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Abstract 

Anti-angiogenic therapy is efficacious in metastatic renal cell carcinoma (mRCC).  However, 

the ability of anti-angiogenic drugs to delay tumor progression and extend survival is limited, 

due to either innate or acquired drug resistance.  Furthermore, there are currently no 

validated biomarkers that predict which mRCC patients will benefit from anti-angiogenic 

therapy.  Here we exploit susceptibility contrast magnetic resonance imaging (SC-MRI) 

using intravascular ultrasmall superparamagnetic iron oxide particles to quantify and 

evaluate tumor fractional blood volume (fBV) as a non-invasive imaging biomarker of 

response to the anti-angiogenic drug sunitinib.  We also interrogate the vascular phenotype 

of RCC xenografts exhibiting acquired resistance to sunitinib.  SC-MRI of 786-0 xenografts 

prior to and two weeks after daily treatment with 40mg/kg sunitinib revealed a 71% (p<0.01) 

reduction in fBV in the absence of any change in tumor volume.  This response was 

associated with significantly lower microvessel density (p<0.01) and lower uptake of the 

perfusion marker Hoechst 33342 (p<0.05).  The average pre-treatment tumor fBV was 

negatively correlated (R2=0.92, p<0.0001) with sunitinib-induced changes in tumor fBV 

across the cohort.  SC-MRI also revealed suppressed fBV in tumors that acquired resistance 

to sunitinib.  In conclusion, SC-MRI enabled monitoring of the anti-angiogenic response of 

786-0 RCC xenografts to sunitinib, which revealed that pre-treatment tumor fBV was found 

to be a predictive biomarker of subsequent reduction in tumor blood volume in response to 

sunitinib, and acquired resistance to sunitinib was not associated with a parallel increase in 

tumor blood volume. 
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Introduction 

Anti-angiogenic therapy has shown considerable efficacy in metastatic renal cell carcinoma 

(mRCC) (1).  Newly diagnosed mRCC patients are now treated with vascular endothelial 

growth factor (VEGF) receptor tyrosine kinase inhibitors (sunitinib or pazopanib) as standard 

of care (2, 3).  Approximately 80% of patients with mRCC achieve an initial period of disease 

control with these agents, whilst ~20% of patients derive no benefit.  However, even 

responding patients inevitably progress due to acquired resistance that typically develops 

after a period of several months on treatment (4).  Two modes of resistance to anti-

angiogenic therapy are thus currently recognised; innate resistance, whereby the tumor fails 

to respond to the therapy from the outset, and acquired resistance, whereby after a period of 

response to therapy the tumor begins to regrow (5, 6).  Both forms of resistance may arise 

due to the presence of alternative mechanisms of tumor vascularisation, which are VEGF-

independent, and allow the tumor to evade the effects of the targeted agent.  These 

mechanisms are however poorly understood, and there are currently no validated 

biomarkers that predict which mRCC patients will benefit from anti-angiogenic therapy. 

 

Non-invasive imaging approaches that facilitate the detection of changes in tumor biology 

may form the basis for improved predictive biomarkers.  Advances in imaging technologies 

provide a means of defining quantitative biomarkers to inform on biologically relevant 

structure-function relationships in tumors (7).  Such imaging methods enable a better 

understanding of the behaviour and heterogeneous distribution of such associations, and 

inform on response and resistance to treatment (8).  In addition to quantifying any therapy-

induced volumetric change in vivo, functional imaging methods can also provide additional 

mechanistic insight. 

 

Perfusion computed tomography (CT), and dynamic contrast-enhanced (DCE) magnetic 

resonance imaging (MRI) using low molecular weight gadolinium chelates, have been widely 
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used to assess patients with mRCC and response to VEGF signalling inhibitors (9).  

However, these clinical studies suffered from marked measurement variability, particularly 

with DCE MRI.  Alternative functional MRI techniques are thus being evaluated to provide 

more specific imaging biomarkers for the assessment of tumor vascular function and 

response in vivo.  One approach, susceptibility contrast MRI, involves measuring the uptake 

and distribution of intravenously administered ultrasmall superparamagnetic iron oxide 

(USPIO) particles, composed primarily of an iron (Fe3+) oxide crystalline core with a 

biocompatible coating (10).  USPIO particles create large susceptibility effects that increase 

the transverse MRI relaxation rate R2*, and whose long intravascular half-life enables 

steady-state, high-resolution measurements of R2* (11).  Quantitation of fractional blood 

volume (fBV, %), derived from measurements of the absolute increase in tumor R2* following 

the administration of USPIO particles, provides a sensitive imaging biomarker of response to 

vascular targeted therapies (12-14). 

 

The mechanisms of resistance to anti-angiogenic therapy can be investigated using 

preclinical cancer models.  We have previously established that subcutaneous xenografts of 

the 786-0 renal cancer cell line can demonstrate resistance to sunitinib treatment (15).  The 

aims of this study were to (i) evaluate fBV derived from susceptibility contrast MRI as a non-

invasive predictive imaging biomarker of 786-0 xenograft response in vivo, and (ii) 

interrogate the vascular phenotype of 786-0 xenografts exhibiting acquired resistance to 

sunitinib. 
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Materials & Methods 

Cell culture, tumor propagation, drug formulation and treatment 

Human 786-0 RCC cells (ATCC, LCG Standards; purchased 2011) were cultured in RPMI 

1640 medium supplemented with 10% foetal bovine serum (Invitrogen, Paisley, UK) and 

maintained at 37°C in a humidified incubator with an atmosphere of 95% air, 5% CO2.  

Resuscitated cells were cultured for ~2-3 weeks prior to injection into mice.  Cells tested 

negative for mycoplasma infection and cell line authenticity was confirmed by short tandem 

repeat (STR) typing (15). 

  

All in vivo experiments were performed in accordance with the local ethical review panel, the 

UK Home Office Animals (Scientific Procedures) Act 1986, the United Kingdom National 

Cancer Research Institute guidelines for the welfare of animals in cancer research (16), and 

the ARRIVE guidelines (17).  Adult female CB17/SCID mice (CB17/lcr-Prkdcscid/lcrlcoCrl, 

Charles River, UK) were injected subcutaneously in the right flank with 3x106 786-0 cells.  

Animals were housed in specific pathogen-free rooms in autoclaved, aseptic microisolator 

cages with a maximum of four animals per cage.  Food and water were provided ad libitum.  

The mice were routinely monitored for the appearance of palpable tumors.  Established 

tumors were enrolled into the study when volumes reached ~250mm3, as assessed by 

callipers, using the formula for an ellipsoid volume, (L×W2)/2, where L and W were the two 

largest dimensions of the ellipsoid. 

 

Sunitinib was formulated in 0.5% carboxymethyl cellulose, 300mM NaCl, 0.4% Tween-80 

and 0.9% benzyl alcohol adjusted to pH 6.0, as previously described (18).   

 

Mice bearing established 786-0 xenografts underwent MRI prior to and following two weeks 

of daily oral treatment with 40mg/kg sunitinib.  Following the post-treatment scan, tumors 

were excised, fixed in formalin (10% (v/v) neutral buffered formalin) and embedded in 

paraffin for subsequent immunohistochemistry.  Additional untreated tumors were used to 
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provide control/reference tissue for histological analysis.   

 

An additional six tumor-bearing mice that were not imaged prior to treatment but exhibited 

acquired resistance to daily treatment with sunitinib, designated 786-0-R, were imaged by 

MRI when their tumors reached at least 4x their volume at commencement of treatment. 

 

MRI data acquisition and analysis 

MRI was performed on a 7T horizontal bore microimaging system (Bruker, Ettlingen, 

Germany) using a 3cm birdcage volume coil.  Anaesthesia was induced with a 10ml/kg 

intraperitoneal injection of fentanyl citrate (0.315mg/ml) plus fluanisone (10mg/ml (Hypnorm; 

Janssen Pharmaceutical Ltd., High Wycombe, UK)), midazolam (5mg/ml (Hypnovel; 

Roche)), and sterile water (used at a ratio of 1:1:2).  A lateral tail vein was cannulated with a 

27G butterfly catheter (Hospira, Royal Leamington Spa, Warwickshire, UK) for remote 

administration of USPIO particles.  Mice were positioned in the coil on a custom-built 

platform to isolate the tumor, and their core temperature was maintained at 37°C with warm 

air blown through the magnet bore. 

 

Contiguous multi-slice T2-weighted 1mm thick axial images were first acquired for tumor 

localisation and volume determination.  Multiple gradient-recalled echo (MGRE) T2*-

weighted images were then acquired from three 1mm thick axial slices across each tumor 

using a 128x128 matrix over a 3cmx3cm field of view (FOV), with repetition time 

(TR)=200ms, 8 echo times (TE) of 6 to 27ms spaced 3.14ms apart, and 8 averages, giving 

an overall acquisition time of ~3½ minutes.  A dose of 150µmolFe/kg of the USPIO particle 

preparation P904® (overall particle size ~25-30nm diameter, Guerbet, Villepinte, France) 

was then administered intravenously and, after 3 minutes to allow for equilibration, a second 

set of identical MGRE images acquired. 

 

Image analysis was performed using in-house software (Imageview, developed in IDL, ITT 
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Visual Information Systems, Boulder, CO, USA).  Tumor volumes were determined using 

segmentation from regions of interest (ROI’s) drawn on T2-weighted images for each tumor-

containing slice.  Tumor R2* maps were calculated from the MGRE images acquired prior to 

and following administration of USPIO particles by fitting a single exponential to the signal 

intensity echo time curve on a voxel-by-voxel basis using a Bayesian maximum a posteriori 

approach (19).  Parametric maps of tumor fBV (%) were subsequently calculated using the 

USPIO-induced change in R2* (ǻR2*), as previously described (14, 20). 

 

Immunohistochemistry and fluorescence microscopy  

Immunohistochemical detection of endomucin was used to assess tumor microvessel 

density (MVD) (15).  Formalin-fixed paraffin-embedded (FFPE) sections were incubated with 

rat monoclonal anti-endomucin antibodies (#SC65495, Santa Cruz, Heidelberg, Germany), 

and immunoreactivity detected with biotinylated anti-rat IgG secondary antibodies and a 

DAB substrate kit (Vector, Burlingame, CA, USA).  Slides were counterstained with 

haematoxylin prior to mounting in DEPEX, and visualised on a BX51 microscope (Olympus 

Optical, London, UK).  Endomucin positive vessels were counted in 5 randomly selected 

high-power fields (x100) for each tumor and the number converted into vessels/mm2. 

 

Separate cohorts of mice bearing 786-0 xenografts treated for 2 weeks with 40mg/kg/day 

sunitinib or vehicle control were injected via a lateral tail with the perfusion marker Hoechst 

33342 (Sigma-Aldrich, Poole, UK) (21).  After 1 minute, tumors were rapidly excised and 

snap frozen over liquid nitrogen.  Fluorescence signals from Hoechst 33342 were 

subsequently detected above a constant threshold at 365nm from 10µm thick frozen whole 

tumor sections (3 per tumor) using a motorised scanning stage (Prior Scientific Instruments, 

Cambridge, UK) attached to the BX51 microscope, driven by image analysis software (CellP, 

Soft Imaging System, Münster, Germany).  The area of each tumor section with Hoechst 

33342 fluorescence was determined and expressed as a percentage of the whole tumor 

area, as previously described (12, 22). 
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Statistics 

All statistical analyses were performed using GraphPad Prism version 6.07.  Results are 

presented in the form mean ± 1 s.e.m.  Following application of a Shapiro-Wilk normality test 

to confirm the Gaussian distribution of the data, significance testing employed Student’s two-

tailed t-test, assuming unequal variances with a 5% level of significance. Significant 

correlations were determined using linear regression analysis. 
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Results 

Susceptibility contrast MRI with USPIO particles measures fractional tumor blood 

volume of 786-0 xenografts 

Susceptibility contrast MRI incorporating the use of USPIO particles was used to assess the 

perfused vasculature of subcutaneous 786-0 xenografts.  The schematic data in 

Supplementary Figure 1 shows a T2-weighted anatomical image (Supplementary Fig 1a), 

gradient-recalled echo (GRE) images prior to and post administration of USPIO particles 

(Supplementary Fig 1b,c) and the calculated parametric fractional blood volume (fBV) map 

(Supplementary Fig 1d)  obtained from a representative 786-0 xenograft.  These data show 

that successful injection and delivery of USPIO particles into the tumor intravascular 

compartment resulted in a clear reduction in GRE image intensity in perfused tumor areas 

allowing calculation of a parametric fBV map.  Furthermore, administration of USPIO 

particles resulted in no noticeable adverse effects to the mice or tumor growth, and no 

significant difference in tumor baseline R2* measured prior to and post-treatment, indicating 

no sequestration of USPIO particles that could influence subsequent fBV measurements. 

 

Tumor fBV maps obtained from a representative mouse bearing a 786-0 xenograft prior to 

and 2 weeks after daily treatment with 40mg/kg sunitinib are shown in Figure 1a and 1b.  A 

marked reduction in fBV was consistently observed post-treatment, which was primarily 

associated with the tumor core. The fBV cumulative frequency curves for the same 786-0 

xenograft pre- and post-treatment revealed a marked left shift in distribution towards smaller 

values, with a substantial increase in the proportion of voxels with fBV below 5% following 

treatment (Figure 1c).  Susceptibility contrast MRI revealed a reduction in fBV in 8 of 9 

treated tumors (Figure 1d), resulting in a significant (p<0.01) 70% reduction in the cohort 

mean fBV in the absence of any significant change in cohort mean tumor volume (Table 1).  

This response was associated with a significant (p<0.01) reduction in microvessel density 

(MVD), as assessed by immunohistochemical detection of endomucin positive vessels 

(Figure 2a), and significantly (p<0.05) reduced perfusion as evidenced by lower Hoechst 
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33342 uptake (Figure 2b), in the sunitinib-treated cohort relative to control.  Positive 

endomucin staining and Hoechst 33342 fluorescence was seen predominantly at the 

periphery of tumors in the sunitinib-treated mice. 

 

Pre-treatment fractional tumor blood volume is predictive of the anti-angiogenic 

response to sunitinib in 786-0 xenografts 

The data in Figure 1d suggests that tumors exhibiting a relatively high pre-treatment fBV 

subsequently showed the greatest reduction in fBV after 2 weeks daily treatment with 

sunitinib.  By simply plotting the average baseline fBV against the treatment-induced change 

in fBV after 2 weeks, a correlation would be expected even when there may be no 

relationship (23).  To overcome this, and test whether the baseline fBV was indeed 

predictive for the subsequent reduction in fBV in response to sunitinib, the average of the 

final and mean baseline fBV was plotted against the change in fBV (ǻfBV) measured after 2 

weeks treatment for each tumor (Figure 3a).  A highly significant and strong negative 

correlation was obtained (R2=0.92, p<0.0001), greater than the correlation of 0.7 that would 

be expected by chance (23).  There was no significant relationship between sunitinib-

induced reduction in fBV with change in tumor volume (Figure 3b), pre-treatment tumor fBV 

with pre-treatment tumor volume or sunitinib-induced reduction in fBV with pre-treatment 

tumor volume (data not shown). 

 

Acquired resistance to sunitinib is not associated with a parallel increase in tumor 

fractional blood volume in 786-0 xenografts 

Notably, in six tumor-bearing mice, we observed a period of growth control during the early 

phase of sunitinib treatment, which was followed by tumor re-growth whilst still on treatment 

(Supplementary Fig 2a).  This is similar to the phenomenon of acquired drug resistance that 

can be seen in mRCC patients treated with sunitinib in the clinic.  Susceptibility contrast MRI 

data was also acquired from these 786-0-R xenografts that exhibited acquired resistance to 
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sunitinib.  Here, acquired resistance was defined as a four-fold increase in tumor volume 

compared to the tumor volume at the day treatment started, and which was observed at a 

median of 75 days post initiation of daily treatment (range = 62 to 99 days).  Representative 

parametric fBV maps acquired from two 786-0-R xenografts are shown in Figure 4a.  Note 

the far larger cross-sectional area/appearance of the progressing tumors on MRI compared 

to that in Figure 1.  The quantitative volumetric and fBV data obtained from the 786-0-R 

cohort are summarised in Figure 4b and c, and Table 1, with that obtained from the 786-0 

cohort pre- and post-treatment shown for comparison.  Collectively these data clearly show 

that, surprisingly, the progressing 786-0-R xenografts maintained a suppressed fBV. 
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Discussion 

The initial response and subsequent relapse of mRCC patients treated with VEGF receptor 

tyrosine kinase inhibitors such as sunitinib is well documented (4).  Currently there are no 

validated biomarkers that accurately predict which mRCC patients will benefit from anti-

angiogenic therapy, and the mechanisms associated with the innate and acquired resistance 

are poorly understood.  In this pre-clinical study, quantitation of tumor fractional blood 

volume (fBV) using susceptibility contrast MRI was evaluated (i) for its potential as a non-

invasive predictive imaging biomarker of 786-0 xenograft response to sunitinib, and (ii) to 

quantify the degree of functional vascularisation of 786-0 xenografts exhibiting acquired 

resistance to chronic treatment with sunitinib, in vivo (15). 

 

Susceptibility contrast MRI yielded a pre-treatment mean fBV of ~8% in untreated 786-0 

xenografts, consistent with similar measurements reported across a range of subcutaneous 

rodent tumor models using different USPIO preparations (12, 14, 24, 25).  Daily treatment 

with sunitinib for 2 weeks induced a marked reduction in the fBV of 786-0 xenografts in vivo, 

with tumor uptake of USPIO particles, and therefore patent vasculature, restricted to the 

tumor periphery post-treatment. Importantly, this response was associated with histologically 

confirmed reduction in MVD and perfused vessels, providing strong validation of fBV as a 

quantitative imaging biomarker of functional tumor vasculature, and its response to sunitinib, 

in this model of RCC (7).  Similar reductions in tumor fBV, measured by susceptibility 

contrast MRI, have been reported following treatment with other anti-vascular therapies (12, 

14, 24, 26-28).  The data provides further support for the clinical development and 

application of USPIO particles for the assessment of human tumor vasculature and its 

response to treatment.  Recent studies have highlighted the efficacy and safety of the 

USPIO particle preparation ferumoxytol for MRI investigations in both adults and children 

(29-31), and in imaging-embedded oncology clinical trials (32).  

 

RCC 786-0 xenografts exhibiting a relatively larger fBV subsequently showed the greatest 
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reduction in fBV in response to sunitinib.  Furthermore, a strong and highly significant 

negative correlation between baseline tumor fBV and its subsequent response to daily 

treatment with sunitinib over 2 weeks was obtained, suggesting that baseline fBV has 

prognostic value for subsequent tumor vascular response to sunitinib, and is a predictor of 

the magnitude of the reduction in fBV following treatment.  The absence of any correlation of 

sunitinib-induced change in fBV with changes in tumor volume re-iterates the shortcomings 

of the RECIST criteria to correctly assess human tumor response to anti-angiogenic 

therapies, and the need for robust non-invasive vascular imaging readouts (33).   

 

In the clinic, perfusion CT and DCE MRI, and the quantitative biomarkers they provide 

(Hounsfield unit (HU) of density and the volume transfer constant Ktrans, respectively), have 

been predominantly used to assess patients with mRCC and response to VEGF signalling 

inhibitors (9).  Several imaging-embedded investigations reported that highly vascular renal 

tumors had a beneficial outcome following treatment (34-37), and that early reductions in HU 

and Ktrans related to subsequent beneficial survival (34, 38, 39).  Marked measurement 

variability, particularly in Ktrans, was apparent in these clinical studies, likely a consequence of 

different pharmacokinetic modelling approaches used to analyse the CT and DCE MRI data.  

The data herein strongly suggest that quantitation of fBV using susceptibility contrast MRI 

may provide a simpler, more sensitive and specific imaging biomarker for predicting and 

assessing the vascular response of mRCC in the clinic.  In this regard, the potential of 

arterial spin-labelling MRI, which is wholly non-invasive and yields absolute quantitation of 

tissue blood flow (mls/100g/min), has also been highlighted (40, 41). 

 

Until recently, remarkably few pre-clinical studies have exploited relapsing and/or acquired 

resistant tumor models to study mechanisms of resistance to targeted therapies.  One 

reason for this is the inherent longevity, and hence practical implications, associated with 

developing a resistant phenotype in xenografts in vivo.  However, the radiology and 

quantitative imaging biomarkers in such models are likely to provide more accurate pre-
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clinical platforms for evaluating both novel therapeutics and drug resistance.  We recently 

described the development of a 786-0 RCC xenograft model of acquired resistance to daily 

dosing with sunitinib, with tumors exhibiting late resistance ~2-3 months after treatment 

initiation (15).  In the present study, susceptibility contrast MRI clearly revealed impaired fBV 

in progressing 786-0-R xenografts in vivo (see also Supplementary Figure 2). 

 

A rebound in tumor angiogenesis, mediated by VEGF-independent mechanisms, has been 

suggested as one mechanism by which tumors may evade anti-angiogenic therapy (5, 6), 

However, this has been predicated on numerous studies that have relied on 

histopathological determination of tumor vessel density, and have not incorporated any 

direct measure of perfused/functional tumor vasculature in vivo.  Our non-invasive 

susceptibility contrast MRI data obtained in 786-0 xenografts demonstrate that acquired 

resistance to sunitinib is not associated with functional re-vascularisation in situ, and suggest 

that tumors can gain acquired resistance to anti-angiogenic therapy without the need to 

induce rebound angiogenesis. 

 

How do we explain why acquired resistance to anti-angiogenic therapy can be observed 

without an accompanying rebound re-vascularisation? Tumor adaptation to treatment with 

VEGF signalling inhibitors may involve a metabolic adaptation in cancer cells, which permits 

cancer cells to survive despite a treatment-induced reduction in tumor vasculature and the 

associated hypoxic environment (42, 43).  Intriguingly, we recently demonstrated that 

sunitinib-resistant 786-0 tumor xenografts are more hypoxic than parental 786-0 xenografts 

in vivo (44).  Furthermore, metabolic symbiosis between tumor cells distal and proximal to 

surviving vessels has also been recently implicated in acquired resistance to sunitinib in 

RCC (45).  Therefore, it appears possible that the 786-0-R xenografts analysed in the 

current study can acquire resistance to anti-angiogenic therapy, without recourse to rebound 

re-vascularisation, because there is a shift in tumor metabolism that compensates for the 

reduced vascular supply. 
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In trying to elucidate the complex mechanisms responsible for resistance to anti-angiogenic 

therapy, our study also highlights the important contribution from using vascular imaging 

strategies that correctly inform on the extent and distribution of functional tumor vasculature.  

Furthermore, longitudinal monitoring of tumor fBV with susceptibility contrast MRI could 

facilitate expedient switching of VEGF receptor tyrosine kinase inhibitors as part of 

sequential therapeutic strategies designed to overcome acquired resistance, and which 

appear to be beneficial in the treatment of patients with mRCC (46, 47). 

 

In conclusion, we have shown that quantitation of fBV using susceptibility contrast MRI 

provides a sensitive imaging biomarker for both predicting and assessing the response of 

786-0 RCC xenografts to treatment with sunitinib.  Clinical MRI investigations incorporating 

USPIO preparations are increasingly being performed, and determination of fBV may thus 

positively impact on mRCC patient stratification with anti-angiogenic therapy.  In addition, we 

provide strong evidence that the phenotype of 786-0 xenografts exhibiting acquired 

resistance to sunitinib is not associated with functional re-vascularization in vivo. 
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Table and Legend 

 786-0  786-0-R 

 Pre-treatment Post-treatment  Post-treatment 

Volume (mm3) 153 ± 17 148 ± 24  494 ± 44 

fBV (%) 8.2 ± 2 2.4 ± 0.5**  2.2 ± 0.5 

 

Table 1 – Summary of the quantitative volumetric and fractional blood volume (fBV) data 

acquired from 786-0 xenografts (n=9) prior to and 2 weeks after daily treatment with 

sunitinib, and from 786-0-R xenografts exhibiting acquired resistance to sunitinib (n=6).  

Data are mean ± 1 s.e.m., **p<0.01, paired t-test. 
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Figure Legends 

 

Figure 1 – The anti-angiogenic activity of sunitinib in 786-0 RCC xenografts can be 

assessed in vivo using susceptibility contrast MRI.  Parametric fractional blood volume 

(fBV) maps calculated from a 786-0 xenograft (a) prior to and (b) following 2 weeks of daily 

treatment with 40mg/kg sunitinib p.o.  (c) Cumulative frequency curves of fBV obtained from 

the same 786-0 xenograft.  The mean pre- and post-treatment fBV values for this tumor 

were 9.6 and 2.3%.  (d) Line series of fBV determined for each 786-0 xenograft imaged prior 

to and post-treatment. 

 

Figure 2 – Histological confirmation of the anti-angiogenic effects of sunitinib on 

vascular density and perfused vasculature of 786-0 RCC xenografts.  (a) Microscopic 

images (x100) acquired from endomucin stained sections from control and sunitinib-treated 

786-0 RCC xenografts, used to quantify MVD.  A significantly lower MVD was determined in 

the sunitinib treated cohort (n=9) compared to control (n=5) (data are mean ± 1 s.e.m., 

**p<0.01, unpaired t-test). (b) Composite fluorescence images of Hoechst 33342 uptake 

acquired from whole sections of control and sunitinib-treated 786-0 RCC xenografts, used to 

quantify the extent of functional (perfused) tumor vasculature.  The area of Hoechst 33342 

uptake was significantly lower in the sunitinib treated cohort compared to control (data are 

mean ± 1 s.e.m., n=5 per treatment group, *p<0.05, unpaired t-test). 

 

Figure 3 – Tumor fractional blood volume (fBV), quantified using susceptibility 

contrast MRI, is a predictive biomarker of subsequent response to sunitinib in 786-0 

RCC xenografts.  (a) Scatter graph of the average of the final and mean pre-treatment fBV 

plotted against the change in fBV in 786-0 xenografts measured 2 weeks after daily 

treatment with 40mg/kg sunitinib.  Linear regression analysis and associated 95% 

confidence intervals are shown.  A highly significant and strong negative correlation was 

obtained (R2 = 0.92, p< 0.0001). (b) Scatter graph showing no relationship between 
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sunitinib-induced ǻfBV with change in tumor volume (R2 = 0.37, p=0.08). 

 

Figure 4 – Acquired resistance to sunitinib is not associated with rescue 

angiogenesis in 786-0 RCC xenografts.  (a) Parametric fractional blood volume (fBV) 

maps obtained from two 786-0-R xenografts exhibiting acquired resistance to sunitinib 

acquired 62 (upper map) and 99 (lower map) days post initiation of daily treatment.  The 

mean fBV for both tumors was 2.1%.  The quantitative volumetric and fBV data acquired 

from the 786-0-R cohort are summarised and shown in comparison to that obtained from the 

786-0 xenografts, and clearly shows that (b) despite the larger mean MRI-derived tumor 

volume compared to the post-treatment 786-0 tumors, (c) there was no difference in fBV.  

Data are the individual volumetric and fBV measurements from each tumor, and the cohort 

mean ± 1 s.e.m. 
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