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Stagnation–saddle points and flow patterns in
Stokes flow between contra-rotating cylinders
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The steady flow is considered of a Newtonian fluid, of viscosity µ, between contra-
rotating cylinders with peripheral speeds U1 and U2. The two-dimensional velocity
field is determined correct to O(H0/2R)1/2, where 2H0 is the minimum separation of
the cylinders and R an ‘averaged’ cylinder radius. For flooded/moderately starved
inlets there are two stagnation–saddle points, located symmetrically about the nip, and
separated by quasi-unidirectional flow. These stagnation–saddle points are shown to
divide the gap in the ratio U1 : U2 and arise at |X| = A where the semi-gap thickness
is H(A) and the streamwise pressure gradient is given by dP/dX = µ(U1 +U2)/H

2(A).
Several additional results then follow.

(i) The effect of non-dimensional flow rate, λ: A2 = 2RH0(3λ − 1) and so the
stagnation–saddle points are absent for λ < 1/3, coincident for λ = 1/3 and separated
for λ > 1/3.

(ii) The effect of speed ratio, S = U1/U2: stagnation–saddle points are located
on the boundary of recirculating flow and are coincident with its leading edge only
for symmetric flows (S = 1). The effect of unequal cylinder speeds is to introduce a
displacement that increases to a maximum of O(RH0)

1/2 as S → 0.
Five distinct flow patterns are identified between the nip and the downstream

meniscus. Three are asymmetric flows with a transfer jet conveying fluid across the
recirculation region and arising due to unequal cylinder speeds, unequal cylinder radii,
gravity or a combination of these. Two others exhibit no transfer jet and correspond
to symmetric (S = 1) or asymmetric (S 6= 1) flow with two asymmetric effects in
balance. Film splitting at the downstream stagnation–saddle point produces uniform
films, attached to the cylinders, of thickness H1 and H2, where

H1

H2

=
S(S + 3)

3S + 1
,

provided the flux in the transfer jet is assumed to be negligible.
(iii) The effect of capillary number, Ca: as Ca is increased the downstream meniscus

advances towards the nip and the stagnation–saddle point either attaches itself to the
meniscus or disappears via a saddle–node annihilation according to the flow topology.

Theoretical predictions are supported by experimental data and finite element
computations.
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Figure 1. Film-splitting between contra-rotating cylinders aligned (a) horizontally; (b) vertically.

1. Introduction

Viscous flow in a cross-sectional plane between long cylinders has been researched
extensively, particularly with regard to applications such as fixed-gap roll coating. In
forward roll coating, figure 1(a,b), cylinders, either horizontally or vertically aligned,
having radii R1, R2 move with peripheral speeds U1, U2, and hence speed ratio
S = U1/U2, in the same direction (contra-rotating) through the nip region where
the minimum cylinder separation is 2H0. Experimental, analytical and computational
investigations for fluids that are Newtonian with viscosity µ and surface tension σ,
have sought to identify the governing parameters and determine the key features and
flow variables. These include flow rate, λ, film thicknesses, H1, H2, the velocity and
pressure fields, U = (U,W ), P , location of the downstream free surface (meniscus)
and stagnation points which identify the onset of recirculating flow.

The presence of recirculating flow immediately adjacent to the downstream meniscus
was first reported by Pitts & Greiller (1961), substantiated by Schneider (1962) and
Van de Bergh (1974) and later captured on video by Malone (1992). Also Ruschak
(1982) predicted and Malone (1992) confirmed that, as capillary number, Ca = µU2/σ,
increases, the extent of this reverse flow region contracts and disappears for Ca & 1.
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Several authors have measured flow rate: Pitts & Greiller (1961), Hintermaier &
White (1965), Greener & Middleman (1975). For cylinders of equal speed, Benkreira,
Edwards & Wilkinson (1981) obtained a maximum non-dimensional flow rate λ = 1.31
which showed little variation with Ca. This result was confirmed by Malone (1992)
who also showed that the location of the stagnation point marking the onset of the
recirculation region exhibited no apparent variation. In contrast, the position and
shape of the meniscus is highly dependent on Ca, being closest to the nip when
Ca > 1 and receding away from the nip as Ca decreases (Coyle, Macosko & Scriven
1986; Decré, Gailly & Buchlin 1995).

For the case S = 1, Greener & Middleman (1975, 1979) formulated a mathematical
model based on lubrication theory which gave rise to the Reynolds equation for
pressure. They considered a semi-infinite domain which terminated downstream of
the nip at a stagnation point where not only velocity but also velocity gradient is zero
due to symmetry. The conditions U = ∂U/∂Z = 0, known as the Prandtl–Hopkins
conditions, apply to symmetric flows and also, with one cylinder at rest, they locate
the point at which the flow separates from the stationary surface. Subsequently,
Savage (1982) extended the model to the general case of S 6= 1 by postulating that
the Prandtl–Hopkins conditions remain valid and locate the onset of the recirculation
region as both a stagnation point and a point of flow separation. This is usually
referred to as the ‘separation hypothesis’ which gives rise to a prediction for film
thicknesses ratio, H1/H2, in terms of S:

H1

H2

= S1/2.

The limitations of mathematical models based on lubrication theory were only too
evident to the above authors, as indeed they were to Taylor (1963) who pointed out
that flows found in journal bearings and between contra-rotating cylinders consist of
two distinct regions: a region where the flow is adequately described by lubrication
theory and a region near the meniscus where the flow is fully two-dimensional. For
symmetric flows Ruschak (1982) analysed the two-dimensional problem by means
of the method of matched asymptotic expansions. Essentially the inner problem
required a two-dimensional solution of the Navier–Stokes equations in the vicinity of
the meniscus which was then matched onto an outer, lubrication solution. Calculations
revealed the importance of Ca in locating both the position of the meniscus and the
ratio, H1/H(c), of the film thickness to half-gap width at the meniscus. This latter
parameter arises from matching the pressure gradients of the inner and outer solutions.
In fact its significance in specifying the pressure gradient at the meniscus was first
appreciated by Coyne & Elrod (1970). They performed an approximate analysis of
the free-surface flow from the meniscus to uniform flow at infinity obtaining results
almost identical with those of Ruschak (1982).

Coyle et al. (1986) generalized Ruschak’s (1982) matched asymptotic analysis to
the asymmetric case with S 6= 1 and in both cases the inner problem required a
numerical solution obtained using finite elements (FEs). A FE method for solving the
Navier–Stokes equations for the full velocity and pressure fields subject to appropriate
boundary conditions, also emerged in parallel (see Kistler & Scriven 1983). Coyle et
al.’s (1986) numerical results for film thickness ratio expressed H1/H2 in terms of S
via a power law

H1

H2

= S0.65, S ∈ (0.1, 10.0),



224 P. H. Gaskell, M. D. Savage and H. M. Thompson

where the exponent 0.65 is identical to that found by Benkreira et al. (1981) from
experimental data over the same range of S .

Theoretical predictions for H1/H2 from the separation hypothesis are clearly out
of line with results from experimental and computational analysis. This provides
motivation for the present work since one would expect lubrication theory, despite
its obvious limitations, to predict accurately the onset of reverse flow and hence the
uniform film thickness on each cylinder. The fact that this is not so casts considerable
doubt on the validity of the Prandtl–Hopkins conditions. Though these conditions
hold in two special cases it is now clear that the error is in assuming them to
be generally valid. Indeed there is no physical basis for imposing the condition
∂U/∂Z = 0 for S > 0, S 6= 1. Hence there is no alternative but to consider the two-
dimensional velocity field and impose conditions on both components of velocity,
U = (U,W ) = (0, 0), to determine the location of the stagnation point which is also
a saddle point located on the boundary of recirculating flow.

Two-dimensional flow between rotating cylinders has been investigated by a number
of previous authors; Jeffery (1922) analysed Stokes flow between fully submerged
contra-rotating cylinders using bi-polar coordinates. Ballal & Rivlin (1976) also
used a bi-polar coordinate system to solve for the flow between eccentric cylinders,
either with or without inertia. They reported the existence of a rich variety of
streamline patterns and established a number of conditions under which stagnation
points, separation points and eddies can exist. Flow asymmetries when S 6= 1 were
investigated by Coyle et al. (1986) who predicted via FE computations the existence in
the downstream recirculation region, figure 2(d), of a transfer jet or ‘snake’ by which
flux is transferred from the slow to the faster moving cylinder. Recent experiments
by Gaskell, Savage & Walker (1998), using dye injection coupled with a high-speed
video to examine the flow in the nip region between two half-submerged cylinders,
figure 1(a), have confirmed this transfer mechanism. They also identified others due
to unequal cylinder radii and the effect of gravity. In each case, however, the transfer
jet is a weak, secondary flow with only a very small flux transferred.

Wicks et al. (1995) used a dynamical systems approach supported by experiment and
numerical simulations to analyse the loss of symmetry in the downstream recirculation
region and identified two distinct flow topologies. They referred to symmetric flow
(S = 1) as a ‘joint eddy topology’ since the two eddies share a common streamline
and are attached to the free surface. In contrast, asymmetric flow is referred to as a
‘disjoint eddy topology’ since the two eddies are separated by a transfer jet with one
now detached from the free surface. They showed the disjoint eddy topology to be
generic if any source of asymmetry is present.

In the mathematical model, §2, the two-dimensional velocity field and the location
of the stagnation–saddle points are determined correct to O(H0/2R)1/2. This enables a
series of results to be established analytically with new and unexpected predictions for
both the location of the stagnation–saddle points and the film thickness ratio. In turn,
these predictions initiated further experimental and computational investigations.
In §3 the effects of λ, S and Ca on the location of stagnation–saddle points are
considered. Specific aims include (i) locating the onset of recirculating flow in relation
to a stagnation–saddle point and showing that the two are only coincident in the
case of symmetric flow; (ii) revealing the five basic flow patterns which can arise in
the recirculation region with topologies of the ‘joint eddy’ or ‘disjoint eddy’ type;
(iii) investigating the various mechanisms by which transfer jets arise, and in some
cases cancel each other out, namely unequal cylinder speeds, unequal cylinder radii,
gravity across the gap and ‘asymmetric inlet feeding’. Finally in §4 the thicknesses of
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Figure 2. Schematic of symmetric flow S = 1 and asymmetric flow S 6= 1 between fully submerged
cylinders (a,c) and in the presence of a downstream meniscus (b,d). A+ and A− are stagnation–saddle
points; L+ and L−the leading edges of the recirculations. A transfer jet, indicated by a dotted line,
is shown in the downstream recirculation region in (d).

the uniform films attached to the cylinders are calculated and the film thickness ratio
is derived as a simple algebraic function of S . Theoretical predictions are compared
with experimental data and FE computations.

2. Mathematical model and solution

Two-dimensional flow between contra-rotating cylinders is illustrated schematically
in figure 2(a–d). In each case the inlet is assumed to be flooded/moderately starved
so that a region of quasi-unidirectional flow is followed by recirculations extending
either to infinity or to a meniscus. When the cylinders have unequal speeds, a key
feature within the recirculating flow, downstream of the nip, is the presence of a weak
transfer jet transferring fluid from the slower to the faster moving cylinder, figure 2(d).
Asymmetric transfer jets also arise due to unequal cylinder radii and gravity, and all
involve a stagnation–saddle point, A+, with a homoclinic orbit around which the jet
meanders. Hence one aim here is to locate stagnation–saddle points, by means of an
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appropriate set of equations, correct to O(δ) where δ2 = H0/2R is assumed small and
R is an averaged cylinder radius defined by 2/R = (1/R1 + 1/R2).

The origin of (X,Z) coordinates is taken to lie in the mid-plane of the nip, a distance
H0 from either cylinder, so that the cylinder surfaces are given by H1(X) = H0+X2/2R1

and H2(X) = H0 + X2/2R2, respectively. The flow is assumed to be incompressible
and described by Stokes’ equations

∂P

∂X
= µ

(

∂2U

∂X2
+

∂2U

∂Z2

)

,

∂P

∂Z
= µ

(

∂2W

∂X2
+

∂2W

∂Z2

)

− ρg,















(2.1)

0 =
∂U

∂X
+

∂W

∂Z
. (2.2)

Equations (2.1) and (2.2) are non-dimensionalized by introducing new variables
x, z, u, w and p defined by

x =
X

(2RH0)1/2
, z =

Z

H0

, u =
U

U2

, w =
W

δU2

, p =
H0δ

µU2

P , (2.3)

giving

∂p

∂x
=

∂2u

∂z2
+ δ2 ∂

2u

∂x2
,

∂p

∂z
= δ2 ∂

2w

∂z2
+ δ4 ∂

2w

∂x2
− St,

0 =

(

∂u

∂x
+

∂w

∂z

)

,



































(2.4)

where St = ρgH2
0/µU2 is the Stokes number. Neglecting gravity, a solution for u, w,

and p in powers of δ2 yields the lubrication equations at lowest order

∂p

∂x
=

∂2u

∂z2
,

∂p

∂z
= 0 ⇒ p = p(x), (2.5)

∂u

∂x
+

∂w

∂z
= 0. (2.6)

To determine u, w and locate the stagnation–saddle points attention is restricted to
the case of equal cylinder radii since the key results are identical to the general case
where the analysis is much more intricate – see the Appendix. With R1 = R2 = R the
cylinder surfaces are given by

Z = ±H(X), i.e. z = ±η(x) = ±(1 + x2). (2.7)

Hence the solution for u(x, z) satisfying u = 1 on z = −η(x) and u = S on z = +η(x)
is

u(x, z) =
px

2
(z2 − η2) +

(

S − 1

2

)

z

η
+

(

S + 1

2

)

, (2.8)

where px = dp/dx.
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The Z-component of velocity has to satisfy W = U1(dH/dX) on Z = H(X) and
W = −U2(dH/dX) on Z = −H(X), that is

w = Sηx on z = +η(x),
w = −ηx on z = −η(x),

}

(2.9)

where ηx = (dη/dx). The solution for w(x, z) is therefore

w(x, z) = Sηx −
pxx

2

(

z3

3
− zη2 +

2η3

3

)

+
px

2
ηηx(z − η) +

(S − 1)ηx
4η2

(z2 − η2). (2.10)

Since the flow is steady the flux, Q, is constant. Hence

Q =

∫ +H

−H

UdZ = U2H0

∫ +η

−η

u(x, z)dz, (2.11)

reduces to the non-dimensional Reynolds equation

dp

dx
=

3

2

[

(S + 1)

η2
−

Q

U2H0η3

]

. (2.12)

Isolating Q and differentiating with respect to x yields an expression for (d2p/dx2) =
pxx giving rise to a two-dimensional velocity field in terms of px and correct to O(δ):

u(x, z) =
px

2
η2

[(

z

η

)2

− 1

]

+

(

S − 1

2

)

z

η
+

(

S + 1

2

)

,

w(x, z) = ηx

{

1

2

[

pxη
2 −

(

1 + S

2

)][(

z

η

)3

− 3

(

z

η

)

+ 2

]

}

+ηx

{

pxη
2

(

z

η
− 1

)

+

(

S − 1

4

)[(

z

η

)2

− 1

]

+ S

}

.











































(2.13)

If the coordinates of a stagnation point are denoted by (X,Z) = (A, θH(A)), that is

x = a,
z

η(a)
= θ, (2.14)

and if α is introduced where

α =
η2(a)px(a)

(1 + S)
, (2.15)

then u = w = 0 gives two sets of solutions for α and θ, namely

α(θ2 − 1) +

(

S − 1

S + 1

)

θ + 1 = 0,

ηx = 0,







(2.16)

and

α(θ2 − 1) +

(

S − 1

S + 1

)

θ + 1 = 0,

2αθ(θ2 − 1) +

(

S − 1

S + 1

)

(θ2 − 1) +
4S

1 + S
− (θ3 − 3θ + 2) = 0.















(2.17)
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2.1. Stagnation points in the nip (X = 0)

Here η = 1, ηx = 0 and via (2.12)

dp

dx
=

3(1 + S)

2
(1 − λ), (2.18)

where λ is a non-dimensional flow rate

λ =
Q

(U1 + U2)H0

. (2.19)

Hence equations (2.16) give a quadratic for θ:

(1 − λ)θ2 +
2

3

(

S − 1

S + 1

)

θ + (λ − 1
3
) = 0, (2.20)

with solutions

θ =

−
2

3

(

S − 1

S + 1

)

±

[

4

9

(

S − 1

S + 1

)2

− 4(1 − λ)(λ − 1
3
)

]1/2

2(1 − λ)
. (2.21)

Real solutions exist provided
(

S − 1

S + 1

)2

> (3 − 3λ)(3λ − 1), (λ − 2
3
)2 >

4S

9(1 + S)2
, (2.22)

and those corresponding to |θ| 6 1 are given by

λ < λ =
2

3

[

1 −
S1/2

(1 + S)

]

. (2.23)

Stagnation points appear in the nip only for small flow rates, less than a critical
value λ which depends on S . In fact λ is a minimum when S = 1, λ(1) = 1/3 and

increases towards λ = 2/3 as S → 0 and S → ∞, figure 3. For a given S and λ = λ(S)
a stagnation point arises at

(x, z) =

(

0,
(1 − S)

3(1 + S)(1 − λ)

)

=

(

0,
(1 − S1/2)

(1 + S1/2)

)

, (2.24)

and subsequently two stagnation points separate across the gap as λ decreases. For
such flow rates, λ 6 λ(S), the pressure gradient (2.12) is everywhere positive which
corresponds to the meniscus coating regime, Gaskell et al. (1995a). However, here
attention is focused on the complementary flow regime in which λ > λ(S), inlets are
flooded/moderately starved and there are no stagnation points in the nip.

2.2. Stagnation points beyond the nip (|X| = A > 0)

The solution of equations (2.17) will locate those stagnation points lying outside the
nip. Substituting for α(θ2 − 1) yields a cubic in θ:

(1 + S)θ3 − (1 − S)θ2 − (1 + S)θ + (1 − S) = 0, (2.25)

with solutions

θ2 = 1 and θ =
1 − S

1 + S
. (2.26)



Patterns in Stokes flow between contra-rotating cylinders 229

1.0

2/3

1/3

0 5 10 15 20

S

λ

Figure 3. Critical flow rate λ as a function of S , equation (2.23), for the emergence
of a stagnation point in the nip.

Solutions θ = 1, θ = −1 correspond to S = 0 and S = ∞ respectively. This is the case
of a stationary cylinder, every point of which is a stagnation point, and the solution
of equations (2.17) for α (where it appears with coefficient (θ2 − 1)) is arbitrary.

Of particular interest is the solution θ = (1 − S)/(1 + S), (S > 0) which via (2.17)
gives α = 1 and therefore

px(a) =
(1 + S)

η2(a)
. (2.27)

Hence a stagnation point with coordinates (X,Z) = (A, θH(A)) arises where the
streamwise pressure gradient is given by

dP

dX
= µ

(U1 + U2)

H2(A)
, (2.28)

and divides the gap (of width 2H(A)) in the ratio

1 − θ

1 + θ
= S =

U1

U2

. (2.29)

The X-coordinate of the stagnation point, X = A, and the semi-gap thickness, H(A),
can be expressed in terms of λ by using Reynolds’ equation in the form

dP

dX
=

3µ(U1 + U2)

2H2(X)

[

1 −
λH0

H(X)

]

. (2.30)

Evaluating (2.30) at X = A and equating with (2.27) gives the position X = A and
the semi-gap thickness H(A):

A2 = (2RH0)(3λ − 1); H(A) = 3λH0. (2.31)

As indicated in the Appendix, results (2.29) and (2.31) are quite general and apply for
cylinders of any radii and any S > 0. Expression (2.31) implies that for λ > 1/3 there
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Figure 4. Full boundary value problem, solution domain and boundary conditions.

are possibly two stagnation–saddle points located either side of the nip at X = ±A,
figure 2. In practice one of these points may be absent since either the upstream or
downstream meniscus may advance close to the nip depending upon the value of λ
or Ca – see §3.1.

3. Stagnation–saddle points

3.1. Effect of flow rate

Figure 4 illustrates the full FE solution domain and boundary conditions – for further
details see Gaskell et al. (1995a,b). However, it is common practice in the case of
flooded inlets to solve in the downstream region only by replacing the upstream flow
with lubrication conditions imposed at X = 0 (Coyle et al. 1986; Thompson 1992):

U = U(0, Z, λ), |Z | 6 H0,

W = W (0, Z, λ) = 0.

}

(3.1)

The position and separation of the two stagnation–saddle points is given by expression
(2.31) as a function of λ. Both points approach the origin as λ → 1

3
(λ > 1

3
) and

coalesce when λ = 1
3
. This analytical prediction is compared with the results of

FE computations which make use of a stagnation point searching and classification
algorithm for free surface flows devised by Gaskell et al. (1995b). The first case
considered is that of symmetric flow, figure 2(a,b). For R/H0 = 100, Ca = 0.02
and large to moderate flow rates figure 5(a–c) shows flow between the nip and the
downstream meniscus.

For lower flow rates, figure 6(a,b) where the full flow field is revealed, A+ is
much closer to the nip. However, A− is absent due to the position of the upstream
meniscus being close to the nip and there are no upstream recirculations present.
That lubrication theory can locate A+ and A− accurately is apparent from table 1
where theoretical predictions via (2.31) are compared with computational results for
S = 1 (and S = 4) over a range of flow rates λ ∈ (1/3, λmax).

3.2. Effect of speed ratio

Asymmetric flow for S = 4, R/H0 = 100 and Ca = 0.005 is shown in figure 7(a–c).
Computational results given in table 1 confirm that X = A, the X-coordinate of A+,
depends on λ but is effectively independent of S . Key features in figure 7 include (i)
a transfer jet in the recirculation region conveying fluid from the slower to the faster
moving cylinder – see §3.4 – and (ii) a stagnation–saddle point A+ that is no longer
coincident with L+ at the onset of recirculating flow, figure 2(c,d).
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(a)

(b)

(c)

Figure 5. Downstream-only FE solutions for S = 1, Ca = 0.02, R/H0 = 100, R1/R2 = 1 and St = 0
showing the displacement of A+ (indicated by •) towards the nip as λ is reduced: (a) λmax = 1.379;
(b) λ = 1.000; (c) λ = 0.750.

In addition figure 8 shows a close-up of flow around the leading edge of the
recirculations. Unlike the symmetric case (U1 = U2), there is no flow separation at
L+ (or L−) when cylinder speeds are unequal. Fluid cannot flow around both sides
of L+ since it is blocked on one side by the presence of the saddle at A+.

Locating the onset of recirculations

Clearly u = 0 at L+ but ∂u/∂z is unknown and so the problem is how to locate
L+ when S 6= 1! In fact, despite the absence of flow separation in the usual sense
when S 6= 1, there is a point PH – just upstream of L+ – where the Prandtl–
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(a)

(b)

Indicates nip position

Figure 6. FE solutions for the full domain with S = 1, Ca = 0.02, R/H0 = 100, R1/R2 = 1 and
St = 0 for two values of λ: (a) 0.500; (b) 0.333. A+ is indicated by •.

Stagnation point location, X = A

Computational Computational
λ Analytical (S = 1, Ca = 0.02) (S = 4, Ca = 0.005)

1.30 24.083 24.253 24.181
1.20 22.804 22.961 22.891
1.10 21.448 21.588 21.519
1.00 20.000 20.124 20.068
0.90 18.439 18.548 18.498
0.80 16.733 16.829 16.788
0.70 14.832 14.915 14.923
0.60 12.649 12.718 12.711
0.50 10.000 10.055 10.071
0.40 6.325 6.367 6.409
0.38 5.292 5.330 5.390
0.36 4.000 4.023 4.116
0.34 2.000 2.110 2.068

Table 1. Comparison between analytical and numerical predictions of stagnation–saddle point
location X = A, as a function of λ, for S = 1, Ca = 0.02 and S = 4, Ca = 0.005.

Hopkins conditions do hold. This can be inferred by considering the three streamlines
approaching A+ shown in figure 8.

The one closest to L+ is typical of those that ‘double-back’ – having two turning
points where u = 0 and a point of minimum velocity, ∂u/∂z = 0 where u < 0. The one
passing through PH is a dividing streamline on which u > 0 except at the point, PH ,
where u = 0 and ∂u/∂z = 0. The streamline furthest from L+ is typical of those on
which u > 0, i.e. locally there are no points where u = 0. So the dividing streamline
can be regarded as the limiting case of a bundle of streamlines as the minimum
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(a)

(b)

(c)

A+

A+

A+

Figure 7. Downstream-only FE solutions for S = 4, Ca = 0.005, R/H0 = 100, R1/R2 = 1 and St = 0
showing the displacement of A+ (indicated by •) towards the nip as λ is reduced: (a) λmax = 1.402;
(b) λ = 1.000; (c) λ = 0.500.

velocity diminishes and becomes zero. The point PH is positioned close to L+. They
have approximately the same Z-coordinate and their X-coordinates are separated
by a small distance (≪ H0) so as to permit streamlines which double-back to pass
between them. The following conclusions can be drawn:

(i) At PH the Prandtl–Hopkins conditions apply yet it is not a separation point.
Here, we refer to it as a ‘Prandtl–Hopkins’ point.

(ii) The position of PH provides an approximation to that of L+, the onset of
recirculations.

(iii) As λ is reduced for a given S , PH approaches the nip as does its companion
on the other side of the nip. When λ = λ the two points collide to produce a
stagnation point (the birth of a saddle-node) at the location given by expression
(2.24). Furthermore, FE computations confirm the presence in the nip of a saddle
and a centre for λ ∈ (1/3, λ), figure 9(a–c).
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A+

L+

P H

Figure 8. Three streamlines approaching A+, for S = 4.0, Ca = 0.005, R/H0 = 100, R1/R2 = 1 and
St = 0, and flowing around L+ the leading edge of the recirculation region. PH indicates where
u = ∂u/∂z = 0.

(a)

(b)

(c)

Figure 9. The emergence of stagnation points in the nip (a saddle and a centre, denoted by •) as flow
rate is reduced for S = 4.0, Ca = 0.01, R/H0 = 100, R1/R2 = 1 and St = 0: (a) λ = 0.405; (b) 0.394;
(c) 0.386.
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Displacement of L+ from A+

Analytically the displacement of a stagnation–saddle point from the leading edge
of recirculating flow can be estimated to be of order (RH0)

1/2 if a Couette–Poiseiulle
velocity profile for U(X,Z) is assumed, expression (2.8). Although the latter cannot
describe the two-dimensional flow between PH , L+ and A+ it has proved remarkably
successful in locating A+. This is perhaps due to A+ being on the boundary of a
region of flow that is effectively unidirectional and so we might expect (2.8) to do
likewise for PH .

If the coordinates of PH are (L,Z) then imposing the Prandtl–Hopkins conditions,
u = ∂u/∂z = 0 gives the streamwise pressure gradient at X = L:

dp

dx
= µ

[U
1/2
1 + U

1/2
2 ]2

2H2(L)
. (3.2)

Hence

L2 =

[

3λ(1 + S)

(1 + S − S1/2)
− 2

]

RH0, Z =

(

1 − S1/2

1 + S1/2

)

H(L), (3.3)

and

(A − L)

(2RH0)1/2
= (3λ − 1)1/2 −

(

3λ(1 + S)

2(1 + S − S1/2)
− 1

)1/2

. (3.4)

Taking PH as an approximation to L+, then (3.4) shows that the displacement between
A+ and L+ depends on both λ and S and increases as S → 0 to a maximum

(A − L)

(2RH0)1/2
= (3λ − 1)1/2 −

(

3λ

2
− 1

)1/2

.

This is illustrated in figure 10 (a–d) which shows the effect of decreasing S for a flow
rate λ ≈ 1.3. Indeed as S is reduced from S = 1 the location of A+ moves towards
the slower cylinder whilst its X-coordinate remains effectively constant. The position
of L+ moves further upstream and the displacement (A−L) increases as indicated by
(3.4). Although (3.4) predicts the right trends, nevertheless it would be desirable to
confirm its accuracy via the numerical solution. Unfortunately, confirmation of this
numerically was not possible due to the interpolation functions employed in the FE
calculations being of too low an order for the degree of accuracy required.

A further observation concerns the dependence on S of the Z-coordinate of PH ,
given by (3.3). This has precisely the correct form in the sense that, as λ is reduced, the
two Prandtl–Hopkins points will approach the nip and collide to produce a stagnation
point where

Z/H0 =
1 − S1/2

1 + S1/2
(3.5)

which is consistent with (2.24), §2.

The limit S → 0

In order to see how the recirculating flow develops as speed ratio tends to zero,
figure 10(a–e) shows streamlines for S = 0.8, 0.5, 0.2, 0.05 and 0 with R/H0 = 100,
Ca = 0.1 and a flooded inlet (in the S = 0 case a contact angle of 30◦ is assumed
based on experimental observation, Gaskell et al. 1998). What they reveal is a smooth
transition to a single recirculation at S = 0. As S → 0:

(i) the stagnation–saddle point A+ approaches the upper cylinder and disappears
(at S = 0) as the strength of the transfer jet diminishes to zero;
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(a)

(b)

(c)

(d )

(e)

L+
A+

L+

A+

L+
0

Figure 10. Downstream-only FE solutions for Ca = 0.1, R/H0 = 100, St = 0, R1/R2 = 1
illustrating flow in the limit S → 0: (a) S = 0.8; (b) 0.5; (c) 0.2; (d) 0.05; (e) 0.

(ii) L+ → L+
0 (PH → L+

0 ), where L+
0 is the separation point on the stationary cylin-

der at a distance [(3λ − 2)RH0]
1/2 from the nip (via the Prandtl–Hopkins conditions).

3.3. Eddy structure: flow topology and flow patterns

The aim of this section is to explore the range of possible flow patterns in the
recirculating flow with λ > λ(S). These will depend on where the stagnation–saddle
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(a) (b)

(c) (d )

(e)
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A+

A+
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Figure 11. Flow patterns in the downstream recirculation region for both S = 1 and S 6= 1 (S > 1).
There are five different patterns: (a,b) are of the joint eddy type and (c–f ) are of the disjoint eddy
type featuring a transfer jet.

points are located and how their insets and outsets are connected. In the particular
case of fully submerged cylinders, the recirculations extend to ‘infinity’, figure 2(a,c),
and the ‘free’ insets/outsets at A+ and A− remain unconnected. With recirculations
of finite extent, bounded for example by an interface (figures 1a, 1b, 2b, 2d) the flow
patterns are quite different and the saddle points may or may not exist depending on
λ, figure 6, or Ca – see §3.5. Here it is assumed that A+ exists as an interior point
between the nip and the interface – with one inset extending upstream of the nip. As
for the remaining inset and two outsets, they are able to connect in three different
ways – for both S = 1 and S 6= 1 as illustrated in figure 11(a–f ). It is sufficient to
consider S > 1 only since S < 1 gives the same set of flow patterns.
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Flow pattern Flow topology

(A) S = 1; symmetric flow with no transfer jet, L+ and A+ coincident. joint eddy
(B) S 6= 1; asymmetric flow with no transfer jet, L+ lies between A+ joint eddy

and the faster moving cylinder.
(C) S = 1; asymmetric flow with a transfer jet, L+ and A+ coincident. disjoint eddy
(D) S 6= 1; asymmetric flow with a transfer jet directed from fast to disjoint eddy

slow moving cylinder; L+ connected to homoclinic orbit
through A+.

(E) S 6= 1; asymmetric flow with a transfer jet directed from slow to disjoint eddy
fast moving cylinder. L+ not connected to homoclinic
orbit through A+.

Table 2. Possible flow patterns and topologies.

In the first case, figure 11(a,b) the inset and two outsets connect to stagnation points
S1, S2 and S3 on the interface. The local flow structure, close to A+, can be inferred by
knowing the positions across the gap at X = A where u = 0. It follows via equations
(2.8) and (2.26) that these positions are Z = 0 and Z/H(A) = (1 − S )/(1 + S ). They
are coincident when S = 1, figure 11(a); otherwise a recirculation (with u = 0 at
(X,Z) = (A, 0)) lies above A+ when S > 1 (and below A+ when S < 1) as indicated
in figure 11(b). Wicks et al. (1995) examined the special case S = 1 and referred to
this as a ‘joint eddy topology’. Its key feature is the presence of two eddies attached
to the interface and sharing a common streamline. Clearly this joint eddy topology
exhibits two different flow patterns, figures 11(a) and 11(b), corresponding to:

(A) symmetric flow, S = 1 with L+ and A+ coincident;
(B) asymmetric flow, S 6= 1 (S > 1) in which L+ lies between A+ and the faster

moving cylinder.
In the second (and third) case, figures 11(c,d) and 11(e,f ) the inset at A+ connects

with the upper (lower) of the two outsets respectively to establish an interior eddy
bounded by a homoclinic orbit. The remaining outset exits with the outflow. In all four
schematics the flow topology is the same in that the eddies are now separated with
only one attached to the interface. Again using the terminology of Wicks et al. (1995),
this is referred to as a ‘disjoint eddy topology’ and its key feature is the presence of a
transfer jet or meandering streamtube carrying fluid across the recirculation region.
The transfer jet is directed from the upper to the lower cylinder in figure 11(c,d) and
from the lower to the upper in figure 11(e,f ). However flow patterns 11(c) and 11( f )
are identical and hence there are three different flow patterns, figure 11(c), 11(d) and
11(e) corresponding to:

(C) S = 1 with L+ and A+ coincident;
(D) S 6= 1 with L+ connected to the homoclinic orbit;
(E) S 6= 1 with L+ not connected to the homoclinic orbit.

The five flow patterns (A)–(E) exhibiting the two flow topologies are summarized in
table 2.

3.4. Eddy structure: transfer jets

Known mechanisms for generating transfer jets include (i) unequal cylinder speeds,
S 6= 1, (ii) unequal cylinder radii, R1 6= R2, (iii) gravity acting across the gap. Consider
each in turn:

(i) S > 1 (S < 1), R1 = R2 and cylinders side by side as in figure 1(a). Flow is of the
disjoint eddy type with a transfer jet which, experiment suggests (Gaskell et al. 1998)
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(a)

(b)

Figure 12. FE solutions for flow downstream of the nip in the absence of gravity St = 0, R1/R2 = 1,
R/H0 = 100, Ca = 0.1 for (a) S > 1, (b) S < 1 illustrating the presence of a transfer jet (shaded)
taking fluid from the slower to the faster moving cylinder.

and FE calculations confirm, transfers fluid from the slower to the faster moving
cylinder – see figure 12(a,b) for S > 1 and S < 1 respectively. These correspond to
flow pattern (E), schematic 11(e).

(ii) S = 1, R1 6= R2 and cylinders side by side as in figure 1(a). Again flow is of
the disjoint eddy type – with flow pattern (C) – as illustrated in schematic 11(c).
Experimental results and FE calculations confirm that the transfer jet is extremely
weak and transfers fluid from the cylinder of small radius to that of larger radius,
figure 13(a).

(iii) S = 1, R1 = R2 and cylinders one above the other as in figure 1(b). Here gravity
has only a hydrostatic effect in the interior of the flow yet it causes an asymmetric
effect close to the downstream interface in the form of a transfer jet taking fluid in the
direction in which gravity acts. This corresponds to flow pattern (C), see figure 13(b)
and schematic 11(c).

There is a fourth mechanism for generating transfer jets, which appears in the
upstream recirculation region due to an ‘asymmetric inlet feed’. Upstream of the nip,
where A− is an interior stagnation–saddle point the disjoint eddy topology can be
identified in figure 14 which is a FE solution for the full flow field. The transfer jet
is directed from the lower to upper cylinder, regardless of cylinder speeds, radii or
whether gravity is present/absent. Here S = 1 and the inlet is asymmetrically fed via
an inlet film attached to the lower cylinder and the primary requirement is to transfer
fluid to the upper cylinder.
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(a)

(b)

Figure 13. Downstream-only FE solutions for S = 1, Ca = 0.1, R/H0 = 100: (a) St = 0, R1/R2 = 4,
showing a transfer jet from the smaller to the larger radius cylinder; (b) St = 0.01, R1/R2 = 1
showing a gravitational transfer jet. A+ is indicated by •.

There is also the question of the circumstances in which the joint eddy topology
of schematic 11(b) – flow pattern (B) – might occur in practice? Clearly it will arise
when two competing, asymmetric effects are in balance; for example when one due
to unequal speeds is balanced by another due to gravity or unequal cylinder radii.
Figures 15(a,b) shows computational flow fields for S 6= 1 with two competing effects
in balance such that no transfer jet exists and the flow structure in the recirculation
region corresponds to schematic 11(b). Figure 15(c) illustrates the joint eddy topology
for S = 1 in which asymmetric effects due to gravity and unequal cylinder radii are
in balance, schematic 11(a).

Finally, flow pattern (D), schematic 11(d) refers to flows with two competing
asymmetric effects which are not in balance. One, due to unequal cylinder speeds,
is weaker than another due, for example, to gravity or unequal cylinder radii and –
as a consequence – the transfer jet is directed from the faster to the slower moving
cylinder.
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Inlet feed

Meniscus A–

Figure 14. FE solution for S = 1, Ca = 0.0015, R/H0 = 100, St = 0, R1/R2 = 1 showing the
upstream disjoint eddy flow caused by the inlet feed condition.

3.5. Effect of capillary number

FE computations by Coyle et al. (1986) revealed that the major effect of Ca is on
the location of the downstream meniscus and the extent of the recirculations. As Ca
is increased for the case S = 1 they showed that the two recirculations contract and
then disappear as A+ approaches and then coincides with the stagnation point S2 on
the interface, see schematic 11(a).

In order to examine the effect that the meniscus approaching the nip has on flow
structure for asymmetric flow, FE solutions are considered for S = 0.1, R/H0 = 100
as shown in figure 16(a–d). As Ca is increased beyond the value 0.2, figure 16(a),
the disjoint eddy structure contracts, figure 16(b), and the ‘initially large’, attached
eddy, disappears leaving the stagnation–saddle point A+ with its homoclinic orbit,
figure 16(c), Ca = 0.42. As Ca is further increased A+ is then annihilated via a
saddle–node bifurcation leaving only a dividing streamline with a stagnation point S1

on the interface, figure 16(d).
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(a)

(b)

(c)

Figure 15. Downstream-only FE solutions for Ca = 0.1, R/H0 = 100. In each case two transfer
jets are in balance: due to (a) gravity and unequal speeds, S = 2, St = 0.03, R1/R2 = 1; (b) unequal
speed and unequal radii, S = 0.69, St = 0, R1/R2 = 4; (c) gravity and unequal radii, S = 1,
St = 0.007, R1/R2 = 4. A+ is indicated by •.

4. Film thicknesses H1, H2

With θ given by (2.26), the Z-coordinate of the stagnation–saddle point A+ is known
and so the flux of fluid passing above and below is readily determined. Provided the
transfer jet is weak, so that the flux transferred in this way can be assumed to be
negligible, fluid will emerge in uniform layers of thickness H1 and H2 given by

U1H1 =

∫ H(A)

θH(A)

UdZ, U2H2 =

∫ θH(A)

0

UdZ. (4.1)
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(a)

(b)
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Figure 16. Downstream-only FE solutions for S = 0.1, R/H0 = 100, St = 0 and R1/R2 = 1
showing the effect of Ca on the downstream disjoint eddy flow: (a) Ca = 0.2 with two eddies in
the recirculation region; (b) Ca = 0.35 with a reduced attached eddy; (c) Ca = 0.42 where the
large ‘attached eddy’ has disappeared due to the meniscus advancing towards A+ (indicated by •);
(d) Ca = 0.7 where the meniscus continues to advance and A+ disappears as a result of a saddle–node
annihilation. A dividing streamline connects with the meniscus at S1.

It then follows that
H1

H(A)
=

S(S + 3)

6(1 + S)2
,

H2

H(A)
=

(1 + 3S)

6(1 + S)2
, (4.2)

and
H1

H2

=
S(S + 3)

(1 + 3S)
. (4.3)

In the light of the S 0.65 power law reported by Benkreira et al. (1981) and Coyle
et al. (1986) one might perhaps have expected the analysis to reveal an S2/3 power
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Figure 17. Film thickness ratio H1/H2 as a function of S , R1/R2 = 1: expression (4.3) (◦); FE
results obtained for Ca= 0.01 (⋄), 0.1 (�), 0.5 (∗) and for comparison S0.65 (×).
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Figure 18. Film thickness ratio as a function of S , R1/R2 = 1. A comparison of analytical, expression
(4.3) (◦) and FE, Ca = 0.1 (�), predictions with experimental data (+) (Gaskell et al. (1998).
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law for H1/H2 as opposed to the algebraic expression (4.3). Figure 17 compares
predictions for film thickness ratio given by this expression with the S0.65 power law
and FE computations for flooded inlets for three values of Ca, 0.01, 0.1 and 0.5 with
S ∈ [1, 10]. It is observed that over this range of S expression (4.3) consistently under-
predicts H1/H2. This is expected due to the neglect of the weak transfer jet which has
the effect of increasing H1 at the expense of H2. The FE results also indicate a slight
dependence on Ca which again is not surprising since Ca controls the extent of the
recirculation region from the stagnation–saddle point to the downstream meniscus.

Figure 18 compares analytical and numerical predictions for H1/H2 with recent
experimental data collected from a high-precision, laboratory-scale apparatus having
horizontally-aligned cylinders, Gaskell et al. (1998). Film thicknesses were measured
with a maximum error of 5% and like those of Benkreira et al. (1981), where cylinders
were aligned vertically, are in close accord with the theoretical predictions.

Finally, a feature of (4.3) is its range of applicability. It was first derived by
Savage (1992) for flooded inlets and cylinders of equal radius yet the only essential
requirement is the presence of a region of quasi-unidirectional flow terminated by
a stagnation–saddle point. It therefore applies to both fully flooded and moderately
starved inlets with non-dimensional flow rates λ ∈ [1/3, λmax].

Appendix. Stagnation points in the flow between cylinders of unequal radii,

R1 and R2

Adopting the same scalings as those given in (2.3) and with δ and R as defined in
§2, the upper and lower cylinder surfaces are given by

H1(X) = H0 +
X2

2R1

= H0

(

1 + x2 R

R1

)

= H0η1(x),

H2(X) = H0 +
X2

2R2

= H0

(

1 + x2 R

R2

)

= H0η2(x).















(A 1)

The dependent variables are expanded in powers of δ2 and the zero-order solution
for u(x, z) satisfying u = 1 on z = −η2(x) and u = S on z = η1(x) is

u(x, z) = S +
(S − 1)

2

(

z

η

)

−
(S − 1)

2

(

η1

η

)

+
px

2
(z − η1)(z + η2). (A 2)

Similarly the solution for w(x, z) satisfying

w = −
dη2

dx
= −η2x on z = −η2(x),

w = S
dη1

dx
= Sη1x on z = +η1(x),











(A 3)

is given by

w = (S − 1)(z2 − η2
2)

(

ηx

4η2

)

+
1

2

(

η2

η

)

x

(1 − S)(z + η2) − η2x

−
pxx

2

(

z3 + η3
2

3
+

(η2 − η1)

2
(z2 − η2

2) − η2η1(z + η2)

)

−
px

2

(

(η2x − η1x)

2
(z2 − η2

2) − (η2η1x + η1η2x)(z + η2)

)

. (A 4)
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Using the Reynolds equation to eliminate pxx yields

w(x, z) = (S − 1)(z2 − η2
2)

(

ηx

4η2

)

+
1

2

(

η2

η

)

x

(1 − S)(z + η2) − η2x

+
1

2

(

3ηx
η

px −
3

2

ηx

η3
(1 + S)

)(

z3 + η3
2

3
+

(η2 − η1)

2
(z2 − η2

2) − η2η1(z + η2)

)

−
px

2

(

(η2x − η1x)

2
(z2 − η2

2) − (η2η1x + η1η2x)(z + η2)

)

. (A 5)

Denoting the coordinates of a stagnation point by

X = A, Z = −H2(A) + 2γH(A),
x = a, z = −η2 + 2γη,

}

(A 6)

where H1(X) + H2(X) = 2H(X) and η1(x) + η2(x) = 2η(x). Then u = w = 0 yields

0 = 1 + (S − 1)γ + 2pxη
2γ(γ − 1), (A 7)

0 = (S − 1)

(

ηx

η2

)

(η2γ2 − ηη2γ) +

(

η2x −
η2ηx

η

)

(1 − S)γ − η2x

+3ηx

(

px −
(1 + S)

2η2

)(

3η2
2γ + 4η2γ3 − 6η2ηγ

2

3
+ (η2 − η1)(ηγ

2 − η2γ) − η2η1γ

)

.

(A 8)

With pxη
2/(1+S) replaced by α, then after some manipulation (A 7) and (A 8) reduce

to two equations for α and γ:

0 =

(

1

1 + S

)

+

(

S − 1

1 + S

)

γ + 2αγ(γ − 1), (A 9)

0 = η2x ((1 − S)γ − 1 − 2α(1 + S)γ(γ − 1))

+ηx

(

(S − 1)

(1 + S)2
γ2 + 2αγ2 + 2γ2 + (2α − 1)(2γ3 − 3γ2)

)

. (A 10)

The coefficient of η2x is identically equal to zero by way of (A 9), hence (A 9) and
(A 10) reduce to a cubic equation in γ:

γ(γ − 1)

(

γ −
1

1 + S

)

= 0. (A 11)

As mentioned in §2, γ = 0 and γ = 1 are special cases corresponding to S = ∞ and
S = 0 which need to be considered separately. The remaining solution is

γ =
1

1 + S
and α = 1, that is px =

1 + S

η2
. (A 12)

This refers to a stagnation point at (X,Z) = (A,−H2 + 2γH) where

dP

dX
=

µ(U1 + U2)

H2(A)
, (A 13)

and this point divides the gap (of width 2H(A)) in the ratio

2H − 2γH

2H
= S =

U1

U2

. (A 14)
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