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Abstract

This paper presents the new algorithm of PP-PFC (Pole-placement Predictive

Functional Control) for stable, linear under-damped higher-order processes. It

is shown that while conventional PFC aims to get first-order exponential behav-

ior, this is not always straightforward with significant under-damped modes and

hence a pole-placement PFC algorithm is proposed which can be tuned more

precisely to achieve the desired dynamics, but exploits complex number algebra

and linear combinations in order to deliver guarantees of stability and perfor-

mance. Nevertheless, practical implementation is easier by avoiding complex

number algebra and hence a modified formulation of the PP-PFC algorithm

is also presented which utilises just real numbers while retaining the key at-

tributes of simple algebra, coding and tuning. The potential advantages are

demonstrated with numerical examples and real-time control of a laboratory

plant.

Keywords: predictive functional control, pole-placement, under-damped

system, real number algebra
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1. Introduction

PFC (Predictive Functional Control) [1] is probably the most successful in-

dustrial implementation of model predictive control (MPC) based on the num-

bers and breadth of applications. The main reason for this is relatively simple

in that the coding requirements are similar to that for PID and thus the PFC5

strategy is a competitor with PID rather than more expensive plant wide or sys-

tem wide approaches. Moreover, it has some advantages over PID in that the

tuning mechanism is intuitive being based mainly on a desired time constant

(equivalently settling time or convergence rate) and also it embeds a reason-

able level of systematic constraint handling using relatively low computational10

complexity.

Nevertheless, the main weakness of conventional PFC is the same as its

strength, that is the relative simplicity [2, 3]. Although execution and coding

are straightforward for systems with over-damped or simple dynamics, a dif-

ferent picture emerges with systems with less desirable open-loop dynamics [4].15

Consequently, although a conventional PFC [1] can work with systems of inte-

grators, open-loop unstable processes and non-minimum-phase characteristics,

often the tuning is difficult and the implementation less simple and intuitive.

Thus one purpose here is to develop a modified PFC approach which retains

the core attributes of simplicity but more specifically, retains intuitive insight20

during the design which means the approach is simple for technicians to deploy.

Predictive control algorithm can be calculated by properly planning the ma-

nipulated signal sequence via minimizing a cost function. The idea of pole place-

ment design for predictive control is not new. Pole-placement state-feedback

design for optimizing continuous-time predictive control was applied in [5] and25

extended this algorithm for the constrained case in [6]. GPC (Generalized Pre-

dictive control) [7] has two degrees of freedom and allows a design based on

pole-placement, see [8] and [9]. Investigations of the stability of PFC for first-

order process models [10] were followed by a pole-placement PFC controller

recommended for higher-order, over-damped processes in [11].30
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This paper has a focus on systems with significant under-damped dynamics

in the open-loop and first considers the efficacy of a routine PFC implementa-

tion. It is demonstrated via a number of examples, that the efficacy is variable

which motivates the need for an improved algorithm. Earlier literature has dis-

cussed the possibility of shaping the input predictions [4], but although often35

effective, that approach has the disadvantage of requiring some moderately dif-

ficult algebra/coding and there is still a need to fully understand the robustness

to uncertainty of such approaches. This paper takes an alternative approach

which is to explore and develop a recently proposed alternative the PP-PFC

(Pole-Placement PFC) [11]. The main contribution here is to consider the ex-40

tent to which this approach is suitable for handling under-damped systems.

Moreover, as will be seen, a secondary benefit is additional flexibility in the

choice of target poles to include mild under-damping; such an option is not

available to conventional PFC.

A simplistic implementation of the proposed PP-PFC algorithm for under-45

damped systems is shown to rely on complex number algebra and this has

some possible negative consequences. Firstly, the computational effort is slightly

greater, although that could be considered trivial in practice. Secondly how-

ever, the requirement for complex number algebra in itself could be a problem

as many low level process control units (where PFC would be applied alongside50

competitor approaches such as PID) do not support complex number algebra.

In view of these observations, a second contribution of this paper is to propose

algorithms which circumvent the complex number algebra in a relatively simple

fashion, thus allowing straightforward coding, maintenance and tuning.

Section 2 will give a basic background on conventional PFC and demonstrate55

the potential difficulties when applying this to under-damped systems. Section

3 will introduce the pole-placement PFC approach for systems with real poles

followed by section 4 which will discuss how this approach is extended to cope

with complex poles, that is under-damped systems. Section 5 will then develop

an alternative formulation of PP-PFC which uses just real number algebra.60

Section 6 gives numerical examples and also some simulations on hardware.
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2. Background of PFC

This section gives a brief review of a basic PFC algorithm and demonstrates

a normal tuning procedure.

2.1. PFC Concepts65

The basic principle underlying PFC approaches is that the desired output

dynamic is close to that of a first-order response with a specified pole λ. The

hope is that if one, recursively at each sample, ensures the prediction of the

system behavior is close to the desired dynamic, then the closed-loop behavior

is likely to be close to that dynamic. Hence, for a desired steady-state set value70

of r, a typical target trajectory r∗, expressed in discrete time, takes the form1:

r∗(k) =
(1− λ)z−1

1− λz−1
r(k). (1)

In the interest of simple computation, PFC differs from more standard MPC

approaches in that it uses the prediction at just a single point, the so called

coincidence horizon, here denoted by a ny step ahead prediction. The control

law is defined by forcing the system prediction to match the target dynamic of75

r∗(k) at a point ny steps ahead, as illustrated in Fig. 1.

In practice, the system output yp(k) is not beginning from zero, so the target

trajectory is one which follows a first-order dynamic from the current point yp(k)

to the correct steady-state, that is:

r∗(k + i) = r(k)− λi[r(k)− yp(k)], i ≥ 1. (2)

PFC is defined by forcing coincidence ny steps ahead and thus the control80

law is defined from the equality:

yp(k + ny) = r(k)− λny [r(k)− yp(k)]. (3)

1In the following the case of a stepwise change in the reference signal is assumed. The

same algorithm works for stepwise change in the output additive disturbance, as well.
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Mismatch between process output yp and model output ym is assumed

constant during the prediction horizon and hence offset-free tracking can be

achieved with a minor modification to take account of this bias. The system

prediction is given by the model prediction plus an estimated disturbance d(k)85

(variants of this exist but are not central to the current paper):

yp(k + ny) = ym(k + ny) + d(k), d(k) = yp(k)− ym(k). (4)

Simplification 1. The ny steps ahead prediction yp(k + ny) depends upon the

future choices of control actions. As PFC is premised on being as simple as

possible, a typical assumption is that the future inputs remain constant, that

is (u(k + i) = u(k), i ≥ 1) . This has the advantage that only one decision90

variable is needed so the desired selection to satisfy (3) is straightforward to code

(this also applicable with non-linear processes).

Simplification 2. In order to maintain simple coding, PFC overcomes the

complexity of prediction algebra by using partial fractions to express the nth-

order model Gm(z) as a sum of first-order models [1, 2, 12] and hence:

ym(k) = Gm(z)u(k),

Gm(z) =

n∑

i=1

Gi(z),







⇒ ym(k) =

n∑

i=1

Gi(z)u(k) =

n∑

i=1

biz
−1

1 + aiz−1
u(k). (5)

The effective structure of the model is illustrated in Fig. 2 where Gp repre-

sents the real (unknown) process and Gi denote the partial fraction expansion of

the assumed model Gm(z). In practice this means that the independent model95

deployed in PFC code comprises a number of first-order independent models

running in parallel; clearly the coding and computation requirement for each is

trivial.

The advantage of this parallel formation is that ny steps ahead predictions

can be defined explicitly and without the need for costly or cumbersome predic-100

tion algebra [13]. To be precise, the predictions for the model can be expressed

as the sum of the predictions of a number of first-order models with component
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outputs y
(i)
m , that is:

ym(k + ny) =

n∑

i=1

[

bi
1− (−ai)

ny

1 + ai
u(k) + (−ai)

nyy(i)m (k)

]

. (6)

Algorithm 1. (PFC) A simple PFC control law can now be constructed by

using (3) and prediction (6) in (4). Hence, solve the following for u(k):

(1− λny )[r(k)− yp(k)] =

n∑

i=1

[

1− (−ai)
ny

]
[

bi
1 + ai

u(k)− y(i)m (k)

]

. (7)

Rearrange to determine the input as:

u(k) =
(1− λny )[r(k)− yp(k)] +

∑n

i=1

[

1− (−ai)
ny

]

y
(i)
m (k)

∑n

i=1 bi
1−(−ai)

ny

1+ai

. (8)

The terms in this law are simple to compute.

Remark 1. This paper does not discuss issues such as ramp targets, system105

delays and constraints in order to avoid unnecessarily complicated presentation

which would distract from the core concepts and contributions presented here.

The proposals of this paper carry over to such scenarios in a straightforward

fashion. The required modifications are well known in the literature and in fact

imply relatively minor changes to the algebra and coding.110

2.2. Efficacy of PFC tuning parameters when applied to under-damped systems

This section considers what might be a weakness of PFC which is the under-

lying motivation for the paper. That is, the main tuning parameter, namely the

desired convergence rate λ, is often ineffective and not a good representation of

the closed-loop dynamic that results. Clearly this undermines one core selling115

point and thus should be improved.

Some simple guidance exists for tuning PFC [1, 2, 3] but in practice, these

methods are underpinned by the requirement to do a form of global search over

potential parameters. For a straightforward system and constant targets there

are two tuning parameters: (i) the coincidence horizon ny and (ii) the target120

closed-loop pole λ. The user can use trial and error over expected reasonable
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values and choose the pairing that gives them closest to the desired performance.

The readers can do this themselves and will find that for many systems the

process works well, which is not surprising given the wide spread commercial

success of PFC. Specifically, the design procedure is most effective when the125

process is first-order or heavily damped. However, for other processes, the

procedure can be less effective [3, 11].

• Figure 3 shows the possible pole positions for different pairings of tuning

parameters on an over-damped system P1 = (−z−1+4z−2)/(1−1.4z−1+

0.45z−2). It is clear that good pairings exist in that the closed-loop dy-130

namics can be close to the target dynamic and thus a simple PFC design

procedure can be effective.

• Figure 4 shows the possible closed-loop poles with different pairings of

tuning parameters for a specific under-damped system P2 = (0.4z−1 +

0.08z−2)/(1 − 1.6z−1 + 0.8z−2). (This process is equivalent to example135

M , given in (38.) This case is less clear but because while the link between

target dynamic and desired dynamic may be achieved for small ny, tuning

is more difficult because the responses are quite sensitive to the choice of

coincidence horizon. This inconsistency of result for different ny could be

worrying.140

• Figure 5 shows a different under-damped and non-minimum-phase exam-

ple N (given in (39)). In this case it is not easily possible to find a good

pairing of parameters. Worse still, it is clear the system is closed-loop un-

stable for nearly all reasonable choices and thus in this case, PFC would

be a potentially unsafe approach.145

3. Pole-placement PFC

The previous section has demonstrated that the nominal PFC algorithm of

(8) may be ineffective for systems with difficult dynamics and more specifically,

that the role of the tuning parameter λ can be weak [3]. In view of this, some
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recent work [11] considered a minor modification with the aim of making the150

tuning more effective and thus having real physical meaning to potential users

so that they can use it intuitively, as was also intended.

This section will give a quick review of the proposed modification, the so

called PP-PFC approach.

3.1. PFC with a first-order model155

PFC has been particularly effective in industry partially because many real

systems have dynamics which are close to first-order and it is easy to show [3]

that for a first-order system, the PFC tuning parameters work perfectly, as long

as one uses a coincidence horizon of one. In other words, the target pole λ

becomes the closed-loop pole exactly in the nominal case ym = yp = y.160

• For a first-order model with ny = 1, the control law (8) is given as follows:

y(k + 1) = b1u(k)− a1y(k),

y(k + 1) = (1− λ)r(k) + λy(k),






⇒ u(k) =

(1− λ)r(k) + (a1 + λ)y(k)

b1
.

(9)

• Rearranging and substituting the corresponding control action back into

the system dynamics gives:

y(k + 1) = b1
(1− λ)r(k) + (a1 + λ)y(k)

b1
− a1y(k) = (1− λ)r(k) + λy(k).

(10)

From which it is clear that the closed-loop behavior is represented by a

first-order model with unity gain (no steady-state offset) and the desired pole

λ.165

3.2. Pole-placement PFC

The main motivation for PP-PFC algorithm is to exploit the efficacy of PFC

for first-order systems in order to propose an equally simple process that will
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work on higher-order systems as it is known (section 2.2) that tuning for higher

order systems [3] is not nearly so straightforward or effective in general.170

The key concept within the proposal is to treat each submodel Gi shown

in Fig. 2 as if it had an independent input and then deploy a nominal PFC

algorithm to compute what that input should be in order to achieve some spec-

ified dynamic, say pole ρ1. The next core concept is to exploit linearity and

linear combinations. The algorithm takes a linear combination of all the pro-175

posed inputs to determine the desired input to the real system. By utilizing a

sensible constraint (that the partial contributions of each individual inputs sum

to unity), it is easy to show that the desired dynamic is then achieved in the

nominal case d(k) = yp(k)− ym(k) = 0.

Algorithm 2. (PP-PFC): The PP-PFC algorithm for achieving a target closed-180

loop pole comprises the following steps.

1. Define targets for each individual sub-model Gi based on the model steady-

state gains of output y
(i)
m (5) using the formulae:

r(i)(k) =
γi

∑n

j=1 γj
r(k); γi =

bi
1 + ai

. (11)

2. Identify proposed inputs for each sub-model (i = 1, ..., n) using the control

law (9):

u(i)(k) =
(1− ρ1)[r

(i)(k)− d(i)(k)] + (ai + ρ1)y
(i)
m (k)

bi
; d(i)(k) =

γid(k)
∑n

j=1 γj
.

(12)

3. Form a linear combination of these inputs to determine the process input

as:

u(k) =

n∑

i=1

βiu
(i)(k);

n∑

i=1

βi = 1. (13)

Next we demonstrate that the desired pole ρ1 is achieved before discussing

how the remaining freedom in βi might be used.
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Lemma 1. The control law of (12), (13) ensures that the target pole ρ1 becomes185

a closed-loop pole in the nominal case (thus d(k) = 0).

Proof: The control law (13) is presented by using z−1 as the shifting time

operator, z−1x(k) = x(k − 1), and using (5), (11) and (12):

u(k) =

n∑

i=1

βi

(1− ρ1)r
(i)(k) + (ai + ρ1)y

(i)
m (k)

bi

= Kcr(k) +
n∑

i=1

βi

(ρ1 + ai)

bi

biz
−1

1 + aiz−1
u(k);

where, Kc = (1− ρ1)
i=1∑

n

βiγi
bi
∑n

j=1 γj
.

(14)

Rearranging this it is clear the characteristic polynomial of the closed-loop poles

pc(z) has ρ1 as a root:

{pc(z) = 0} ≡

{

1−

n∑

i=1

βi

(ρ1 + ai)z
−1

1 + aiz−1
= 0

}

pc(ρ1) = 1−

n∑

i=1

βi

ρ1 + ai
ρ1 + ai

= 1−

n∑

i=1

βi = 0.

� (15)

It is important that a sensible choice is made for the values of βi as, while any

choice satisfying (13) will give the desired closed-loop pole, the choice made also

has an impact on the other closed-loop poles. Indeed, the remaining flexibility

in the values of βi can be used to assign the other closed-loop poles at values

ρi, i = 2, ..., n using a partial fraction by the following definitions [11].

βj =

∏n

i=2(aj + ρi)
∏n

i=1;i 6=j(aj − ai)
, ∀j = 1, 2, ..., n. (16)

Theorem 1. Using the choice of βi in (16) results in all the poles ρi, i = 2, ..., n

becoming closed-loop poles.

Proof: The overall implied control law is given as:

u(k) =

n∑

i=1

βiu
(i)(k) = (1− ρ1)

n∑

i=1

βir
(i)(k)

bi
+

n∑

i=1

βi

(ai + ρ1)y
(i)
m (k)

bi

=
1− ρ1
∑n

j=1 γj

n∑

i=1

βiγir(k)

bi
+

n∑

i=1

βi

(ai + ρ1)z
−1

1 + aiz−1
u(k).

(17)
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Substituting in from (15) and (17):

(1− ρ1)

n∑

i=1

βiγi
bi

=

n∏

i=1

1− ρi
1 + ai

⇓

u(k) =
r(k)

∑n

j=1 γj

n∏

i=1

1− ρi
1 + ai

+

[

1−

n∏

i=1

1− ρiz
−1

1 + aiz−1

]

u(k).

(18)

The implied characteristic polynomial of the closed-loop poles is given as:

{pc = 0} ≡

[
n∏

i=1

1− ρiz
−1

1 + aiz−1

]

= 0. (19)

From this it is clear that ρi are the closed-loop poles.190

Remark 2. The stability of PP-PFC is guaranteed in the nominal case as a

natural corollary of Theorem 1 whereby the positions of the poles are all known

and have to be selected to be inside the unit circle.

4. Extending PP-PFC to systems with complex poles

This section forms a main contribution of this paper which is to extend PP-195

PFC to systems with under-damped modes. The significance of this change

is because the partial fraction expansion implicit in (5) will lead to complex

poles and residues, and in turn this means that the control laws of (13) imply

complex inputs. In the first instance there is a need to consider whether the use

of complex numbers is important or indeed whether PP-PFC is still effective200

and simple to design and implement.

The reader should note a core point which is that, if the PP-PFC algorithm

continues to work effectively with under-damped modes, then it solves a tuning

challenge for conventional PFC as tuning for Algorithm 1 can be a significant

challenge in the presence of oscillatory predictions. For simplicity this presen-205

tation will assume just a single pair of complex poles; this is reasonable as PFC

would rarely be used on very high-order models given that low-order models

usually capture the core dynamics. Moreover, notwithstanding this, the results

will automatically carry over anyway.
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4.1. Partial fraction expansion with complex coefficients210

Consider a model Gm(z) which has roots at −a1, −a2,...,−an with a1, a2 a

complex conjugate pair. A partial fraction expansion of Gm(z) into first-order

terms is:

Gm(z) =
n(z)

(1 + a1z−1)(1 + a2z−1)...(1 + anz−1)
=

n∑

i=1

biz
−1

1 + aiz−1
. (20)

It is noted that the residues b1, b2, ... ,bn will be complex conjugates.

4.2. PFC law for a process with complex coefficients

A quick review of the previous section will reveal that none of the algebra

required numbers to be purely real and the algebra and pole computations

should equally apply for complex numbers. The obvious consequence is that215

a system with complex coefficients should still be amenable to the PP-PFC

control law of (13). In fact, the only requirement that needs careful checking is

that the input u(k) to be implemented to the real process must be real.

Lemma 2. Consider the submodel Gi(z) =
biz

−1

1+aiz−1 where both bi, ai are com-

plex and find the corresponding control law using (9). The implied output dy-220

namics must follow the desired first-order trajectory with dynamic λ.

Proof: This is already evident from (10) in section 3. However, closer inspection

reveals that the corresponding input signal u(i) is not real due to the presence

of r(i), bi, ai in the law definition (12). Nevertheless, as this is a simulation

model, not a real process, that issue is not important. �225

Lemma 3. Notwithstanding the fact that the implied input u(i)(k) is complex,

nevertheless applying a control law which utilises β1u
(1)(k)+β2u

(2)(k) as defined

in (13) will result in a real input as long as β2 = β∗
1 (means complex conjugate).

Proof: The overall implied control law associated to a pair of complex poles is

12



given as:

u(k) = β1u
(1)(k) + β∗

1u
(1)∗(k)

= (1− ρ1)

[

β1r
(1)(k)

b1
+

β∗
1r

(1)∗(k)

b∗1

]

+ β1
(a1 + ρ1)y

(1)
m (k)

b1
+ β∗

1

(a∗1 + ρ1)y
(1)∗
m (k)

b∗1
.

(21)

Here all the terms are complex conjugates and hence the resulting term u(k) is230

real. It should also be remarked that the condition that
∑

βi = 1 implies that

β2 = β∗
1 . �

Lemma 4. Notwithstanding the fact that the implied input could be complex,

nevertheless applying a control law as defined in (13) will result all the desired

closed-loop poles being achieved, even when ρi are defined as complex numbers.235

Proof: This follows automatically from Lemma 3 as algebra is not affected by

the use or not of complex numbers.�

Theorem 2. Notwithstanding the fact that the implied input u(i)(k) is complex,

nevertheless applying a control law which utilises
∑n

i=1 βiu
(i)(k) as defined in

(13) will result in a real input as long as βi are calculated based on (16), irre-240

spective of the choices of ρi.

Proof: The core difference in this proof is to allow complex choices for the poles

and showing that all the desired poles are achieved while retaining a real input.

The overall implied control law is given as:

u(k) =

n∑

i=1

βiu
(i)(k) = (1− ρ1)

n∑

i=1

βir
(i)(k)

bi
+

n∑

i=1

βi

(ai + ρ1)y
(i)
m (k)

bi

=
1− ρ1
∑n

j=1 γj

n∑

i=1

βiγir(k)

bi
+

n∑

i=1

βi

(ai + ρ1)z
−1

1 + aiz−1
u(k).

(22)

13



Substituting from (19):

(1− ρ1)

n∑

i=1

βiγi
bi

=

n∏

i=1

1− ρi
1 + ai

⇓

u(k) =
r(k)

∑n

i=j γj

n∏

i=1

1− ρi
1 + ai

+

[

1−

n∏

i=1

1− ρiz
−1

1 + aiz−1

]

u(k).

(23)

Again it is clear that any terms appear in complex conjugate pairs. �245

Remark 3. This section has proved that the desired closed-loop poles of ρi are

achieved for any choices of desired poles and any open-loop poles, irrespective

of whether they are complex or real. In all cases, the proposed control law of

(13) produces a real input. However, it is emphasised that the underlying signals

implied in the independent model of Fig. 2 will be complex numbers and as this250

model is retained in the control law implementation, it assumes that complex

number algebra is supported by the operating system.

It is worth repeating that a key benefit of PP-PFC as opposed to conventional

PFC is that the user can now guarantee the behavior of the nominal closed-loop

and achieve the desired dominant dynamics. This section has shown that a255

simplistic implementation of PP-PFC on systems with under-damped dynamics

is effective.

5. Implementable PP-PFC using real numbers algebra

The main weakness of PP-PFC as presented in the previous section is the

reliance on complex number algebra. However, many operating systems used260

to implement control do not support complex number algebra. Consequently

there is a need to develop an alternative implementation which uses only real

number algebra.

Two alternative implementations are developed in this section: i) handling

the real and imaginary components explicitly and ii) a formulation of the algo-265

rithm avoiding complex numbers altogether. Readers should note that the case
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of target poles ρi being complex is also included as this gives the designer extra

flexibility which can be useful, and this is a novel contribution to the PFC field.

5.1. Calculating real and imaginary parts separately

For complex numbers expressed in Cartesian coordinates, the real and imag-

inary parts can be handled with real number algebra as follows. In this method,

each component of the complex numbers (real and imaginary part) is calculated

separately for example, consider x = Re{x}+j Im{x} and y = Re{y}+j Im{y},

then:

xy =

[

Re{y}Re{x} − Im{y} Im{x}

]

︸ ︷︷ ︸

real part

+j

[

Re{y} Im{x}+ Im{y}Re{x}

]

︸ ︷︷ ︸

imaginary part

.

(24)

Lemma 5. The update equation of independent model Gm ⇒ y
(i)
m (k) = biu(k−270

1)− aiy
(i)
m (k− 1) can be handled using the following two separate computations.

Re{y(i)
m (k)} = Re{−ai}Re{y(i)

m (k − 1)} − Im{−ai} Im{y(i)
m (k − 1)}+Re{bi}u(k − 1)

Im{y(i)
m (k)} = Re{−ai} Im{y(i)

m (k − 1)}+ Im{−ai}Re{y(i)
m (k − 1)}+ Im{bi}u(k − 1).

(25)

Lemma 6. Only the real part of the term βiu
(i)(k) needs to be computed.

Re{βiu
(i)(k)} = Re

{

(1− ρ1)
βiγi

bi
∑n

j=1 γj

}

r(k) + Re

{

(ai + ρ1)
βi

bi

}

Re{y(i)m (k)}

− Im

{

(ai + ρ1)
βi

bi

}

Im{y(i)m (k)}.

(26)

Proof: It was established in Theorems (2) and (3) that u(k) is real and therefore

all the imaginary terms must cancel out and therefore need not be computed.275

�

Theorem 3. Compared to PP-PFC using complex algebra, the increase in com-

putational demand using real number algebra is inconsequential although the

coding is slightly more involved.
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Proof: As is clear from (25), (26), the PP-PFC calculation of the real and280

imaginary parts of the actual sub-models output required 10 mathematical op-

erations on real numbers (summation and multiplication) with 4 reserved places

for variables in addition to the u(k) variable, and the calculation of the real parts

of βiu
(i)(k) + βi+1u

(i+1)(k) required 5 operations on real numbers with one re-

served place for the variable in addition to the r(k) variable. In comparison,285

the PFC of (17) uses the same memory space and 11 operations on complex

numbers but in truth the difference is so small that on modern computing it

has small relevance. �

Remark 4. When the desired closed-loop pole ρ1 is real (βi are complex con-

jugates), the calculation of the real and imaginary parts of y
(i)∗
m can be omitted290

because, by inspection, these are known from y
(i)
m .

5.2. New formulation of PP-PFC algorithm using real numbers algebra

The main concept deployed next is to exploit the structure in the indepen-

dent model of Fig. 2 in order to reduce the control law to an even simpler final

form. Ironically, there is a partial move away from the partial fraction expan-295

sion in first-order terms to the final implementation so that the implied partial

fractions are all real, although the full decomposition structure is still implicit

in the control law design.

This section deploys a number of lemmata and theorems which are required

to establish the final result. The reader may like to note that a key focus in300

many of these is to identify when terms are real or appear in complex conjugate

pairs, and when they do not, so that this information can be exploited efficiently

in any code. The idea is to look carefully at the computation required for each

term in (22, 26).

5.2.1. Real system poles305

First consider the parts of (22, 26) linked to real system poles.

Lemma 7. The parameter βi related to a real system pole ai has real value if

the target pole ρ1 is real, otherwise it has complex value.
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Proof: This follows from the fact that βi in (16) have complex values in con-

jugate pairs when ρ1 is real, otherwise when ρ1 is complex, then βi will contain310

the complex ρ∗1 and thus not be in conjugate pairs. �

Lemma 8. The parameter (ai+ρ1)βi related to a real system pole ai has a real

value irrespective of whether the target pole ρ1 is real or complex.

Proof: Considering (16) the parameter (ai+ρ1)βi contains the complex values

in conjugate pairs.

(ai + ρ1)βi =

∏n

j=1(ai + ρj)
∏n

j=1;j 6=i(ai − aj)
. � (27)

Theorem 4. The real value of the proposed weighted input signal Re{βiu
(i)}

for the sub-model having real pole ai comprises numerous components which315

can be computed off-line and stored.

Re{βiu
(i)} = Re

{

(1− ρ1)
βiγi

bi
∑n

j=1 γj

}

r(k) + (ai + ρ1)
βi

bi
y(i)m (k). (28)

Proof: This is obvious in that several of the terms above do not change.

K0,i = Re

{

(1− ρ1)
βiγi

bi
∑n

j=1 γj

}

; K1,i = (ai + ρ1)
βi

bi
;

Re{βiu
(i)} = K0,ir(k) +K1,iy

(i)
m (k).

� (29)

Remark 5. The coefficent K0,i is automatically real when the target pole ρ1 is

real.

5.2.2. Complex system poles

Next the paper considers the parts of (21, 26) linked to complex conjugate320

pairs of poles in G(z).

Lemma 9. The one-step-ahead prediction models for the summed outputs of

G1, G2 and the output of G1,2 = G1+G2 must match, assuming the inputs into

each are the same. This means the complex states of G1, G2 can be inferred

from the real states of G1,2.325
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Proof: This is by inspection following linearity.

G1,2 = G1 +G2 =
b1z

−1

1 + a1z−1
+

b2z
−1

1 + a2z−1
=

B1z
−1 +B2z

−2

1 + (a1 + a2)z−1 + a1a2z−2

y(1,2)m (k + 1) = B1u(k) +B2u(k − 1)− (a1 + a2)y
(1,2)
m (k)− (a1a2)y

(1,2)
m (k − 1)

(30)

y(1)m (k + 1) = b1u(k)− a1y
(1)
m (k)

y(2)m (k + 1) = b2u(k)− a2y
(2)
m (k)






⇒ y(1,2)m (k + 1) = y(1)m (k + 1) + y(2)m (k + 1).

(31)

In consequence, ignoring the dependence on the term u(k) which is yet to be

determined, one can write that:

−a1y
(1)
m (k)− a2y

(2)
m (k) = B2u(k − 1)− (a1 + a2)y

(1,2)
m (k)− (a1a2)y

(1,2)
m (k − 1)

y(1)m (k) + y(2)m (k) = y(1,2)m (k).

(32)

Therefore, given they are conjugates, the values y
(1)
m , y

(2)
m can be inferred from

these simultaneous equations (noting that in both the imaginary parts are zero

by definition).

2





−Re{a1} Im{a1}

1 0









Re{y
(1)
m (k)}

Im{y
(1)
m (k)}





=





B2u(k − 1)− 2Re{a1}y
(1,2)
m (k)− a1a

∗

1y
(1,2)
m (k − 1)

y
(1,2)
m (k)



 ⇒





Re{y
(1)
m (k)}

Im{y
(1)
m (k)}



 =





0 Im{a1}

1 Re{a1}





2 Im{a1}





B2u(k − 1)− 2Re{a1}y
(1,2)
m (k)− a1a

∗

1y
(1,2)
m (k − 1)

y
(1,2)
m (k)



 .

(33)

�

Lemma 10. The parameters βi, βi+1 related to complex conjugate poles ai and

ai+1 are complex conjugates if the target pole ρ1 is real, otherwise βi, βi+1 are

not complex conjugates.

Proof: From (16) both βi and βi+1 are complex conjugates if ρ1 is real, other-330

wise if ρi is complex then both βi and βi+1 are not conjugate pairs. �
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Lemma 11. The parameters (ai + ρ1)βi and (ai+1 + ρ1)βi+1 related to a com-

plex conjugate pair of poles ai and ai+1, are complex conjugates irrespective of

whether the target pole ρ1 is real or complex.

Proof: Considering (16), all the terms appear in conjugate pairs.

(ai + ρ1)βi =

∏n

j=1(ai + ρj)
∏n

j=1;j 6=i(ai − aj)
; (ai+1 + ρ1)βi+1 =

∏n

j=1(ai+1 + ρj)
∏n

j=1;j 6=i+1(ai+1 − aj)
.

(34)

�335

Lemma 12. The real value of the proposed weighted input signal Re{βiui(k)+

βi+1ui+1(k)} for the two sub-models having complex conjugated poles ai and ai+1

comprises numerous components which can be computed off-line and stored.

Re{βiu
(i)(k) + βi+1u

(i+1)(k)} = Re

{

1− ρ1
∑n

j=1 γj

[
βiγi
bi

+
βi+1γi+1

bi+1

]}

r(k)

+ 2Re

{

(ai + ρ1)
βi

bi

}

Re{y(i)m (k)} − 2 Im

{

(ai + ρ1)
βi

bi

}

Im{y(i)m (k)}.

(35)

Proof: This is obvious in that several of the terms above do not change.

K0,i = Re

{

1− ρ1
∑n

j=1 γj

[
βiγi
bi

+
βi+1γi+1

bi+1

]}

;

K1,i = 2Re

{

(ai + ρ1)
βi

bi

}

; K2,i = −2 Im

{

(ai + ρ1)
βi

bi

}

;

Re{βiu
(i)(k) + βi+1u

(i+1)(k)} = K0,ir(k) +K1,i Re{y
(i)
m (k)}+K2,i Im{y(i)m (k)}.

(36)

�

Remark 6. The coefficient K0,i is automatically real when the target pole ρ1340

is real (βi = β∗
i+1).

Theorem 5. The proposed common input signal Re{βiu
(i)(k)+βi+1u

(i+1)(k)}

for the two sub-models having complex conjugate poles can be simplified to a

second-order control law which is based solely on real number algebra and using

the states of the second-order model Gi,i+1.345
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Proof: This follows from substitution of (33) into (36).

y(i,i+1)
m (k + 1) = B1,iu(k) +B2,iu(k − 1)− 2Re{ai}y

(i,i+1)
m (k)− aia

∗
i y

(i,i+1)
m (k − 1);

Re{βiu
(i)(k) + βi+1u

(i+1)(k)} = K
(i,i+1)
0 r(k) +K

(i,i+1)
1 y(i,i+1)

m (k)

+K
(i,i+1)
2 y(i,i+1)

m (k − 1) +K
(i,i+1)
3 u(k − 1);

K
(i,i+1)
0 = K0,i; K

(i,i+1)
1 =

K1,i Im{ai} −K2,i Re{ai}

2 Im{ai}
;

K
(i,i+1)
2 = −

K2,iaia
∗
i

2 Im{ai}
; K

(i,i+1)
3 =

K2,iB2,i

2 Im{ai}
.

(37)

�

5.2.3. Computational load comparisons

Only the component of the control law corresponding to pairs of complex

poles needs to use the formulation of (37). The contribution of sub-models

with real poles can use the simpler formulation of (29). From (37), the new350

formulated PP-PFC calculation of the actual second-order sub-models output

requires 7 mathematical operations on real numbers with 4 reserved places for

variables in addition to the u(k) variable, and the calculation of the real parts of

βiu
(i)(k)+βi+1u

(i+1)(k) requires 7 operations on real numbers with one reserved

place for the variable in addition to the r(k) variable. A simplified comparison355

of the alternative approaches is given in Table 1.

6. Numerical examples

This section will give some numerical examples to compare the simulation

times of the control (as an indicator to the simplicity of the control action

calculation) using classical PP-PFC, PP-PFC with real and imaginary parts

calculation, and the new formulated PP-PFC algorithm, for various choices of

ρ on two under-damped examples M,N :

M =
0.4z−1 + 0.08z−2

1− 1.6z−1 + 0.8z−2
; (38)

N =
−0.66z−1 + 0.08z−2 + 0.6z−3

1− 2.72z−1 + 2.626z−2 − 0.8924z−3
. (39)
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M has poles at −0.8± 0.4j. The choice N matches the example used in Fig. 5

which conventional PFC could not handle and has poles at −0.9,−0.9 ± 0.4j.

The open-loop step responses are plotted in Figs. 6 and 7, respectively.360

As it is seen from the step responses, process M is of type minimum-phase

and process N of type non-minimum-phase. Process M is of second-order, has

a gain of 2.4 and a damping factor ζ = 0.234 which causes an overshoot in

the open-loop step response of about 45%. Process N is of third-order and

has a gain of 1.47. The open-loop step response shows an undershoot of about365

-700% and an overshoot of 374%. Both oscillating processes were selected for

illustration the new control algorithm as they are difficult to control.

The average simulation time of repeated 100 simulations for each case is

considered in the computational loading results. Moreover, the reader will no-

tice the additional advantage of the proposed approach which is the ability to370

select a target pole as being complex which is not something that is possible

in conventional PFC; such an option is reasonable in many cases where a small

overshoot allows better behavior overall.

In the following simulations a stepwise change in the reference signal and the

disturbance acting at the process output, as shown in figure 2, are applied. The375

algorithm can also compensate for disturbances acting at the process input, but

this case is not shown here.

6.1. Example 1: PP-PFC of example M

The PP-PFC simulation of example M is given in Fig. 8 for various choices

of desired closed-loop pole ρ. An output disturbance is added around the 40th380

sample to demonstrate the disturbance compensating ability of the approach.

It is clear that the proposed algorithm has given effective control and moreover,

the tuning parameter ρ has retained an intuitive link to the resulting closed-

loop behavior as expected. Moreover, it is demonstrated that one can select the

target pole as being complex, unlike for conventional PFC. Nevertheless, in this385

case a conventional PFC can also give effective control although the link to the

desired λ (defined based on the dominant poles of the simulations in Fig. 8) is
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weaker (see Fig. 9). For interest, the reader should note that both the values of

βi have a real part of 0.5 as expected (as
∑

βi = 1), but also have a non-zero

imaginary part.390

The simulation times are set in Table 2. The results show that the new

fomulated PP-PFC have fastest control action calculations, and the PP-PFC

using complex algebra have slowest control action calculations.

6.2. Example 2: PP-PFC of example N

The PP-PFC simulation of example N is given in Fig. 10. An output distur-395

bance is added around the 70th sample. Despite the obviously very challenging

dynamics of this process, the PP-PFC algorithm has given smooth control to the

required target and moreover, as desired, has maintained the intuitive link be-

tween the target dynamic ρ and the closed-loop convergences speed. Conversely,

classical PFC is very sensitive to the choice of ny and gives stable behavior only400

for a small range of large ny which in effect makes the parameter λ redundant,

as is clearly seen in Fig. 11; the plots are almost identical irrespective of the

choice of λ and hence only relatively slow λ can be achieved.

The simulation times are set in Table 3. Also here, the results show that the

proposed formulation of PP-PFC has the fastest calculations, and the PP-PFC405

using complex algebra has the slowest calculations.

6.3. Example 3: Constraint handling of PP-PFC for example N

For completeness, this section demonstrates that constraint handling can be

embedded also in the PP-PFC algorithm in a conventional PFC manner without

detriment to performance beyond the inevitable loss of some performance when410

constraints are active. The control law is summarized as follows [11]:

1. Test whether the proposed controller output satisfies plant input absolute

and rate constraints. If not, modify u(k) to ensure both using saturation.

2. To ensure satisfaction of output/state constraints one must form the im-

plied predictions over a sensible but large horizon and modify u(k) as415
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required to ensure satisfaction. This reduces to a simple for loop which

ensures that maximum or minimum of yp(k + i) is within limits.

The constrained u(k) has to be applied in the model prediction.

Figure 12 shows the controlled and manipulated variable plots of example

N with an input rate maximum limit of 0.1 per sample and an absolute max-420

imum input limit of 0.8. As it can be seen, the constraints have been handled

effectively.

7. Real-time control

In this section, the proposed controller is implemented with a real laboratory

hardware. This process posses its own challenges such as the measured data425

and the controller model may differ in value and can lead to a failure if it is not

addressed properly. Other than that, the computation time of the controller

need to be faster than the sampling time to avoid any delay when updating the

output value. In this work, a Quanser SRV02 servo based unit powered by a

Quanser VoltPAQ-X1 amplifier with a flexible joint is used as a plant. This430

system is operated by National Instrument ELVIS II+ multifunctional data

acquisition. The plant is connected to a computer via USB connection using NI

LabVIEW software as shown in Fig. 13.

The flexible joint base is mounted on the load gear of the SRV02 system. The

servo angle θ together with its link will increase positively in counter-clockwise435

(CCW) rotation when the supplied voltage is positive (Vm > 0). The same

situation applied to the link deflection angle α with CCW rotation. Both θ(t)

and α(t) are measured in radians. Fig.14 shows a schematic of the flexible joint

system [14] where the servo motor voltage Vm is acting as a control variable

that generates a torque τ at the load gear to rotate the flexible joint base.440

On the other hand, the viscous friction coefficient of the servo Beq will oppose

the applied torque at the servo load gear and the friction acting on the link is

denoted by the viscous damping coefficient Bl. The overall flexible joint system

is assumed linear with a spring stiffness Ks.

23



The main objective for this task is to track the angular speed of the servo

θ̇(t) by manipulating the supplied voltage Vm(t). The general mathematical

model of the process is given as (for more details see [15]):

θ̈(t) =
Ks

Jeq
α(t)−

Beq

Jeq
θ̈(t) +

1

Jeq
τ(t)

α̈(t) = −Ks

(
Jl + Jeq
JlJeq

)

α(t) +
Beq

Jeq
θ̇(t)−

1

Jeq
τ(t)

τ(t) =
ηgKgηmkt

(
Vm(t)−Kgkmθ̇(t)

)

Rm

(40)

where the list and value of each corresponding SRV02 parameter used are given

in Table 4. By substituting the parameter value and manipulating the algebraic

equation, the control model for the plant is reduced to:

θ̈(t) = 619.05 α(t)− 34.70 θ̇(t) + 61.07 Vm(t)

α̈(t) = −1015.62 α(t) + 32.78 θ̇(t)− 61.07 Vm(t)
(41)

The model in (41) is converted to a discrete-time transfer function with sampling

time 0.02 s to get a direct relationship between the angular speed and input

voltage as:
θ̇(z)

Vm(z)
=

0.8451z−1 − 1.556z−2 + 0.8457z−3

1− 2.17z−1 + 1.753z−2 − 0.4997z−3
(42)

Figure 15 shows the open-loop behavior of the plant and the mathematical445

model based on the voltage input profile. It is clear that both of the outputs

exhibit under-damped behavior due to the extended joint attachment in the

servo motor where there exist an oscillation before converging to the steady-

state value. It is noted that there is a large parameter mismatch between the

measured and model outputs. However, this discrepancy can be handled by the450

independent model structure of PFC algorithm (4).

The proposed algorithm is employed with different selections of poles accord-

ing to the desired settling time. Figure 16 demonstrates the capability of the

new PP-PFC controller to track an alternating set point between -1 rad/s and

1 rad/s. The same performance as in the previous simulation is obtained. The455

controller managed to provide a smooth tracking to the desired target and while,
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retaining the intuitive link between the target dynamic ρ and the closed-loop

convergence speed.

Generally, the implementation of this controller is very straightforward as

it does not need any complex arithmetic compared to the traditional approach.460

Hence, it can be easily implemented on a low-cost hardware such as PLC (Pro-

grammable Logic Controller). In addition, the use of unit coincidence horizon

simplifies both the tuning and coding processes which makes it more transparent

and attractive compared to the conventional PID controller.

8. Conclusion and future work465

This paper has proposed a new approach to PFC for systems with under-

damped open-loop dynamics. In many cases a conventional PFC approach is

difficult to tune with open-loop oscillatory dynamics and thus loses important

features such as simplicity and intuition. This paper shows that by building

on the partial fraction expansion commonly used in industrial PFC code to470

form model predictions, one can make use of the powerful results for first-order

systems and apply these for high-order systems even where the partial frac-

tion expansion gives complex residues (under-damped systems). Critically, the

overall coding complexity and requirements are similar to the code of the con-

ventional PFC but a core advantage is that the tuning options are now more475

straightforward than with a conventional algorithm. In fact, it is shown addi-

tionally that one is now able to select the target closed-loop pole to be complex

and this is often advantageous compared to the restriction to real poles with

conventional PFC.

The proposed new formulation of the PP-PFC algorithm (for systems with480

under-damped open-loop dynamics) reduces the calculation efforts in compari-

son to the conventional PP-PFC formulation because of dealing with real num-

bers only. A further advantage is that PP-PFC can be used in programmable

logic controllers or decentralized control systems which usually do not support

complex algebra; a simulation demonstration on hardware was presented.485
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Future work aims to look more closely at the allocation of the values βi.

There is a need to consider more carefully how these extra degrees of freedom can

be utilised most effectively, while not increasing the complexity of the approach.

Finally, there is also a need to compare this approach more formally with the

shaping approach [4].490

It is also noted that while the current approach will deal with some level

of parameter uncertainty, a formal sensitivity analysis and design remains as

future work.
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Table 1: Computational loading for different realizations of PP-PFC

PP-PFC with PP-PFC with PP-PFC with

complex algebra calculating real algebra

real/imag. parts

11 operations 15 operations 14 operations

Table 2: Relative simulation times of the different realizations of PP-PFC for example M

PP-PFC with PP-PFC with PP-PFC with

ρ complex algebra calculating real algebra

real/imag. parts

ρ1,2 = 0.7 100% 74% 48%

ρ1,2 = 0.7± j0.275 100% 77% 48%
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Table 3: Relative simulation times of the different realizations of PP-PFC for example N

PP-PFC with PP-PFC with PP-PFC with

ρ complex algebra calculating real algebra

real/imag. parts

ρ1,2,3 = 0.8 100% 45% 42%

ρ1 = 0.8 100% 41% 37%

ρ2,3 = 0.8± j0.2

Table 4: SRV02 servo parameters specification [14, 15]

Parameters Value

Gearbox efficiency, ηg 0.9

High-gear total gear ratio, Kg 70

Motor efficiency, ηm 0.69

Motor current-torque constant, kt 7.68× 10−3 Nm/A

Motor back-emf constant, km 7.68× 10−3 V/(rad/s)

Motor armature resistance, Rm 2.6 Ω

Spring stiffness, Ks 0.5 N/m

Viscous friction coefficient, Beq 0.004 Nm/(rad/s)

Moment of inertia without external load, Jeq 2.08× 10−3 kg m2

Total moment of inertia of the arm, Jl 1.9× 10−3 kg m2
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Figure 1: Illustration of PFC target dynamic r∗ and coincidence of the output prediction yp

with target dynamic ny = 6 samples ahead.
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Figure 3: Illustration of PFC closed-loop poles with different choices of λ and ny on the

over-damped example P1. Note ny < 3 gives closed-loop instability.
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Figure 4: Illustration of PFC closed-loop poles (absolute values as complex) with different

choices of λ and ny on the under-damped example P2.
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Figure 5: Illustration of PFC closed-loop poles (closed-loop instability) with different choices

of λ and ny = 3 on the under-damped example N .
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Figure 6: Step response of system M.
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Figure 7: Step response of system N.
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Figure 8: Illustration of PP-PFC performance with different choices of ρ on the

under-damped example M .
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Figure 9: Illustration of conventional PFC performance with different choices of λ on the

under-damped example M .
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Figure 10: Illustration of new formulated PP-PFC performance with different choices of ρ on

the under-damped example N .
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Figure 11: Illustration of conventional PFC performance with different choices of λ on the

under-damped example N .
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Figure 12: Illustration of PP-PFC performance of the under-damped example N considering

input constraints.
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Figure 13: The experimental plant.

Figure 14: Rotary flexible joint model [15].
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Figure 15: The open-loop behavior of plant and model based on the supplied voltage.
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Figure 16: Illustration of PP-PFC performance of the under-damped Quanser servo attached

with flexible joint.
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