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Highlights 

 S. oneidensis senses insoluble electron acceptors, including electrodes. 

 Chemotaxis and energy taxis are proposed to be responsible. 

 Microbial electrochemical system design requires more insight in taxis. 

 New electrochemical setups can increase insights into taxis. 
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Abstract 

Shewanella oneidensis MR-1 is a facultative anaerobe, capable respiring on an extraordinarily large and diverse 

array of both intra- and extracellular terminal electron acceptors, including insoluble metal oxides and 

electrodes. The ability to perform extracellular electron transfer has sparked great interest over the last three 

decades and MR-1 has become both a model organism for fundamental research into extracellular electron 

transfer and a candidate microbe for microbial electrochemical systems, including microbial fuel cells. A pre-

requisite for colonisation and biofilm formation on electrodes is the migration of bacteria towards the 

electrode. Here, we review current understanding in the steps involved in MR-1 migration towards insoluble 

electron acceptors and electrodes. The main experimental techniques used to evaluate taxis are summarised 

and different mechanisms proposed for MR-1 taxis are contrasted, in particular chemotaxis versus energy 

taxis.  

 

Introduction and Background 

Since the discovery of Extracellular Electron Transfer (EET) capable microbes, such as Shewanella oneidensis 

MR-1 (MR-1) [1], there has been a concerted effort to uncover the underlying mechanisms of EET. Interest in 

EET has been amplified by potential applications of these bacteria in microbial fuel cells (MFC) and microbial 

electrosynthesis. MFC provide the vehicle by which electrical energy from electrogenic organisms can be 

harnessed. MFCs were already studied in the 1960s by NASA as a means to generate electric power from 

organic waste during long haul space journeys [2]. MFC have enjoyed considerable improvements since then, 

especially during the last 2 decades, yet are still severely limited in practical applications, particularly those 

concerning energy production. This is predominantly due to low power output along with high internal 

resistances and/or prohibitive material costs (required for cathodes of the more efficient MFCs) [2-4]. Typical 

MFCs for waste water treatment can, at best, produce power densities between 0.1-0.5 W/m
2
 [3, 5]. Crucially, 

MFC power output tends to scale poorly with increasing reactor volumes. MFC power densities with reactor 

volumes 1 L or greater fall below the required threshold for feasibility in industrial applications such as 

electricity generation during wastewater remediation [6, 7]. 

 

Difficulties and limitations in improving the efficiency of MFCs have in part led to a diversification in the 

potential applications being explored, leading to an explosion in numbers of related devices collectively known 
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as microbial electrochemical systems (MES). Potential applications of MES range from bioremediation and 

waste water treatment to microbial electrosynthesis and biosensing, all of which fundamentally rely on the 

EET ability of certain microbes.  

 

Both Shewanella (primarily MR-1) and Geobacter species (sp) are used extensively as model organisms for EET 

studies and MES in general [8-12]. The two main mechanisms proposed for microbial/bacterial EET are direct 

electron transfer (DET) and mediated electron transfer (MET). DET, through outer membrane cytochromes, is 

the predominant method of EET used by Geobacter sp within MES [12, 13]. In the case of MR-1, things are less 

clear. While there is a consensus in the literature that MR-1 is capable of both DET and MET [10, 14], the 

relative contributions/importance of both to the overall rate of EET in MES is still debated[10, 14, 15]. 

  

In contrast to Geobacter sp, which forms thick (20-45 ǌm) and stable electroactive biofilms [16-18], MR-1 

forms thinner (1-16 ǌm) and relatively loosely adherent biofilms and typically populates electrodes only 

partially [18-21]. Geobacter sp also generally perform better regarding maximum current density of MFCs. 

Higher current densities can be related back to Geobacter sp ability to form relatively thick, high-quality 

electroactive biofilms on electrodes that help to increase EET through DET. The reasons attributed to the 

popularity of MR-1 as a model organism, in addition to Geobacter sp, stem from two main points 1) MR-1 is a 

facultative anaerobe as opposed to a strict anaerobe like Geobacter sp and is therefore much easier to work 

with, and 2) MR-1 utilises an unparalleled large array of diverse terminal electron acceptors, including Mn(III), 

Fe(III), Co(III) nitrate, nitrite, fumarate, DMSO, TMAO, thiosulfate, humic acid, and even radioactive uranium 

isotopes, which opens up other applications such as soil remediation.[22-25]    

  

If MR-1 could form more substantial biofilms at the electrode interface, it would likely enhance the 

performance of MFCs. There have been some encouraging results from recent efforts to improve MR-1 biofilm 

quality, either through engineering electrode materials to increase biocompatibility with enhanced electrode-

cytochrome connectivity and denser cell coverage [26] or engineering the microbes themselves to enhance 

their biofilm forming capabilities [18]. For example, Liu et al [18] over expressed YdeH, a diguanylate cyclase 

which catalyses the biosynthesis of bis-(30'-50')-cyclic dimeric guanosine monophosphate (c-di-GMP) from 

guanosine triphosphate. High levels of c-di-GMP promotes the expression of adhesive matrix components 

which in turn enhance bacterial biofilm formation. Compared to WT MR-1, the strain in which c-di-GMP was 

overexpressed formed better biofilms with a significantly increased biomass and ~2.8 fold increase in 

maximum power density [18]. 

 

Chemotaxis and energy taxis  

Prior to the formation of biofilms on electrodes, bacteria must first locate, migrate towards and then colonise 

the surface. Understanding these steps would undoubtedly be beneficial for designing improved MES, possibly 

enabling strategies that speed up the recruitment of bacteria to electrode surfaces. In general, bacteria steer 
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migration via either chemotaxis or energy taxis. During both chemotaxis and energy taxis, bacteria migrate 

from areas of low attractant (e.g. electron acceptor) concentration to areas of higher concentration. Bacteria 

are thought to perceive spatial concentration gradients by sensing temporal gradients whilst moving [27-29]. 

EŶĞƌŐǇ ƚĂǆŝƐ ĞŵƉůŽǇƐ Ă ŐĞŶĞƌŝĐ ƐĞŶƐŽƌ ĨŽƌ Ă ŵĞƚĂďŽůŝĐ ŝŶĚŝĐĂƚŽƌ͕ ĨŽƌ ĞǆĂŵƉůĞ ƚŚĞ ȴƉH Žƌ ȴʗ ĐŽŵƉŽŶĞŶƚ ŽĨ ƚŚĞ 

proton motive force (pmf), whereas chemotaxis uses sensors for a specific molecule, e.g. a food/carbon source 

or an electron acceptor [30, 31]. One advantage of energy taxis is that it does not require specific sensors for 

every molecule of interest, unlike chemotaxis where each chemoattractant will usually require its own 

complementary sensor. 

 

In aquatic systems, MR-1 is found concentrated in and around pockets containing high concentrations of 

electron acceptors, such as found in sediments [23, 24], in an otherwise electron acceptor limited environment. 

Steep redox gradients exist at the interface of these pockets and MR-1 can migrate up redox gradients, either 

directly or indirectly, to reach and stay close to these pockets. Energy taxis is a likely candidate considering 

MR-1 can reduce some species non-specifically via outer membrane cytochromes in addition to its many other 

terminal reductases with specific substrates. An alternative option is that MR-1 senses changes in redox 

conditions directly, possibly with a sensor, comparable to the Aerotaxis receptor (Aer) of E. coli, with an Flavin 

adenine dinucleotide (FAD) associateĚ͕ ͚ǀĞůĐƌŽ ůŝŬĞ͛ PĞƌ-Arnt-Sim (PAS) domain, for detecting redox status [25]. 

Importantly, in case of insoluble electron acceptors (including electrodes in MES), there is not necessarily any 

gradient of soluble molecules to allow either chemotaxis or energy taxis. Therefore, MR-1 must possess 

another method for locating these electron acceptors. In this review, we discuss studies of MR-1 taxis towards 

electron acceptors and highlight recent studies which try to address MR-1 migration towards insoluble 

electron acceptors such as electrodes. Proposed mechanisms for MR-1 electron acceptor taxis and the main 

techniques used to gather information on MR-1 taxis will also be discussed. Box 1 provides an overview of 

some of the main techniques. 
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Box 1. Illustrations of the three predominant techniques used for bacterial taxis studies. Top) Swarm/swim 

plate assay; depending on the concentration of agar used. Middle) the qualitative version of the chemical in 

well assay and the almost identical chemical in plug assay.  Bottom) the capillary assay. 
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Electron acceptor taxis of MR-1 

Early studies around MR-1 taxis towards electron acceptors were carried out by Nealson et al [24, 32], who 

used multiple techniques, including chemical in well plate assays, capillary assays and an in house developed 

spectrophotometric method. Most of the known electron acceptors for MR-1 were observed to act as tactic 

attractants. The strengths of the attractants towards MR-1 appeared to be related to their redox potential, 

with oxygen and nitrate/nitrite (high redox potential) showing the largest attractant response whilst DMSO 

and thiosulphate (low redox potential) presented much weaker responses. In stark contrast with the electron 

acceptors tested, no carbon source, including lactate, achieved any response under aerobic conditions and 

only formate could elicit a tactic response under anaerobic conditions [24, 32]. 

  

In competition assays, strong attractants (O2, nitrate, and nitrite) inhibited taxis to all other electron acceptors. 

Weaker attractants such as fumarate and trimethylamine N-oxide (TMAO) had no effect on nitrate or nitrite. 

Dimethyl sulfoxide (DMSO) and elemental sulphur were the weakest of all the attractants, yet inhibited taxis 

towards all other electron acceptors including the stronger attractants, nitrate and nitrite. Furthermore, assays 

with mutants that are deficient in nitrate or nitrite reduction still demonstrated wild type levels of taxis 

towards nitrate and nitrite. Put together, these results obtained by Nealson et al strongly support the 

conclusion that MR-1 does not utilise energy taxis and appears to use a mechanism more reminiscent of 

chemotaxis where migration towards the attractant is not related to its metabolism [24]. Results from a study 

by Bencharit et al [23], using the chemical in plug and swarm plate assays, looking at MR-1 taxis responses 

towards metals and other anaerobic electron acceptors, were in general agreement with Nealson et al. In 

addition, Bencharit et al demonstrated tactic responses from MR-1 to soluble forms of Fe(III) and Mn(III) using 

the swarm plate assay which the authors suggest is more suited towards detecting energy taxis responses than 

chemical in well/plug plate assays. Bencharit et al concludes that MR-1 is capable of both energy taxis and 

chemotaxis, with Mn(III) and Fe(III) responses more likely a result of energy taxis whereas tactic responses 

towards Mn(II) and Fe(II) could be the result of chemotaxis [23]. 

  

Contrary to the conclusion above, later a comprehensive study by Baraquet et al [25] provided very compelling 

evidence supportive of an energy taxis mechanism. The mutants ȴƚŽƌA ĂŶĚ ȴĚŵƐA͕ deficient in terminal 

reductases TorA and DmsA, were unable to respond to the substrates TMAO and DMSO, respectively. 

Inhibition of molybdoenzymes which includes the reductases TorA, DmsA, and NapA, by pre-growing MR-1 

with excess tungsten, resulted in the inhibition of taxis towards TMAO, DMSO and nitrate, but had no effect on 

taxis towards electron acceptors reduced by non-molybdoenzyme reductases such as nitrite and fumarate. 

These results demonstrate the requirement of terminal reductases for taxis towards the corresponding 

electron acceptors. As mentioned, energy taxis requires sensing of at least one of the two pmf components. To 

distinguish which of the two components is required for MR-1 energy taxis, the authors used nigericin to 

neutralise proton gradients and valinomycin to disrupt the membrane potential. Only the addition of nigericin 

ŚĂĚ Ă ĚĞƚƌŝŵĞŶƚĂů ĞĨĨĞĐƚ ŽŶ ƚĂǆŝƐ ƚŽǁĂƌĚƐ ĞůĞĐƚƌŽŶ ĂĐĐĞƉƚŽƌƐ͕ ŝŶĚŝĐĂƚŝŶŐ ȴƉH ŝƐ ƚŚĞ ƌĞƋƵŝƌĞĚ ĐŽŵƉŽŶĞŶƚ ĨŽƌ 
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MR-1 energy taxis towards electron acceptors [25].  Separate results from Li et al [33], using a custom-made 

diffusion gradient chamber to evaluate MR-1 electron acceptor taxis, corroborate the results and conclusions 

of Baraquet et al. A subsequent study by Li et al [34] sheds insight onto how an energy taxis type mechanism, 

which requires a gradient of soluble substrate, could help MR-1 locate insoluble electron acceptors. Once 

stabbed into swarm plates with embedded amorphous MnO2 or Fe(OH)3 particles, MR-1 migrates outward, 

with a rate dependant on the concentration of particles, in a similar manner to swarm plates with soluble 

electron acceptors. On the addition of riboflavin, the MR-1 tactic band migration rate increased dramatically, 

suggesting that flavins, secreted by MR-1 at significant concentrations (~100 nM), play a part in the taxis 

towards insoluble metal oxides. The authors propose a mediated energy taxis mechanism, whereby MR-1 

secretes reduced flavins which diffuse outward. On contact with insoluble electron acceptors, the flavin 

becomes re-oxidised and thus forms a concentration gradient between the MR-1 and the insoluble electron 

acceptor (or electrode). MR-1 can then use energy taxis to migrate up the concentration gradient of oxidised 

flavin. 

 

A recent study by Kim et al [35] investigated the effects of flavin and oxygen on MR-1 migration. Using a 

microfluidics device and video microscopy, the authors performed cell tracking experiments with gradients of 

oxygen and riboflavin. The results show that MR-1 migrates up concentration gradients of both oxygen and 

flavin. Going up the concentration gradients, MR-1 swimming speed increases in combination with an increase 

in the frequency of direction changes. Reportedly, MR-1 displayed reversal and forward-backward-flick 

behaviours, both of which are indicative of unipolar flagellates [36, 37], to change its direction. Interestingly, 

the velocity of MR-1 in the direction of riboflavin gradients is significantly increased under anaerobic 

conditions. Together, these findings give further support to an energy taxis mechanism, specifically the 

mechanism proposed by Li et al [34] of mediated energy taxis with flavins as the mediator.   

        

Prior to experiments of Kim et al [35], who tracked cells by video microscopy, Nealson et al [38, 39] used a 

similar cell tracking technique to investigate MR-1 taxis towards insoluble electron acceptors including MnO2 

particles and electrodes, which supported previous findings that MR-1 is capable of tactic responses towards 

insoluble metal oxide electron acceptors[23, 34]. A strong positive response was demonstrated towards MnO2 

particles, which is in keeping with swarm plate assays (embedded with MnO2) by Worden et al [34]. MR-1 

bacteria that are close to MnO2 particles display an increase in swimming speed and a concomitant/associated 

increase in reversal frequency, similar to that observed later by Kim et al [35] for flavin and O2 gradients. In 

contrast to the flavin mediated energy taxis proposed by Li et al [34], Nealson et al suggests gradients of 

Mn(II), formed by MR-1 reducing MnO2 at the particle surface, could facilitate chemotaxis. A similar, albeit to a 

much lesser extent, response was observed with Fe(OH)3 particles, indicating the response is not isolated to 

MnO2. In addition to using insoluble metal oxides, Nealson et al also tested carbon fibre micro electrodes, 

poised at +600mV (vs Ag/AgCl), to mimic the redox potential of MnO2 particle surfaces. The response of MR-1 

to oxidative electrode potentials was almost identical to that of the metal oxides. Of the potentials tested, no 
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swimming response was observed at potentials below +500 mV, with optimal responses seen between +550 to 

+800 mV (vs Ag/AgCl). Manual tracking of cells close to the metal oxide particles and poised electrode surface 

showed that those cells that made contact would swim faster with a significantly higher reversal frequency 

then non-contacting cells. Mutant strains deficient in any of the genes required for EET (e.g cymA), abolished 

the responses observed with the WT MR-1 to MnO2, Fe(OH)3, and poised electrodes, demonstrating the 

requirement of EET for MR-1 migration to insoluble electron acceptors. As expected, a chemotaxis deficient 

ȴĐŚĞA-3 strain, incapable of reversing the direction of its flagella motor and therefore unable to reverse its 

swimming direction, was also unable to congregate around the insoluble electron acceptors. This led Nealson 

et al ƚŽ ƉƌŽƉŽƐĞ Ă ŚǇƉŽƚŚĞƚŝĐĂů ŵŽĚĞů͕ ƚĞƌŵĞĚ ͚ĐŽŶŐƌĞŐĂƚŝŽŶ͕͛ ƚŽ ĞǆƉůĂŝŶ ŚŽǁ M‘-1 accumulates around 

insoluble electron acceptors. Congregation is first initiated when MR-1 randomly encounters an insoluble 

electron acceptor, allowing transfer of electrons through the MtrC/OmcA pathway from the bacteria to the 

electron acceptor. This event causes a change in swimming behaviour whereby speed and reversal frequency 

is increased which allows the bacteria to keep within proximity of the insoluble electron acceptor. Over time 

ƚŚŝƐ ͚ĐŽŶŐƌĞŐĂƚŝŽŶ͛ ĐĂŶ ůĞĂĚ ƚŽ ĂƚƚĂĐŚŵĞŶƚ ĂŶĚ ďŝŽĨŝůŵ ĨŽƌŵĂƚŝŽŶ [38].    

  

  

Discussion 

 A large proportion of studies into MR-1 taxis towards electron acceptors have used agar plate assays, namely 

chemical in plug/well and swarm plate, as their main technique [22-25, 34]. The attraction of using agar plate 

based assays comes from their relative simplicity and good sensitivity to both attractants and repellents, as 

opposed to capillary assays which tend to have poor repellent sensitivity [40]. Unfortunately, no technique is 

perfect and over the last decade there have been numerous reports of discrepancies between agar plate 

based assays and other techniques [24, 25, 33, 41], most notably the well-established quantitative capillary 

assay, developed by Alder et al [42]. These discrepancies led Li et al [41] to assess the validity of the chemical 

in plug assay using non-chemotactic/non-motile mutants of MR-1 and Helicobacter pylori and found the assay 

susceptible to false positive responses from both species under certain conditions [41]. This unreliability is one 

of the reasons that most studies using agar plate assays also use a secondary technique, such as the capillary 

assay [24], microfluidics chemotaxis chamber [25] or a in house custom made device [24, 33]. On top of the 

mentioned issues with agar plate assays, other techniques commonly used in taxis studies have also been 

reported as potentially unreliable. For example, Li et al [33] had to discard results obtained by the capillary 

assay, because dubious values were obtained for chemotaxis constants.  

  

The mentioned issues with the standard tools for probing chemotaxis has encouraged researchers to turn to 

other more direct techniques, like video microscopy with cell tracking [35, 38, 39]. This technique can monitor 

both population responses and single cell behaviours in a quantitative manner, making it a versatile technique. 

Once bacterial positions have been located in the image stack making up the video, bacterial traces are 

obtained either manually, which is inherently tedious and time consuming, or by computational methods, 
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usually in the form of purpose built in-house programs assembled in MATLAB or similar environments. Manual 

tracking is typically more accurate but not practical for large numbers of frames and/or bacteria. The 

computational method, although fast and convenient can suffer from artefacts, especially if the average path 

length of the bacteria between frames is close to or longer than the average distance between individual 

bacterial cells (i.e., when the cells are closely packed together and/or are moving rapidly).  

  

The use of electrodes to couple electrochemistry with video microscopy allows for more control over tracking 

experiments and can provide valuable insight into MR-1 taxis. With this type of set up, MR-1 attachment or 

swimming behaviour can be correlated with the electron transfer rate to insoluble electron acceptors in real 

time. If a soluble redox mediator was to be investigated, the redox state of the mediator can be rapidly altered 

close to the electrode, allowing for a clear distinction between MR-1 responses to oxidised and reduced forms 

of a chemical [43]. Nealson et al [38, 39] noticed that MR-1 demonstrated a relaxation between switching 

potentials. This effect would have been difficult to pick up without having the ability to electrochemically 

control and rapidly alter the redox state of the mediator (or soluble electron acceptor).  

  

Although MR-1 taxis has been researched extensively, the issue off how MR-1 locates and migrates towards 

electron acceptors, especially insoluble electron acceptors such as electrodes, has not been fully resolved. The 

observation that MR-1 flocks around insoluble electron acceptors and electrodes at oxidative potentials in the 

absence of added mediators can make it tempting to speculate that MR-1 may sense electric fields. However, 

typical ionic strengths of the electrolytes used in MES are around 0.1 M. Under these conditions, the Debye 

length is < 1nm preventing any meaningful electric fields from extending into the media.  

 

Originally Nealson et al provided convincing results supportive of a receptor based chemotaxis mechanism for 

soluble electron acceptors. Since then, however, there have been multiple reports containing equally 

convincing results supporting an energy taxis or mediated energy taxis type mechanism for both soluble and 

insoluble electron acceptors. For insoluble electron acceptors, it is proposed MR-1 forms its own redox type 

gradient using self-secreted flavins. Using video microscopy cell tracking with both insoluble metal oxides and 

electrodes, Nealson et al has proposed a separate model for MR-1 taxis toward insoluble electron acceptors, 

ƚĞƌŵĞĚ ͚ĐŽŶŐƌĞŐĂƚŝŽŶ͛ ǁŚŝĐŚ ƌĞůŝĞƐ ŽŶ ŝŶŝƚŝĂů ĐŚĂŶĐĞ ĞŶĐŽƵŶƚĞƌƐ ŽĨ ĚŝƌĞĐƚ contact between MR-1 and acceptor. 

Out of the two proposed models, for MR-1 migration towards insoluble electron acceptors, mediated energy 

taxis, in the authors opinion, provides a more complete and appealing explanation to the majority of results 

reported by the studies looked at here. Future studies should use multiple distinct techniques along with non-

motile/non-chemotactic and EET deficient mutants as controls to prevent issues like false positives and 

overcome limitations of the individual techniques. 
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