

city but it is not an even concentric pattern because of the interaction of the factors considered in 

the model. There are a small number of Output Areas relatively close to the city centre which are 

not in the highest category, as attributes of individuals in those Output Areas are affecting the 

indicator value. Note that the pattern of zone distance IPC and zone journey IPC differ 

considerably because the former is a component influencing the latter. 

7.4 Specification of testing sensitivity to modelling assumptions on 5 variables and 

comparison of the zone journey IPC test indicator with 3 alternative measures 

It was possible to quantify some aspects of the zone journey IPC indicator’s sensitivity to the 

modelling assumptions. We carried out the following tests: Altering VO2max for all individuals 

by 4.9 (this is 1 SEE in the regression model estimate of VO2max described in Section 6.2.1), 

randomly allocating errors in VO2max according to a normal distribution. Assuming no wind 

as opposed to the annual mean estimate used in the test indicator. Altering the time people 

are physiologically capable of cycling for by 10% to 66 minutes. Altering the coefficient of 

rolling resistance value from the utility bike value shown in Table 3 to 0.003 which is a 

typical value for a road racing bike (Wilson, 2004). We increased circuity by 0,2 and 

decreased it by the same amount. We also tested the sensitivity to simultaneous positive 

errors in VO2max, Crr, time people are physiologically capable of cycling for, wind, and 

circuity. 

We also compared the zone journey IPC test indicator to three alternative measures. The first 

alternative measure assumes all individuals are average, in that they have the mean weight and 
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pedalling power of the micro-data sample. We wished to compare our model of zone journey 

IPC to a model only considering an average person to consider the effect of modelling individual 

variation. The second alternative measure assumes all individuals can travel 8░km, because 

Parkin, (2004) notes that it is commonly assumed that journeys up to 8░km are cycleable. 

The third alternative measure assumes all cyclists can travel at 16░km/hr. The UK 

Department for Transport accessibility statistics assume that cyclists generally move at 

16░km/hr (Department for Transport, 2012). 

7.5 Results from sensitivity tests (including comparisons with the zone journey 

IPC indicator) 

The results of the zone journey IPC indicator’s sensitivity to the modelling assumptions are 

summarised for the 2439 Output Areas (OAs) in Leeds in Table 5. Simulating a systematic one 

SEE error in the estimation of VO2max has the largest effect of the tested variables (12%). We 

also note that in the simultaneous positive errors test, errors are smaller than the sum of each 

individual error. 

Table 5 gives an overall summary but importantly there was spatial variation in sensitivity and 

these variations are shown in Figure 6. Zone journey IPC under sensitivity to a single variable is 

shown in Figures 6b-h. Reducing VO2max sees a contraction of the area of highest zone journey 

IPC and an expansion of the area of lowest zone journey IPC as would be expected. Increasing 

VO2max produced the opposite effect. Changing rolling resistance appears to have a slightly 

greater effect in the east where it is flatter, than the hillier north-west. 
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Zone journey IPC under simultaneous positive errors in VO2max, Crr, the time people are 

physiologically capable of cycling for, wind, and circuity is shown in Figure 6i. The absolute 

difference between the indicator and simultaneous positive errors is shown in Figure 6j. The 

smallest sensitivity occurs closer to the city centre and around parts of two satellite towns, 

Wetherby and Otley, in the north-east and north-west corners respectively. The largest 

sensitivities are found closer to the edge of the city and are particularly concentrated in the east. 

This area is flatter, so an increase in pedal power coming from increased VO2max, or a reduction 

in rolling resistance or wind will deliver the greatest increase in potential travel distance. 

Figures 7░a, c and e show the results of the three alternative methods specified in Section 7.4. If 

all individuals were assumed to be average in terms of having the mean weight and pedalling 

power of individuals in the sample population, this results in a mean decrease in zone journey 

IPC of 5%. If we make the simplifying assumption that all individuals are capable of cycling 

8░km (5 miles) the mean difference in zone journey IPC is 17%. If we make the simplifying 

assumption that all individuals are capable of cycling at 16░km/hr and assume the same 

physiological constraint on travel time of 1 hour, mean zone journey IPC would be 39% higher 

(see Table 6). 

Figures 7░a and c clearly show a concentric ring and Figure 6e shows that in almost all Output 

Areas 100% of people could cycle to the city centre. Our indicator of zone journey IPC in Figure 

5 shows the pattern of journey IPC is not an exact concentric ring; it is influenced by the range of 

factors considered in the model. Figures 7b, d and f show where the difference between our 

indicator of zone journey IPC and the comparison is greater than the sensitivity for that OA. 
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Figure 7░g shows Output Areas where the difference between our zone journey IPC indicator 

and all three alternative methods is greater than our estimated sensitivity for that OA. Where our 

estimate is considerably different to these alternative estimates, it suggests that the more 

individualised procedures are warranted even with our self-imposed restriction of data 

availability (see Section 2). The conceptual problems of aggregating individual attributes and 

using an average person or assuming all individuals can travel a particular distance were 

outlined in Section 3. 

The maps in Figures 4--7 have policy value because they illustrate measures and indicators of 

IPC for small areas, and provide policy makers with an understanding of the sensitivity of results 

in particular OAs. Figure 5 represents the zone journey IPC indicator with no policy intervention, 

but our model contributes to a process which could also be used to assess the effects of policy 

interventions. If policy interventions were to impact on key variables, e.g. supposing a health 

intervention had an effect on the VO2max of a particular population segment, Table 7 gives an 

indication of the effect that this could have on zone journey IPC amongst different population 

segments. The microsimulation approach also means it is possible to examine the factors 

that have an effect on IPC in a particular area. This would contribute to more targeted 

policy intervention. 

We could simulate the effect of a policy by altering the appropriate individual attributes and 

recalculating the indicator. For example in Figure 7░h we simulated improvements in BMI 

which might occur in a hypothetical health intervention, e.g. decrease the BMI of people aged 

50--59 by 10%, which affects VO2max which then affects the indicators. Note this is a 
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hypothetical intervention, it is beyond the scope of this paper to forecast the effect of specific 

interventions on BMI. Figure 7░h shows the 498 out of 2439░OAs where the impact of the 

hypothetical policy is greater than the estimate of sensitivity to model assumptions. This method 

would allow policy makers to identify areas most likely to be affected by real policy 

interventions whilst also accounting for model sensitivity. 

8 Potential applications 

The indicators of distance and journey IPC have potential for application in the field of 

sustainable transportation. These include: estimating walking and cycling targets; estimation of 

the service area of public transport stops; integration into an accessibility measure which, by 

considering capability more effectively can be applied to gain greater insights into the health and 

social constraints on mobility and participation in activities; estimating active mode service areas 

for public transport nodes; understanding transport based social exclusion and short term 

disruptions to fuel supply. The model could also be used to control for physical capability in 

studies of the influence of (perceived) safety as constraints to the spatial limits of cycling travel. 

There is potential to implement these indicators as part of a what-if policy model related to 

sustainable transport futures. For example Philips et al., 2013 provide a conceptual model of 

resilience to permanent reduction in fuel supply which provides a context which is described in 

terms of antecedent conditions and a policy event which would be compatible with the modelling 

framework shown in Figure 1, though there would be additional issues in modelling the fuel 

restriction event (e.g. sudden change in travel need). Policies and visions for cycling futures 

based on capability have potential to feedback more radical options for change (Wang 2015; 
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Philips et al., 2013; Banister and Hickman, 2013; Diamond, 2006; Goodwin and Dender, 

2013; Tight et al., 2011; Timms et al., 2014; Urry, 2010), driven by the literature on 

environmental limits on resource use (e.g. Berners-Lee and Clark, 2013; McGlade and Ekins, 

2015; Rockstrom et al., 2009). 

Also of considerable interest would be the application of the model to consider capability to 

make multi-leg trips. Distance IPC could be used as a simple measure in this regard, but the 

model could be refined to make it appropriate for this specific application as follows. We have 

described above a data constrained implementation of the model without routing data and for 

single trips. However there are many opportunities to gather full day activity / travel diaries. If 

this information were available it could be used to produce estimates of total daily travel need 

and activity locations (possibly using big data). Routing could be done for small samples with 

the Google-maps API, but for large numbers of routes other APIs such as Routino 

(https://www.routino.org/uk/) may be more suited (e.g. Bearman and Singleton, 2014). The 

energy required to complete a specific route or daily set of routes by an individual could be 

estimated. The IPC measures could be refined to consider whether an individual’s maximum 

cumulative energy expenditure (MCEE) is sufficient to fulfil their daily activity requirement. 

This would build on the Active Mode Accessibility (AMA) work of Rendall et al., (2011) or be 

applied in a large scale agent based travel simulation such as MATSIM 

(http://www.matsim.org). 

Below we briefly outline the process which would be required to consider multi-leg trips using 

route data and estimating MCEE. It is beyond the scope of this paper to develop it fully, but we 
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highlight it as an area for further work. We could define maximum cumulative energy 

expenditure MCEE for individual i in zone j, in relation to their pedalling power Wij and 

physiological time constraint tij as follows: 

     ij ij ijMCEE W t   

[11] 

The simple pseudo code below could then be used to estimate whether a person has capability to 

complete their daily travel activity by bicycle: 

Set remaining energy = MECCij 

Do while k < = total number of legs 

Remaining energy = remaining energy – energy expenditure legk 

If remaining energy is > = 0 

Print ‘leg k is possible’ 

Otherwise 

Print ‘leg k is not possible’ 

k = k+1 

End while loop 
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9 SUMMARY AND CONCLUSIONS 

This paper proposed a generic methodology that could be applied to any area to estimate an 

individual’s capability to travel by bicycle. The model of IPC links the complimentary fields of 

human physiology and active transportation analysis. It considers physical capabilities, 

individual variation (including cyclists and non-cyclists) and is spatially fine grained. First 

we generated a synthetic population using spatial microsimulation. We then demonstrated 

the estimation of the maximum distance an individual could cycle on a daily basis (distance IPC) 

and the capability of an individual to complete a specific journey (journey IPC). The case study 

illustrates the implementation of the model using a range of secondary data sets available 

to practitioners. 

We concentrated on constructing indicators which could be produced with secondary data 

(mindful that few have the resources to conduct large health and active travel surveys) 

taking a simple approach to representing attributes such as network circuity and gradient 

(again, mindful that data for more nuanced estimates may not always be available). This is 

a generic methodology that could be applied to any area, but which could be tailored to the data 

availability for that area, and almost certainly would need to borrow/transfer values from other 

studies for some factors (as is conventional in most transportation analyses). 

Our case study is intended to be illustrative of our general method. Our sensitivity testing aims to 

position this work relative to other approaches. We do not claim to have fully calibrated this 

model, though sensitivity tests suggest that the individualised modelling procedures are 

not unwarranted because the differences between the zone journey IPC estimate and the 
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commonly used assumptions such as that journeys up to 8░km are cycleable (Parkin, 

2004) are greater than the sensitivity to systematic 1SEE errors in VO2max or a 10% error 

in the time people are capable of cycling or variation if wind speed is not considered at all. 

9.1 Implications for Leeds 

Whilst the focus of the paper is methodological, the results provide policy relevant implications 

for Leeds, though we caveat these with the simplifying assumptions and limitations of calibration 

that we describe elsewhere in the paper. 

The result in Figure 4 illustrates the spatial variation in zone distance IPC. Figure 5 shows the 

considerable variation in zone journey IPC at OA level because of the interaction of health and 

topography. Not only this, the data underlying these maps are at the individual level, so estimates 

can be made of the number of individuals, from different population sub-groups, capable of 

travelling a particular distance or making a particular journey. 

These outputs could aid the long term planning of cycling interventions and sustainable transport 

planning more generally in cities. The approach described in this paper can provide more 

detailed measures of accessibility by cycling because it accounts for variation in IPC across the 

population. This is novel. UK local authorities generally use the Journey Time Statistics 

accessibility measures produced by the UK Department for Transport. These measures focus on 

what Geurs and van Wee, 2004 term an infrastructure perspective rather than a people 

perspective. The method presented in this paper could be used to augment the current JTS 

methodology and provide more detailed accessibility measures to local planning authorities. 
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Improved accessibility measures have implications for local transport planners because they aid 

the development of better spatially targeted health, social inclusion and sustainable transport 

policies. For example: understanding where IPC is a greater or lesser constraint on cycling can 

increase the likelihood that selected interventions applied to specific areas are successful. The 

indicator could be developed to inform cycle interventions and cycle mode share targets by 

providing a measure of the saturation level that Parkin(2004) described as important. 

Locally targeted interventions could account for the most specific constraints such as health and 

circuity. A visual comparison of Figure 6(a) and Figure 6(g) shows that a reduction in circuity 

has an influence on capability. This has implications for the routing of cycle infrastructure in the 

case study city and in turn accessibility. The hypothetical health policy summarised in Table 6 

implies that were a policy targeted at a specific group of individuals successful, it could have a 

considerable effect on IPC. Figure 6(c) and 6(c) also suggests where interventions improve 

fitness (e.g. result in increased VO2max) would improve distance and journey IPC. The 

implication is that for some in these affected zones, an intervention would be needed to help 

people gain the capability to make the cycling journeys that provide the combined transport and 

health benefits of cycling. Though further calibration would be needed it shows that the method 

presented could be used to identify groups in specific locations which could make planning 

targeted health and sustainable transport interventions more effective. 

9.2 Further calibration 

To calibrate the model, further primary data collection may be required. Further studies of 

the rate of exertion and power output of non-regular cyclists would allow refinement of the 
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pedalling power calculation and the physiological constraint on time available for cycling 

amongst different subsections of the population. We acknowledge that using the Dutch study 

of cyclist discomfort (Keytel and Noakes, 2002) may have some limitations, but again there is no 

comparable study on UK participants. This would be an area for future research which would 

contribute to refinement of the model. Primary data may also be usefully gathered on the 

state of the bike fleet that are in the shed. For example, data improvements could be made 

by assessing the level of maintenance and mechanical efficiency of cycles, the type of 

bicycle (which affects the aerodynamics of the rider) and the type of tyres used which 

affects rolling resistance. 

Further work combining route estimation and day to day variation in wind speeds and 

direction would be complex, but if required for a specific application may give a more 

detailed picture of the day to day variation in capability to travel by bicycle. Additionally, 

for applications where detailed origin and destination data are available, network 

modelling of journeys by every individual from every Output Area to every activity may 

help reduce the sensitivity associated with circuity. A further simplifying assumption about 

the network in the model presented in the case study is that cyclists do not have to stop at 

junctions to wait for motor vehicles to pass. However, useful further work may include 

estimation of the effect of starts and stops on rider exertion which could be calculated based on 

the work of Parkin and Rotheram (2010). 
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9.3 Expanding the model 

The model could be expanded to include social factors which influence the time available 

for travel such as household constraints. Bicycle availability could also be considered. The 

model may also be expanded to consider walking trips and give an overall IPC to travel by 

active modes (e.g. Philips, 2014). A further limitation comes from the ability of 

combinatorial optimisation based spatial microsimulation to provide all the necessary 

individual attributes shown in Figure 2. It is appreciated that in some future study areas 

not all attributes may be available in a single representative survey. A more flexible method 

of spatial microsimulation may be required. This would have to retain the ability to 

simulate populations accurately for small zones but also allow inclusion of attributes from 

more than one source (Philips et al., 2017). 

This modelling process may be of considerable interest to policy makers and those 

lobbying for more sustainable transport systems as there are a range of potential 

applications (See section 8). The model is constructed to allow simulation of the effects of 

policies on IPC which could be developed beyond the illustration given in the case study. 

We have both presented a means of estimating IPC to make journeys by cycling for whole 

populations as well as highlighting challenges and opportunities for further work. A 

number of simplifying assumptions have been made in estimating IPC, but, having made the 

calculations and presented them clearly, this allows for other researchers to make different 

assumptions and to understand the impacts of those choices which will aid the development of 

the model for specific applications.  
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Table 1. Individual measures and corresponding zonal summary indicators used to 

express IPC. 
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Table 2. Regression estimate of VO2max (Source: Wier et al., 2006) 
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Table 3. Proportion of near flat route length in cells with different mean road 

gradient used to estimate slope profile (slope in %). 
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Table 4. Constants used in the calculation of bicycle velocity 
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Table 5. Summary of zone journey IPC indicator’s sensitivity to the modelling 

assumptions across 2439 Output Areas in Leeds 
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Table 6. Summary of comparison tests and hypothetical policy simulation across 2439 

Output Areas in Leeds 
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Table 7. Variation in zone journey IPC with key parameters. 
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Figure 1. A simplified representation of how the estimation of IPC at a particular point 

in time is related to and distinct from antecedent conditions and conditions after the 

estimation of IPC 
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Figure 2. Model outline to estimate IPC metrics and indicators for a synthetic 

population of individuals. Data sources used in the case study in Section 7 are shown 

in the boxes with dashed outlines. 
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Figure 3. The basis of simulated annealing combinatorial optimisation based spatial 

microsimulation (after Harland 2013). 
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Figure 4. Distance IPC is the mean maximum distance that all individuals in an 

Output Area are capable of travelling by bicycle on a daily basis given their home 

location (this is the result following Step 1 in Figure 2). 
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Figure 5. Zone journey IPC is the percentage of individuals in a given zone capable of 

completing a specific journey by bicycle on a daily basis (the result following Step 2 

in Figure 2) 
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Figure 6. Spatial variation in zone journey IPC value (a) as variables are manipulated 

in sensitivity tests (b) – (i) and spatial pattern of difference between zone journey 

IPC and simultaneous errors (j) 
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Figure 7. Spatial variation when comparing zone journey IPC with alternative models 
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