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Abstract
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1 Introduction

In many countries around the world, schools are spending more money on students than ever

before. In the period 2000-2009, expenditure per student increased in each OECD country

by an average of more than 36%.1 In England, expenditure per pupil has risen by 69% in

real terms over the same period, from £3,060 in the year 2000 to £5,180 in 2010.2 Whether

this is a worthwhile use of resources is an important question for policy and parents.

There is a large literature relating public investments in schools to student outcomes in

terms of school achievements and qualifications.3 The impact of additional expenditure on

outcomes of students is often evaluated using value-added education production functions

where child cognitive ability, measured by school test scores, is explained by current inputs

and past test scores (e.g. Hanushek 1979 and 1986; Hanushek et al. 1996).4 Causal esti-

mation approaches usually rely on exogenous variation in school expenditure over time or

areas in quasi-experimental designs (e.g. Jenkins et al. 2006, Steele et al. 2007, Heinesen

2010, Machin et al. 2010, Holmlund et al. 2010, Gibbons et al. 2012, Lavy 2012, Haegeland

et al. 2012). The main econometric issues with estimating such models are input omission

and mis-measurement of test scores, which may bias the estimation of the effect of school

expenditure on pupil outcomes, of the persistence of achievement between education stages

as well as the estimation of other input effects.

This paper assesses the potential biases caused by unobserved school, child, and family

characteristics as well as of measurement error in test scores in estimating the return to

school expenditure and the persistence in achievement. We spell out the assumptions needed

for well established estimation approaches such as ordinary least squares and school fixed

effects estimation to yield unbiased estimates. We are especially concerned with the issue

of omitted variables when estimating value-added models using school administrative data

which typically lack details on family and school characteristics and on children’s endowments

such as socio-emotional abilities and health. The omission of these characteristics can bias

1OECD 2013, primary, secondary and post-secondary non-tertiary students.
2Department for Children, Schools and Families 2009, in 2008 prices.
3For reviews of this literature see Hanushek et al. (1996), Krueger (2003), Todd and Wolpin (2003),

Hanushek (2006), Meghir and Rivkin (2011), Gibbons and McNally (2013).
4Notice that the definition of the value-added model adopted in this paper should not be confused with

the gain-score model which explains the gain in test scores between two school grades or stages using current
inputs and which some papers refer to as value-added.
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both the estimated effect of past test scores and/or of expenditure per student on current

test scores. To address this problem we propose a novel two-step estimation procedure. By

using administrative data on state schools in England we can compare the coefficients on

school expenditure and past achievement estimated using our two-step procedure with results

obtained using more traditional approaches, thus assessing the magnitude of the resulting

biases empirically. The main contributions of this paper therefore are 1) to spell out the

assumptions required for a number of estimation approaches to yield unbiased estimates

of both the expenditure per pupil effect and the persistence in achievement; 2) to propose

an estimation technique that accounts for additional sources of unobserved heterogeneity,

namely unobserved child characteristics; 3) to test empirically the importance of controlling

for different types of unobserved heterogeneity for the case of England; 4) to assess the

importance of measurement errors in test scores.

Our two-step estimation strategy exploits the availability of test scores in different sub-

jects to control for unobserved child endowments in the first step estimation and uses school

fixed effects to control for unobserved heterogeneity among schools in the second step. The

purpose of the first step estimation is to obtain an unbiased estimate of the persistence of

achievement, i.e. the effect of past on current test scores. It is similar to the within-pupil

between-subject estimation, which has been used to control for unobserved student charac-

teristics that are invariant across subjects (e.g. Dee 2005 and 2007; Clotfelter et al. 2010;

Slater et al. 2010; Altinok and Kingdon 2012). By using test scores available in different

subjects at the end of primary school and at the end of compulsory schooling, we are able

to control for unobserved child-specific endowments and evaluate the effect of lagged tests

observed at age 11 on test scores observed at age 16 (“persistence”).5 This child fixed effects

estimation has been used to estimate the effect of inputs that vary across subjects (such as

teacher characteristics and lagged tests) but cannot be used to provide estimates of the effect

5Approaches that have been used to take account for these unobserved endowments using non-
experimental data are dynamic panel data estimation (Todd and Wolpin 2007; Andrabi et al. 2011) and a
difference-in-difference approach which eliminates the unobserved child endowment by considering the dif-
ference between adjacent school cohorts in the difference in gains in test scores measured at two different
grades (Rivkin et al. 2005). The main advantage of our method over dynamic panel estimation and the
difference-in-difference approach is that we do not require the education production model, and in particular
the coefficient of school inputs and the effect of omitted child’s endowments, to be invariant across children’s
ages or grades, which is a restrictive assumption (see Cunha et al. 2006; Cunha and Heckman 2007 and Sass
et al. 2014).
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of explanatory variables that are invariant across subjects such as the school expenditure

per pupil. Therefore we introduce a second step.

For our second step we use the persistence parameter estimated in the first step to

generate a new dependent variable, the test score gain between ages 11 and 16 (this is the age

16 test score minus the estimated persistence multiplied by the age 11 test score). We regress

this on school expenditure and other control variables and we take account of unobserved

school characteristics which can confound the effect of school expenditure by adopting a

school fixed effect estimation. Our second step estimation does not control for unobserved

child characteristics, but this is unlikely to bias our results because school expenditure has no

variation across pupils and is likely to be independent of pupils’ characteristics conditional

on our control variables.6 The second step of our estimation, similarly to Holmlund et al.

(2010), exploits idiosyncratic variation in expenditure within schools caused by anomalies in

funding rules in England for identification (see section 3.2 for details).7

We also address the issue of measurement errors in test scores. Specifically, we adopt an

analytic correction method that makes use of reliability ratios of school test scores to derive

a correction factor for test scores (Schafer 1986). We do not only take account of errors

caused by test construction but also of errors that affect school test scores across subjects,

e.g. measurement errors caused by the fact a student was unwell during the exam period. We

also implement an alternative correction method based on an approach suggested by Boyd

et al. (2013), and run a sensitivity check to evaluate the consequences for our estimated

parameters of considering a much lower reliability ratio than the one adopted in the previous

two methods.

Our two-step estimation approach can be seen as an extension of the estimation of mul-

tilevel value-added models which are usually used to assess the effectiveness of schools, but

which we use to estimate the effect of school expenditure (see Aitkin and Longford 1986,

Goldstein et al. 1993, Ferrão and Goldstein 2009, Rasbash et al. 2010). Similarly to Ras-

bash et al. (2010) our production model is a multilevel model that allows for the presence

of several random effects to take account of unobserved individual (pupil), family, school,

6In the empirical application we also compute the second step estimation by controlling for sibling rather
than for school fixed effects and we find that the estimated effect of expenditure per pupil is very similar.

7The main differences of our approach to Holmlund et al. (2010) is that we take account of any endogeneity
caused by the potential correlation between the past test score and unobserved student characteristics.
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neighbourhood and local education authority effects. The novelty of our approach is that

we take account of (i) the endogeneity issue caused by the correlation between the lagged

test score and the unobserved child effect and between the remaining observed inputs and

unobserved school characteristics, (ii) potential bias caused by measurement errors in test

scores.

The results of our two-step estimation show that a £1,000 increase in school spending

per student increases test scores by about 6% of a standard deviation. The omission of

school characteristics leads to a large underestimation of the effect of expenditure per pupil.

In contrast, unobserved child and family background does not lead to a large bias of the

expenditure effect once we control for unobserved school characteristics. This is good news

for papers using administrative data that are unable to control for these characteristics. For

researchers interested in estimating the persistence of student achievement from one stage

of education to the next, however, we find that the omission of child endowment leads to

substantial overestimation of the persistence. Similarly, we find that measurement error in

test scores does not lead to a large bias of the estimated effect of school expenditure while

it does lead to an underestimation of persistence.

Even if our proposed two-step estimation of the value-added model takes account of

econometric issues that have been neglected by most previous empirical papers and con-

tribute to the literature by assessing the potential biases caused by such econometric issues,

there are some criticisable assumptions which the value-added model imposes.8 These include

linearity and additive separability in inputs, and grade and time-invariance of the education

production model. We do not assume grade-invariance and discuss the implications of the

other assumptions for our empirical application.

The rest of the paper proceeds as follows. Section 2 presents the education production

model. Section 2.1 describes the assumptions imposed by estimation methods that succes-

sively control more extensively for unobserved heterogeneity, starting from ordinary least

squares estimation which controls only for observed student’s and school characteristics,

continuing with school and sibling fixed effect estimations which control additionally for

8For a review of criticisable assumptions imposed by value-added models we refer to Boardman and
Murnane (1979); Todd and Wolpin (2003); Boyd et al. (2013); Lockwood and McCaffrey (2014); Sass et
al. (2014); and two special issues on “Value-Added Assessment” published in Journal of Educational and
Behavioral Statistics 2004, Vol. 29, No. 1-2.
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unobserved school and family characteristics, and finally presenting our preferred two-step

estimation. Section 2.2. presents our analytic correction method for measurement errors in

test scores. Section 3 gives institutional background on the education and school funding

system in England and defines the exogenous variation in the expenditure per pupil across

time which we exploit to estimate the effect of expenditure. In Section 4, we describe our

data sources and variables used while in Section 5 we present the estimation results for the

education production model, the observed empirical biases, and sensitivity checks. Finally,

Section 6 concludes.

2 The education production model

We specify our education production model as a value-added model where the child’s cog-

nitive ability is explained by school investments, the child’s past cognitive ability and a set

of other control variables. Because the allocation of resources to schools is determined by

governmental and local educational authority rules which are redistributive, the amount of

expenditure per pupil depends on school characteristics and pupil composition and may dif-

fer by local education authority (LEA).9 For this reason, we have to control thoroughly for

school and LEA characteristics that might confound the effect of school investment. Further-

more, because both current and past cognitive ability may depend on neighborhood, family

and child characteristics we have to control for these additional characteristics to avoid any

confounding effect.

We focus on cognitive development during the stage that goes from the end of primary

school to the end of compulsory schooling in England, i.e. from about 11 to 16 years of age,

and adopt the following education production model:

Y ∗ih,16 = f(I
S
ih,Xih, Y

∗

ih,11, µauthority,ih, µschool,ih, µneighbourhood,ih, µfamily,ih, µchild,ih, ωihs,16), (1)

where Y ∗ih,16 and Y ∗ih,11 are unobserved latent cognitive abilities of child i in family h at ages

16 and 11; ISih in the school investment during secondary school up to age 16; Xih is a vector

of observed child, household and school characteristics, which are not direct investments in

children’s cognitive skills but proxy for factors that affect them (e.g. gender, ethnicity, lan-

guage spoken at home, free school meal eligibility, number of siblings, school characteristics

9LEAs are the local councils that are responsible for education within their jurisdiction.
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and pupil composition); ωihs,16 is a random error which is independent of all other inputs;

µauthority,ih, µschool,ih, µneighbourhood,ih, µfamily,ih and µchild,ih are unobserved effects which cap-

ture all remaining relevant unobserved characteristics at level of LEA, school, neighbourhood,

family and child.10 The assumptions on these unobserved components will depend on the

estimation method used and we discuss these for several methods below.

To estimate the education production model we have access to administrative data on all

pupils enrolled in state schools in England who took their school-leaving exams in the period

2007-2010, and we assume that the model is invariant across the four different cohorts of

students. We are unable to observe family investments in our sample; but we can observe

the school expenditure per pupil, which we use as a measure of school investment, and three

measures of cognitive abilities at ages 11 and 16, which are test scores in Mathematics, En-

glish and Science obtained in National Curriculum exams. We assume that the relationship

between each of these three test scores observed at age 11 and 16 and the unobserved latent

cognitive skill at the corresponding age follows a classical measurement error model11

Yihs,11 = Y
∗

ih,11 + eihs,11 and Yihs,16 = Y
∗

ih,16 + eihs,16, (2)

where the subscript s indicates the test subject and takes value 1 for Mathematics, 2 for

English and 3 for Science, and the subscripts i and h denote children and households respec-

tively. eihs,11 and eihs,16 are subject-specific random components identically and indepen-

dently distributed across children, households and test subjects with mean zero and variance

σ2
e , and are independent of the true latent skill at ages 11 and 16, Y ∗ih,11 and Y ∗ih,16. The

random components eihs,16 and eihs,11 in part reflect a subject-specific skill which can persist

over time and in part a random error which does not capture any real skill but reflects a mea-

surement error caused for example by inappropriate administration of the subject-specific

cognitive test or by temporary variation in the level of attention of a child when taking the

test. This implies that while eihs,16 and eihs,11 are identically and independently distributed

across children, households and test subjects, they are not independently distributed across

time. For this reason, without inconsistency with the classical measurement models (2), we

assume that

eihs,t = vihs,t + ǫihs,t, (3)

10We keep the same subscripts for all unobserved effects for simplicity.
11In the empirical section we provide evidence supporting such type of model (see Section 5).
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where t denotes the age of the child and can take value 11 or 16, vihs,t measures the deviation

at age t of the subject-specific latent skill Y ∗ihs,t from the general latent skill Y ∗ih,t and ǫihs,t is

a random measurement error.

The assumptions on models (2) and (3) can be restated in terms of vihs,t and ǫihs,t as

the following conditions, which we call maintained assumptions because they are imposed

throughout the rest of paper:

M1 vihs,t is identically and independently distributed across subjects, children and house-

holds with mean zero and variance σ2
v ;

M2 vihs,t is not independently distributed across age and Cov(vihs,16, vihs,11) /= 0, whereas

there is no correlation across age for different subjects, i.e. Cov(vihs,16, vihs′,11) = 0 if

s /= s′ ;

M3 ǫihs,t is identically and independently distributed across subjects, children, households

and age with mean zero and variance σ2
ǫ ;

M4 Cov(ǫihs,t, vihs′,t′) = 0 for any i, h, s, s′, t and t′;

M5 vihs,t and ǫihs,t are independent of the true latent skill at age 11 and 16, Y ∗ih,11 and

Y ∗ih,16, and of the education production function inputs at age 11 and 16 including the

unobserved effects;

M6 the persistence in Y ∗ih,t, which we define following Andrabi et al. (2011) as the correlation

between Y ∗ih,16 and Y ∗ih,11 net of the explanatory variables in the education production

model, is identical to the persistence in subject-specific latent skills Y ∗ihs,t, which implies

that the persistence in vihs,t is identical to the persistence in Y ∗ih,t.

In Section 5 we assess the validity of these assumptions whenever possible. Under the as-

sumptions defined above and imposing that the production function (1) is additive, separable

and linear in its arguments, and replacing the unobserved latent cognitive skill at age 16 and

at age 11 with the observed test score in subject s, we can rewrite (1) as

Yihs,16 = α + I
S
ihβS +Xihγ + Yihs,11ρ + µih + uihs, (4)

7



where uihs = eihs,16−ρeihs,11+ωihs,16, and similarly to the multilevel model adopted by Rasbash

et al. (2010)

µih = µauthority,ih + µschool,ih + µneighbourhood,ih + µfamily,ih + µchild,ih. (5)

Of particular interest in this model are the effect of expenditure per pupil and the persistence

ρ which measures the self productivity of the stock of skills at age 11. To get a consistent

estimation of all the parameters of model (4) we need to (i) to control for any unobserved

component in µih which might be correlated with past test scores or any other control

variable, and (ii) correct for the correlation between uihs and Yihs,11 potentially caused by

measurement errors in past test scores. To get a consistent estimation just of our parameters

of interests, the effects of expenditure per pupil and the persistence ρ, we do not need to

control for the unobserved components of µih which are correlated with the control variables

as long as the unobserved components are independent of past test scores and expenditure

per pupil, conditional on the control variables.

The parametric assumptions imposed by value-added models such as equation (4), in

particular the assumptions of invariance of the model across grades and time, and of linearity

and additive separability have been criticized. Sass et al. (2014) provide empirical evidence

that the assumption of invariance across grades is generally rejected. Harris (2007) tests

the assumption of linearity in (constant return to) school inputs and finds that it cannot be

rejected within countries. The assumption of additive separability has been tested among

others by Figlio (1999), who shows that productivity of school inputs varies across different

levels of student achievements as well as by level of other inputs. Our model does not impose

grade invariance but does impose time invariance, linearity and additive separability and we

call these assumptions ‘parametric functional form assumptions’. We discuss the potential

consequences of imposing these in our empirical Section 5.4.

The additional assumptions that need to be imposed on the unobserved components

µih and uihs in model (4) will depend on the estimation method adopted. We will discuss

three methods that have been used in the past to estimate models such as equation (4),

ordinary least squares (OLS) estimation, school fixed effect estimation and sibling fixed

effect estimation, some of which impose quite restrictive assumptions. We then propose

a new two-step estimation method which imposes weaker assumptions. In our empirical

8



analysis we will show how estimates of the effects of past test scores and school expenditure

on current test scores change by imposing increasingly weaker assumptions on unobserved

heterogeneity, i.e. on the unobserved components which capture potential omitted variables.

2.1 Taking account of omitted variables

To focus on the issue of omitted variables we assume for the moment that there are no

measurement errors in subject-specific test scores, i.e. we assume that the subject-specific

latent ability Y ∗ihs,t is equal to the observed school test score in subject s, Yihs,t, so that the

measurement error ǫihs,t has degenerate distribution with zero mean and zero variance. This

implies that model (4) becomes:

Yihs,16 = α + I
S
ihβS +Xihγ + Yihs,11ρ + µih + νihs, (6)

where νihs = vihs,16 − ρvihs,11 + ωihs,16 and

µih = µauthority,ih + µschool,ih + µneighbourhood,ih + µfamily,ih + µchild,ih. (7)

OLS estimation with observed school characteristics

We now turn to specifying assumptions required by traditional estimation methods of the

education production model, starting with OLS estimation. The consistency of ordinary least

square estimation of model (6) requires the following assumptions in addition to M1-M6 and

the parametric functional form assumptions:

A1 the lagged test, school investment and all other included explanatory variables (Yihs,11,

ISih and Xih) are uncorrelated with the idiosyncratic error term, νihs;

A2 Yihs,11, ISih and Xih are also uncorrelated with the unobserved child, family, school, LEA

and neighbourhood effects or, in short, with the unobserved composite effect µih.

If we are only interested in consistently estimating the effects of the school expenditure and

the lagged test, rather than all the parameters of the education production model, then a

sufficient assumption for the consistency of the estimation of these two effects is the following

conditional independence assumption:
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CIA OLS: both the idiosyncratic error term νihs and the unobserved composite effect µih

are independent of the lagged test and school investment, Yihs,11 and ISih, conditional

on the control variables Xih, i.e. E[νihs + µih∣Xih, Yihs,11, I
S
ih] = E[νihs + µih∣Xih], and

E[νihs + µih∣Xih] is linear in the control variables Xih.

The assumption of linearity of the unobserved component, νihs +µih, in the control variables

can be relaxed if non-parametric rather than OLS estimation was used (see Frölich 2008).

One of the concerns with the OLS estimations is that unobserved school and LEA char-

acteristics could be correlated with school expenditure per pupil, i.e. we are concerned about

the correlation of ISih with µschool,ih and µauthority,ih in model (6). This correlation can remain

even after conditioning on the control variables Xih and therefore it can lead to a biased esti-

mation of the effects of the school investment and lagged test. School fixed effect estimation

can correct for this potential issue.

School fixed effect estimation

School fixed effect estimation can be easily performed by transforming the variables in model

(6) in deviations from the school mean, i.e. by considering the following model

Ÿihs,16 = Ï
S
ihβS + Ẍihγ + Ÿihs,11ρ + µ̈ih + ν̈ihs, (8)

where the double dot denotes the deviation of a variable from the corresponding school mean.

Because pupils are nested within schools which in turn are nested within LEAs, this trans-

formation cancels out all subject-invariant school and LEA characteristics, i.e. the effects

µschool,ih and µauthority,ih, but it does not eliminate the effect of unobserved neighborhood,

family and child characteristics.12

The school fixed effect estimation produces consistent estimation of model (6) if as-

sumptions M1-M6, our parametric functional form assumptions and the following additional

assumptions hold:

B1 the deviation of the lagged test from its school mean, Ÿihs,11, is uncorrelated with the

corresponding deviation of the idiosyncratic error term, ν̈ihs,

12In our sample we consider pupils from four school cohorts, this implies that we have to assume that
either unobserved school and LEA characteristics are invariant across the 4 cohorts/years, or that variation
across the 4 years in unobserved school characteristics are uncorrelated with variation of expenditure per
pupil across the 4 years and lagged test score conditional on the control variables.
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B2 Ÿihs,11 is also uncorrelated with the deviation from the school means of the unobserved

neighbourhood, family and child effects, µ̈neighbourhood,ih, µ̈family,ihs and µ̈child,ih.

B3 the deviations of the school investment and all other included explanatory variables from

their school mean (ÏSih and Ẍih) are uncorrelated with the corresponding deviation of

the idiosyncratic error term, ν̈ihs,

B4 ÏSih and Ẍih are also uncorrelated with the deviation from the school means of the unob-

served neighbourhood, family and child effects, µ̈neighbourhood,ih, µ̈family,ihs and µ̈child,ih.

If we are interested only in estimating the effects of the school investment and the lagged

test, then a sufficient assumption for consistency is the following conditional independence

assumption:

CIA SchoolFE: the deviations from the school mean of the idiosyncratic error term ν̈ihs

and of the unobserved effects µ̈neighbourhood,ih, µ̈family,ihs and µ̈child,ih are independent of

the corresponding deviations of the lagged test and school investment, Ÿihs,11 and ÏSih,

conditional on the control variables Ẍih, i.e.

E[ν̈ihs + µ̈neighbourhood,ih + µ̈family,ihs + µ̈child,ih∣Ẍih, Ÿihs,11, Ï
S
ih]

= E[ν̈ihs + µ̈neighbourhood,ih + µ̈family,ihs + µ̈child,ih∣Ẍih],

and E[ν̈ihs + µ̈neighbourhood,ih + µ̈family,ihs + µ̈child,ih∣Ẍih] is linear in the control variables

Ẍih.

The school fixed effect estimation could be biased because unobserved parental characteris-

tics, µ̈family,ih, may differ across families within the same school and can be correlated with

past test scores of the child, Ÿihs,11, even after controlling for observable characteristics Ẍih.

The endogeneity of Ÿihs,11 has been emphasised by Todd and Wolpin (2003) who explain that

“the value-added formulation [...] imposes strong assumptions on the underlying production

technology, and the inclusion of a lagged test score as a conditioning variable makes the

model highly susceptible to endogeneity bias when data on some of the relevant inputs are

missing, even if the omitted inputs are orthogonal to the included inputs.” The sibling fixed

effect estimation corrects for this potential source of endogeneity.

Sibling fixed effect estimation

11



The sibling fixed effect estimation is computed by considering model (6) with variables

replaced by their differences between siblings, i.e.

∆Yihs,16 =∆ISihβS +∆Xihγ +∆Yihs,11ρ +∆µih +∆νihs, (9)

where ∆ denotes the difference between siblings, e.g. ∆ISih = I
S
ih − I

S
i′h denotes the difference

in family investment between two siblings (between children i and i′ living in the same

household h).

Because in our sample siblings belong by definition to the same family, live in the same

neighbourhod and go to the same school in the same LEA, the sibling difference transforma-

tion cancels out all unobserved effects except for the child effect µchild,ih and we can rewrite

model (9) as

∆Yihs,16 =∆ISihβS +∆Xihγ +∆Yhs,11ρ +∆µchild,ih +∆νihs. (10)

Therefore the consistency of the sibling fixed effect estimation requires the following assump-

tions:

C1 the difference between siblings in the lagged test, ∆Yihs,11, is uncorrelated with the

corresponding sibling difference in the idiosyncratic error term, ∆νihs;

C2 ∆Yihs,11 is also uncorrelated with the sibling difference in the unobserved child effect,

∆µchild,ih.

C3 the differences between siblings in school investment and all other included explanatory

variables (∆ISih and ∆Xih) are uncorrelated with the corresponding sibling difference

in the idiosyncratic error term, ∆νihs;

C4 ∆ISih and ∆Xih are also uncorrelated with the sibling differences in the unobserved child

effect, ∆µchild,ih.

If we are interested only in estimating the effects of the school investment and lagged test,

then a sufficient assumption for the consistency is

CIA SiblingFE: the differences between siblings in the idiosyncratic error term, ∆νihs,

and in the unobserved child effect, ∆µchild,ih, are independent of the sibling differences
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in the lagged test score and school investment, ∆Yihs,11 and ∆ISih, conditional on the

sibling differences in the control variables ∆Xih, i.e.

E[∆νihs +∆µchild,ih∣∆Xih,∆Yihs,11,∆ISih] = E[∆νihs +∆µchild,ih∣∆Xih],

and E[∆νihs +∆µchild,ih∣∆Xih] is linear in the control variables ∆Xih.

Sibling fixed effect estimation has been used extensively in applied papers to control for

unobserved family characteristics (Rosenzweig and Wolpin 1994; Altonji and Dunn 1996;

Behrman et al. 1996; Todd and Wolpin 2007), and it is consistent when family characteristics

are identical between siblings. However, in the context of child cognitive development it is

likely that parents invest differentially in two siblings in an attempt to either compensate or

reinforce for differences in their abilities (see Behrman et al. 1982; Ermisch and Francesconi

2000; Bernal 2008). Therefore, there might be unobserved family characteristics and in

particular family investments that differ between siblings. Because the family effect µfamily,ih

is by definition identical between siblings, potential parental investment differences between

siblings get captured by the sibling difference in the child effect ∆µchild,ih.

We are concerned about these differences in parental investments because they may be

correlated with sibling differences in past test scores, even after controlling for the variables

∆Xih, and this correlation can bias the sibling fixed effect estimation and in particular the

estimation of the effects of the lagged test score. Moreover, we are concerned about potential

sibling differences in unobserved child specific characteristics, such as unobserved child socio-

emotional abilities and health, which can be correlated with sibling differences in past test

scores even once we condition on the control variables ∆Xih. To address this we propose a

two-step estimation which corrects for the bias caused by the potential correlation between

∆µchild,ih and ∆Yhs,11.

Two-step estimation

To take account of the endogeneity of the lagged test caused by the unobserved child effect,

µchild,ih, we adopt a two-step estimation.

In the first step of the two-step estimation procedure we use current test scores in the three

subjects English, Science and Maths and the three corresponding past test scores for each
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child to consistently estimate the persistence parameter using a child fixed effect model. We

transform the variables in model (6) in the following way

Ỹihs,16 = Ỹihs,11ρ + ν̃ihs, (11)

where the ˜ over a variable denotes the deviation of the variable from the child mean, i.e. the

mean across subjects. Notice that because the expenditure per pupil, ISih, the observed ex-

planatory variables, Xih, and the unobserved effects µchild,ih, µfamily,ih, µschool,ih, µauthority,ih,

µneighbourhood,ih do not change across subjects, they cancel out from model (11).

The simple regression of Ỹihs,16 on Ỹihs,11 provides consistent estimation of ρ under the

assumption that:

D1 the deviation of the past test score in subject s from its mean across subjects, Ỹihs,11, is

uncorrelated with the corresponding deviation of the idiosyncratic error term, ν̃ihs.

In Online Appendix A we report the asymptotic bias for the coefficient of the lagged test,

ρ, when it is estimated using sibling fixed effect estimation and child fixed effect estimation

respectively.

The above first step estimation is identical to the within-pupil between-subject estimation

used by Dee (2005 and 2007), the point-in-time fixed effect estimation used by Slater et al.

(2010) and the student fixed effect estimation used by Clotfelter et al. (2010). Nevertheless,

this estimation is unable to identify the remaining slope coefficients - in particular of the

expenditure per pupil - because the corresponding variables do not vary across the three

tests. Therefore we introduce a second step.

In the second step we use the estimated coefficient ρ to compute a new dependent variable

(Yihs,16 − Yihs,11ρ̂) which we regress on the remaining variables,

Yihs,16 − Yihs,11ρ̂ = α + I
S
ihβS +Xihγ + µih + νihs. (12)

Note that µih is not eliminated from the model in the second step, but the parameter ρ is

now consistently estimated. For this second step regression we consider two different types

of estimations: (i) the school fixed effect estimation, (ii) the sibling fixed effect estimation.

The school fixed effect is preferable when the only parameter of interest, beside the persis-

tence estimated in the first step, is the effect of the school investment; whereas the sibling
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fixed effect estimation is preferable when we are interested in the causal effect not only of

expenditure per pupil but also of other explanatory variables that might be correlated with

unobserved family characteristics (e.g. the effects of free school meal eligibility or having

special educational needs). In this paper our main parameters of interest are the persistence

of the test score and the effect of school investment, therefore our preferred estimation is the

two-step estimation with school fixed effect in the second step, but we also consider sibling

fixed effect estimation in the second step to show the potential bias in other control variables

which could be of interest in other contexts.

School fixed effect in the second step

We can implement the school fixed effect estimation in the second step, which controls for

potential unobserved school variables, by considering the following transformed model

Ÿihs,16 − Ÿihs,11ρ̂ = Ï
S
ihβS + Ẍihγ + µ̈ih + ν̈ihs. (13)

where as before¨denotes the deviation of a variable from its school mean. This school fixed

effect estimation allows to control for unobserved characteristics at level of LEA and school,

µauthority,ih and µschool,ih, but not for the unobserved neighborhood, family and child effects,

µneighbourhood,ih, µfamily,ih and µchild,ih.

The consistency of the school fixed effect estimation in our two-step procedure requires

assumption D1 to hold, as well as assumptions B3 and B4, which were also imposed by

the school fixed effect estimation. Compared to the school fixed effect estimation our two-

step estimation with school fixed effect in the second step allows us to relax the restrictive

assumption B2 by allowing for correlation between the unobserved child effect µ̈child,ih and

the lagged test score expressed as deviations from their school mean.

If we are interested only in estimating the effect of school investment, apart from the

persistence in the test score, a sufficient condition for the consistency of the estimation is

the following conditional independence assumption:

CIA SchoolFE2: the deviations from the school mean of the idiosyncratic error term ν̈ihs

and of the unobserved effects µ̈neighbourhood,ih, µ̈family,ihs and µ̈child,ih are independent
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of the corresponding deviation of the school investment ÏSih conditional on the control

variables Ẍih, i.e.

E[ν̈ihs + µ̈neighbourhood,ih + µ̈family,ihs + µ̈child,ih∣Ẍih, Ï
S
ih]

= E[ν̈ihs + µ̈neighbourhood,ih + µ̈family,ihs + µ̈child,ih∣Ẍih],

and E[ν̈ihs + µ̈neighbourhood,ih + µ̈family,ihs + µ̈child,ih∣Ẍih] is linear in the control variables

Ẍih.

The variation in school investment across time and schools depends on school character-

istics, such as the proportion of children eligible for free school meals, which are related

to the allocation rule of resources across schools (see Section 3.2). Conditional on school

characteristics and school fixed effect, any residual variation in school investment should not

depend on unobserved neighborhood, family and pupil characteristics, which suggests the

assumption of conditional independence CIA SchoolFE2 is likely to hold.

Sibling fixed effect in the second step

The sibling fixed effect estimation in the second step allows to control for potential unob-

served variables that do not vary between siblings and can be implemented by considering

the following transformed model

∆Yihs,16 −∆Yihs,11ρ̂ =∆ISihβS +∆Xihγ +∆µih +∆νihs. (14)

where ∆ denotes the difference between siblings (between children i and i′ living in the same

household h).

Because for the estimation of this sibling fixed effect we use the sample of sibling pairs

who live in the same household and neighbourhood and go to the same school in the same

LEA, all unobserved effects cancel out from the model (14) except for the child effect µchild,ih

so that ∆µih =∆µchild,ih.

The consistency of sibling fixed effect estimation in our two-step procedure requires as-

sumption D1 to hold, as well as assumptions C3 and C4, which were also imposed by the

sibling fixed effect estimation. Compared to sibling fixed effect estimation our two-step

estimation with sibling fixed effect in the second step allows us to relax the restrictive as-

sumption C2 by allowing for correlation between sibling differences in the unobserved child

effect ∆µchild,ih and the lagged test score.
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If we are interested only in estimating the effect of school investment and the persistence

in the test score, then sufficient conditions for consistency would be the assumption D1 and

the following conditional independence:

CIA SiblingFE2: The differences between siblings in the idiosyncratic error term, ∆νihs,

and in the unobserved child effect, ∆µchild,ih, are independent of the sibling differences

in the school investment, ∆ISih, conditional on the sibling differences in the control

variables ∆Xih, i.e.

E[∆νihs +∆µchild,ih∣∆Xih,∆ISih] = E[∆νihs +∆µchild,ih∣∆Xih],

and E[∆νihs +∆µchild,ih∣∆Xih] is linear in the control variables ∆Xih.

The standard errors of either of our two-step procedures need to be adjusted to take account

of the fact that in the second step ρ is replaced by its estimated value from the first step.

To correct for this bias we bootstrap the standard errors using 50 replications. Note that

the two-step estimation it not efficient, but given our sample size of more than one million

observations we are not concerned about the potential loss of efficiency and we use it as our

preferred estimation.

2.2 Taking account of measurement error

We now return to the issue of measurement error, examining how we can address measure-

ment error in the observed subject-specific test score when adopting our two-step estimation.

Recall that model (4) was:

Yihs,16 = α + I
S
ihβS +Xihγ + Yihs,11ρ + µih + uihs, (15)

where uihs = eihs,16 − ρeihs,11 +ωihs, eihs,t = vihs,t + ǫihs,t and Yihs,t = Y ∗ih,t + vihs,t + ǫihs,t for t = 11

and 16. While the error ǫihs,16 in left hand side variable Yihs,16 causes a decrease in the

estimation efficiency but no inconsistency, the error ǫihs,11 in the lagged test Yihs,11 causes

an attenuation bias for the ρ coefficient (estimated in the first step using child fixed effect

estimation) and a possible overestimation of the effect of the remaining explanatory variables

in the second step (school fixed effect estimation).13

13See Online Appendix A for the bias formula.
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To correct for the resulting bias of the child fixed effect estimation of ρ, we multiply the

ρ coefficient estimated in the first step by the following correction factor,

V ar(vihs,11 + ǫihs,11)/V ar(vihs,11). (16)

This is the so-called analytic correction for measurement error.

We do not observe the correction factor (16), but we can compute it using informa-

tion on the reliability ratio V ar(Y ∗ih,11 + vihs,11)/V ar(Y ∗ih,11 + vihs,11 + ǫihs,11), and on the

share of the variance of the observed test score in subject s explained by the latent abil-

ity Y ∗ih,11, i.e., V ar(Y ∗ih,11)/V ar(Y ∗ih,11 + vihs,11 + ǫihs,11). This is because, under our main-

tained assumptions M1-M6 there is no correlation between Y ∗ih,11, vihs,11 and ǫihs,11, and

V ar(Yihs,11) = V ar(Y ∗ih,11) + V ar(vihs,11) + V ar(ǫihs,11) = 1.14

He et al. (2013) compute the reliability ratios for Science, Mathematics and English in

National Curriculum exams at the end of primary school using each of the item questions

of the primary school tests administered in 2009 in England and find ratios of 0.928, 0.968

and 0.910 for Science, Mathematics and English respectively.15

By implementing factor analysis for the three observed lagged test scores, we find that

the first factor explains on average 77.5% of the variance of the subject-specific test scores at

age 11. By considering this common factor as a measure of the latent ability Y ∗ih,11, we can

impute to V ar(Y ∗ih,11)/V ar(Y ∗ih,11 + vihs,11 + ǫihs,11) a value of 0.775, which is the average of

the share of variance explained by the common factor across the three observed test scores

at age 11.

By imposing a reliability ratio of 0.935, which is the average across the three very

similar ratios observed for the three subject-specific test scores in He et al. (2013), and

V ar(Y ∗ih,11)/V ar(Y ∗ih,11 + vihs,11 + ǫihs,11) = 0.775, we can assume that the correction factor

V ar(vihs,11 + ǫihs,11)/V ar(vihs,11) takes value 1.403.

Our analytic correction method takes account not only of the errors caused by test

construction but also of errors which similarly affect the test scores in the three subjects

14V ar(Yihs,11) = 1 because our test scores are standardized by subject.
15For a recent application of a bias correction based on reliability ratios of cognitive test scores, see

Lindqvist and Vestman (2011), for a comparison of the analytic correction method with other methods see
Schafer (1986) and Lockwood and McCaffrey (2014). Similar analytic corrections have also been considered
by Fuller (1986) and Meyer (1999).

18



e.g. errors caused by the fact the student may have been unwell or was having trouble at

home during the exam period. This is because we consider deviation of each subject-specific

test score from the test score averaged across subjects. Therefore any error that is shared

by subject-specific test scores cancels out. Moreover, because our vector of control variables

Xih includes academic year dummies, we are also controlling for potential changes in exam

standards across the four years we consider in our analysis, 2007-2010, which may cause a

shift in the test scores.

Furthermore, we also compute the correction factor using two additional methods which

take account of a potential overestimation of the reliability ratio of the test scores at Key

Stage 2. The first is identical to the method described above, except that the variance of the

measurement error is inflated by doubling it; the second method is an approach suggested

by Boyd et al. (2013), described in Online Appendix B. It makes use of test scores observed

in three different grades to derive a reliability ratio and ultimately a correction factor.

3 Institutional background

3.1 Education system in England

Full-time education in England is compulsory for all children aged between 5 and 16, with

most children attending primary school from age 5 to 11 and secondary school from age 11

to 16. The education during these years is divided into four Key Stages, and the National

Curriculum sets out targets to be achieved in various subject areas at each of the Key Stages.

Pupils undergo externally marked National Curriculum tests at the end of Key Stages 2 and

4. Until recently such national tests were also carried out at Key Stages 1 and 3 but today

progress at these stages is examined via individual teacher assessment.

Key Stage 2 National Curriculum tests are taken at the end of primary school, usually at

age 11. Pupils take tests in the three core subjects of English, Mathematics and Science. Key

Stage 4 tests are taken at age 16 at the end of compulsory schooling. Pupils enter General

Certificate of Secondary Education (GCSE) or equivalent vocational or occupational exams

at this stage. They decide which GCSE courses to take, and because English, Mathematics

and Science are compulsory study subjects, virtually all students take GCSE examinations
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in these topics, plus others of their choice, with a total of ten different subjects normally

taken. In addition to GCSE examinations, a pupil’s final grade may also incorporate course

work elements. Key Stage 2 and 4 test results receive a lot of attention nationally as they

play a prominent role in the computation of so-called school league tables, which are used

by policy makers to assess schools and by parents to inform school choice.

3.2 Exogenous variation in school funding

This section provides background on how funding was allocated to schools in the time-period

2005-2010 considered in our empirical analysis.16 The aim is to show that the year-on-year

variation in school resources is effectively random within schools and therefore within sibling

pairs going to the same school, after controlling for observed school characteristics.

Money is allocated to schools in England from a central government schools budget using

a two-stage procedure. First, central government applies a funding formula to hand out

funds to 154 local education authorities. These local authorities then each use their own

funding formula to hand out money to schools, where funding equals expenditure. Because

our analysis uses individual and sibling fixed effects estimation and we consider only siblings

going to the same school, we will not exploit between-local authority variation in funding. For

siblings within schools variation is from an increase over time in funding and slow adaptation

to school-level changes in educational need caused by funding rules. On average, a younger

sibling in our estimation sample receives £349 more per year than her older sibling, with a

standard deviation of £283. After controlling for sibling fixed effects the sibling difference

in expenditure is £165 with a standard deviation of £669.17

Funding received from central government is allocated by each local authority to the

schools in their area using their own funding formulas. Apart from pupil numbers, many

local authorities assess the schools’ educational need according to proportions of pupils from

deprived backgrounds (eligible for free school meals), with special educational needs and

16In our empirical analysis we consider test scores of four cohorts of pupils, taking exams in 2007, 2008,
2009 and 2010. School inputs are three-year averages of expenditure per pupil, so that for a student taking
exams in 2007, inputs will be from the period 2005-2007. We compare these to averages computed over
longer and shorter time-periods in the sensitivity analysis.

17Half of the siblings in our sample are two school grades apart, 20% are three grades and 30% are one
grade apart.
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with English as an additional language in the school (Chowdry and Sibieta 2011). When

handing out funds to schools, all local authorities are however constrained by a Minimum

Funding Guarantee (MFG) which is set by central government. This stipulates a minimum

percent increase in funding per pupil for each school from the previous year funding (the

same across all schools in England).

In the time-period covered by our paper about half to two thirds of the schools budget was

determined by MFG and only the remaining budget was freely fixed by the Local Authority

according to the schools’ educational need. This implies that the funding formulas applied

by local authorities can only partly accommodate current educational needs, with the result

that schools that get more deprived from one year to the next (i.e. schools with an increased

educational need) see their relative funding share falling, whereas schools experiencing a

decrease in educational need see their relative funding share increase. In 2010-11 7% of

secondary schools had a level of funding at least 10% lower than predicted using observable

characteristics, and 6% had funding at least 10% higher (Chowdry and Sibieta 2011, p. 12).

In our education production model we control for current school characteristics that are

expected to be considered by a local authorities in the funding formula and consider the

remaining variation in school expenditure to be exogenous.18 In sensitivity analysis we show

results of 2SLS (two-stage least squares) estimates where we instrument school expenditure

using predicted expenditure, which is derived by adding to the lagged expenditure the percent

increase in funding per pupil set by the Minimum Funding Guarantee. As we discuss in the

results section, the 2SLS estimates are in line with our baseline results.

Year-on-year changes in expenditure may not necessarily translate into meaningful changes

in school investments, as school administrators might be reluctant to make binding decisions,

such as hiring teachers, and instead spend extra funds on one-off items. However, the period

2007-2010 covered by our paper poses an important exception, as the MFG factor was an-

nounced in advance for a three year period, giving schools the security of a longer planning

horizon (Sibieta, 2015). Indeed, in the 4 years covered by our empirical application, 25%

of spending increases (measured as 3 year averages of the current and two preceding years)

went into teachers, 24% into teaching assistants and 51% into other items. More teachers

18These characteristics are based on the factors identified by Chowdry and Sibieta (2011), cited above,
and include school size, proportion of pupils on free school meals, with first language not English, special
educational needs, proportion of children from 6 different ethnicities and school type.
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were hired and class sizes in secondary school went down by 0.7 students per class, from 16.6

students in 2007 (ibid.). This suggests that meaningful changes in student investments have

taken place in our observation period.

4 Data

The empirical analysis is based on the National Pupil Database (NPD), which is available

from the English Department for Education and has been widely used for education research.

The NPD is a longitudinal register dataset for all children in state schools in England,

covering roughly 93% of pupils in England. It combines pupil level attainment data with

pupil characteristics as they progress through primary and secondary school.

Outcome and observed background

Our outcomes of interest are General Certificate of Secondary Education (GCSE) test results

at the end of compulsory schooling, usually taken at age 16 (Key Stage 4). We focus on

GCSEs because they mark the first major branching point in a young person’s educational

career. We consider Key Stage 4 results in the core subjects English, Mathematics and

Science which are directly comparable to test results at the end of primary school.19 In Key

Stage 4 pupils receive a grade for each GCSE course based on formal exams and some course

work elements, where pass grades include A*, A, B, C, D, E, F, G. We use a scoring system

developed by the Qualifications and Curriculum Authority to transform these grades into a

continuous point score20 which we refer to as the Key Stage 4 score.

We control for lagged cognitive achievement using Key Stage 2 National Curriculum tests

taken at the end of primary school, usually at age 11, in the three core subjects of English,

Mathematics and Science. In the Key Stage 2 exams, pupils can usually attain a maximum

of 36 points in each subject, but teachers will provide opportunities for very bright pupils to

test to higher levels.21 All test scores are standardized to have a mean of zero and a standard

deviation of one.

19At age 16 students have the option to enter single, double or triple awards in Science. These awards
are designed to be of equal difficulty and reflect differing breadth of study. Following practices used to
derive school accountability measures we use the best grade achieved for students entering triple Science.
For English we use the grade achieved in English language.

20A pass grade G receives 16 points, and 6 points are added for each unit improvement from grade G.
21This practice can generate some measurement error which we consider to be random.
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The NPD annual school census allows identification of a number of individual and family

background variables. These include gender of the pupil, a binary variable coding ethnicity

(White British, Black, Mixed, Indian, Pakistani/Bangladeshi, Chinese), and whether or not

the first language spoken at home is English. We include in our empirical model variables

indicating whether special educational needs have been identified for the child22, or whether it

has been identified by the school as being gifted and/or talented. Moreover, we can identify

whether or not a pupil is eligible for free school meals (FSM). FSM eligibility is linked

to parents’ receipt of means-tested benefits such as income support and income-based job

seeker’s allowance and has been used in many studies as a low-income marker (see Hobbs and

Vignoles 2010 for some shortcomings). We use as family background variable the number of

all siblings in the state school system in 2007. This is an approximation to the true number

of siblings as it is derived from our matching of pupils at the same address in 2007 and only

includes school-age siblings who are in state schools at that point in time. We also include the

number of months a pupil is older than an August-born (the youngest in a school cohort) to

control for age at test effects, and we use an indicator variable for the oldest pupil in a family

(in the observation window 2007-2010) to control for birth-order effects. Finally, the NPD

contains information on the level of deprivation in the children’s residential neighborhood,

assessed by the Income Deprivation Affecting Children Index.

School-level variables

To the NPD we merge school-level expenditure information from Consistent Financial Re-

porting data sets for 2004-2010. These contain details on different types of income and

expenditure for each school. Assuming that pupils may benefit from school expenditure not

only in their exam year, but also in the preceding years, we consider the average school

expenditure over three years rather than yearly expenditure.23 We test the sensitivity of our

results to using alternative measures of expenditure based on a different number of years.

Expenditure per pupil is expressed in 2010 prices, calculated using the GDP deflator.

22These are pupils with learning difficulties, including behavioral and health conditions. Those that have
been assessed by local education authorities receive a statement which is usually associated additional funding
received by the school. There are also pupils identified by the schools as having special needs, but without
statement.

23Expenditure per pupil excludes capital expenditure such as new construction, but includes expenditure
such as learning resources which may benefit pupils for several years.
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In addition we add school-level characteristics to the NPD using Schools, Pupils and

their Characteristics tables published by the Department for Education (e.g. Department

for Education 2010). These tables are derived from the annual school censuses. School-level

characteristics include an indicator of whether the school is a community school or not24 and

the number of pupils in the school (school size). We also characterize schools in terms of their

pupil composition, using the proportion of pupils that receive free school meals, whose first

language is English, that are of White, Black, Mixed, Indian, Pakistani/Bangladeshi and

Chinese ethnicity and that have special educational needs (with and without statements).

Again we average these variables describing the pupil composition over three years. We also

add cohort mean test-scores in English, Science and Maths as school-level controls for prior

attainment within the school, as well as academic year dummies.

Sibling definition

The NPD includes address data, released under special conditions, which allows us to match

siblings in the data set. We have access to data from 2007, the first year that full address

details were collected in the NPD across all pupil cohorts. Siblings are therefore defined as

pupils in state schools aged 4-16 and living together at the same address in January 2007.

Siblings that are not school-age, those in independent schools and those living at different

addresses in January 2007 are excluded from our sibling definition. Step and half siblings

are included if they live at the same address, and we are not able to distinguish them from

biological siblings (see Nicoletti and Rabe 2013a for details).

Estimation sample

For our analysis we select from the National Pupil Database two samples. The first, which

we call full sample, is a a sample of students who took Key Stage 4 exams in 2007 or in one

of the three following years (2008, 2009, 2010). The second sample, which we call sibling

sample, uses data for the same academic years but is restricted to siblings going to the same

school. We use this sample for sibling fixed effects models and for other models when we

want to compare coefficients. We exclude siblings that are in the same academic year as

they do not have variation in expenditure within the same school. We keep only the oldest

24Community schools are owned, governed and managed by the Local Education Authority, whereas in
voluntary aided and voluntary controlled schools as well as in foundation schools some or all of these functions
are carried out by other organizations such as the Church of England in faith schools, for example.
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two siblings for each household to avoid having to expand the dataset to include all sibling

pair combinations within each household with the risk of over-representing households with

a large number of children. The restriction to the two oldest siblings does not lead to any

major changes in our results because in the vast majority of cases there are only two siblings

living in the same households: only around 10,000 pupils (4.5% of siblings) are third or

higher order siblings in our observation window 2007-2010.

In both samples we remove pupils with duplicate data entries or with missing data on

any of the background or school-level variables from the dataset (about 2.5% of the sample).

Moreover, we retain only pupils for whom we have non-missing test scores for all outcomes at

both Key Stages 2 and 4 which leads to a reduction in sample size of 13%. Missing cases are

concentrated among low attaining students that are more likely to be absent at the exams

or, at Key Stage 4, choose not to take exams in one or more of the core subjects. Comparing

the original with the retained sample the average test score is reduced by about 1%. We

also exclude “special schools” that exclusively cater for children with specific needs, for

example because of physical disabilities or learning difficulties, as well as schools specifically

for children with emotional and/or behavioural difficulties. Further, we exclude academy

schools25 for which we do not have information on expenditure, and eliminate the top 1% in

the expenditure per student distribution to avoid extreme outliers. The remaining sample

contains 1,697,501 individuals of whom 339,910 are siblings as defined above. We describe the

sample in Online Appendix Table C1. To allow us to perform child fixed effects estimation

across subjects we pool our data set by appending observations for test scores in English,

Science and Maths for each individual. Our data set therefore contains 5,092,503 observations

relating to 1,697,501 students (and 1,019,730 observations relating to 339,910 pupils for the

sibling sample).

5 Empirical Results

In this section we discuss our estimation results focusing on the effect of school expenditure

per pupil and on the persistence ρ, our main coefficients of interest.

25Academy schools have been introduced from 2000 and allow schools more autonomy and flexible gover-
nance.
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5.1 Assessing the bias caused by omitted variables

In the methods section and Online Appendix A we discuss the asymptotic bias caused by

the omission of variables. In this section we evaluate the magnitude of this bias in our

application by comparing the results of our two-step estimation with estimations that omit

to control for some or all of the child, family and school characteristics. Specifically, we

evaluate the omission biases by neglecting for the time being the measurement error issue

and comparing our two-step estimation with the results from

• ordinary least square estimation of the value-added model with no controls except past

test scores and expenditure per pupil (OLS, No controls),

• ordinary least square estimation that controls for all observed school, family and child

characteristics (OLS, All controls);

• school fixed effect estimation, which additionally controls for unobserved school char-

acteristics (and therefore for LEA characteristics) but not for family unobserved inputs

(School FE);

• sibling fixed effect estimation for siblings attending the same school, which controls for

both unobserved family and school characteristics, as well as for neighbourhood and

LEA characteristics (Sibling FE).

Table 1 reports the results of the above estimation (columns (1)-(4)) and of the two-step

estimation with all controls using sibling and school fixed effects in the second step (columns

(5) and (6)). The results in the top panel are based on the sample of siblings going to

the same school to allow us to compare estimates across estimation methods. The results

displayed in the bottom panel use the full sample and are therefore missing for models using

sibling fixed effects. We compute robust standard errors by using the Huber-White estimator

to allow for the possibility that the error in our model may be heteroscedastic.

Focusing first on the top panel of Table 1, the first column displays the OLS estimates

without any school, family or child controls and the estimates show a negative rather than a

positive effect of per pupil expenditure on test scores and a high persistence in cognitive skill.

The negative effect of expenditure per pupil is likely caused by the fact that the allocation
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of resources to schools is redistributive so that schools with students with more educational

needs receive more money.

When we extend the model to control for all observed school, family and child character-

istics, which include the characteristics used to determine allocation of funds to schools from

government and variables describing the school composition,26 the effect of expenditure per

pupil on test scores is estimated to be zero and there is a slight reduction in the persistence

of the test scores (see column (2) in Table 1, top panel). This estimate could be still biased

by the omission of unobserved family, school and LEA characteristics.

Once we control for unobserved school and LEA characteristics by estimating school fixed

effects, column (3), the effect of expenditure per pupil increases substantially, whereas the

net persistence decreases slightly. We find that an increase in the expenditure per pupil

of £1,000 leads to an increase in test scores of 0.059 standard deviations, and this effect is

statistically significantly different from zero at the 1% level. Corresponding results found

for English primary school pupils in Holmlund et al. (2010), who control for school fixed

effects (but not for sibling fixed effects), are very similar (0.051, 0.040 and 0.050 standard

deviations for Mathematics, English and Science respectively).27 When we additionally

control for unobserved family and neighbourhood characteristics by introducing sibling fixed

effects estimation for siblings going to the same school and living in the same neighbourhood,

the effect of expenditure per pupil increases slightly to 0.061 and the persistence decreases

to 0.503 (see column (4)).

Next we use our two-step estimation method and control for unobserved child endow-

ments to estimate persistence, and for unobserved family, school, neighbourhood and local

education authority characteristics by using sibling fixed effects to estimate the expendi-

ture effect (see column (5)). The expenditure per pupil has a marginally larger effect of

0.068 compared to sibling fixed effects shown in column (4), while the persistence decreases

substantially to 0.305. Finally, in column (6) we show results for the two-step estimation

26The full list of control variables includes the variables in Online Appendix Table C1 and dummies for
academic year to control for possible test score inflation. Note that the sibling fixed effect estimation does
not use individual-level variables with no or very little variation between siblings (e.g. dummy variables for
ethnic groups) because their effect would not be identified when considering differences between siblings.

27Notice that the period of observation in Holmlund et al. (2010) is 2001-2007 while our period is more
recent, 2005-2010. Furthermore, we focus on test scores at the end of compulsory school at age 16 while they
focus on test scores at the end of primary school.
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using school fixed effects in the second step. The estimated expenditure effect is identical

to that estimated using sibling FE, indicating that failing to control for unobserved family

characteristics does not lead to a bias on this estimate.

To summarize, we find that omission of unobserved school characteristics causes a sizeable

bias of the school expenditure effect. Failure to account for these unobservables leads to an

underestimation of the expenditure effect, while the estimation of the persistence in the

test scores seems less affected. Controlling for family background in addition to school

characteristics does not affect the results hugely. Omission of child unobserved endowment

leads to a large overestimation of the net persistence, but only a modest underestimation of

the expenditure effect.

Turning now to the lower panel of Table 1 which displays results based on the full sample

of students in state secondary schools, we see that apart from the OLS estimates with no

controls displayed in column (1), all other coefficients are slightly lower than when restricting

our sample to siblings in the same school. The two-step estimation with school FE in the

second step in the lower panel of Table 1 is our preferred estimate because it is based on

the full sample of pupils rather than the subsample of siblings. Note, however, that none of

the differences in the estimated effect of expenditure per pupil between the two samples are

statistically significant. Moreover, if we are interested in the coefficients of other explanatory

variables included in the education production model, we may prefer the two-step estimation

with sibling fixed effects in the second step. This is because unobserved parental character-

istics may differ across families within the same school and can be correlated with past test

scores of the child and/or other covariates in our model. Omitting such family character-

istics can cause a bias in the coefficients of explanatory variables. We provide full results

for both models in Online Appendix Table C2. The comparison shows that as expected

coefficients on variables such as free school meal status and deprivation of neighbourhood

(arguably proxies for family income) are attenuated in the two-step estimation with sibling

fixed effects in the second step compared to estimates with school fixed effects in the second

step. More in general, these results suggest that omitting to control for unobserved family

characteristics in the second step estimation leads to an amplification bias for the effect of

almost all observed child variables.
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As explained in Section 3.2 we control for the endogeneity of school expenditure by

considering a large set of school characteristics (e.g. the proportions of students from different

ethnic minorities, eligible for free school meals and with special educational needs; and the

average test scores at the end of primary school for students belongings to the same cohort).

After controlling for these characteristics the remaining variation in school expenditure is

related to the variation across time in the Minimum Funding Guarantee, which is exogenously

set at national level.

An alternative way to exploit the exogenous variation in school expenditure is to instru-

ment school expenditure with the minimum guaranteed expenditure, which can be computed

by adding to the lagged expenditure the percent increase in funding per pupil set by the Mini-

mum Funding Guarantee.28 This minimum guaranteed school expenditure is likely to explain

actual school expenditure and is exogenous after controlling for school characteristics. Two-

stage least squares (2SLS) estimation should provide results similar to our baseline results if

the variation in school expenditure after controlling for school characteristics is exogenous.

In Appendix Table C3 we show results for 2SLS estimation applied to the second step of

our two-step procedure. We compare the 2SLS estimates of the effect of school expenditure

when using school fixed effects on the full sample and the sibling sample, and corresponding

estimates controlling for sibling fixed effect and using the sibling sample. The estimated

effects of the expenditure per pupil are all in line with the estimates displayed in Table 1

(point estimates are slightly higher but not statistically different from our baseline results).

The endogeneity test does not reject exogeneity of the control variables for the 2SLS esti-

mates using sibling FE in the second step but does reject it for the 2SLS estimates using

school FE in the second step, suggesting that the former is the preferred estimation if we

are interested in the effects of other explanatory variables.

5.2 Assessing the bias caused by measurement errors

Next we look at the role of measurement error in test scores in the estimation of the school

expenditure effect. We use our two-step estimation but we correct it for measurement error

28Because school expenditure is averaged across three years we also average the minimum guaranteed
expenditure across three years.
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bias by applying the analytic correction described in Section 2.2. Table 2 reports the two-

step estimation without and with analytic correction (implemented using a correction factor

of 1.403) in columns (1) and (2). The measurement error seems to cause an underestimation

of the net persistence but no significant differences in the effect of expenditure per pupil.

The factor analysis and the reliability ratios we use to compute the correction factor might

underestimate the variance of the measurement error V ar(ǫihs,11) because they are unable to

capture measurement errors that are common across subjects and that are not related to the

test specification but are related to students’ characteristics such as illness during the exam

period (see Boyd et al. 2013). To take account of this potential underestimation we also use

an alternative approach suggested by Boyd et al. (2013) and described in Online Appendix

B, which allows us to derive a correction factor of 1.550 by using observed correlations in

test scores across three different grades. Furthermore, we also use a third analytic correction

factor derived by doubling the variance of the measurement error. This leads to an increase

in the correction factor to 1.806, which we consider as an upper bound on the true correction

factor.

Estimation results applying this second and third correction methods are reported in

columns (3) and (4) of Table 2. The measurement error seems to cause an even larger under-

estimation of the net persistence but a non-significant difference in the effect of expenditure

per pupil. This seems to suggest that measurement errors in test scores do not lead to large

biases of the effect of expenditure per pupil.

We are also concerned about the issue of potential heteroscedasticty of the measurement

error. The variance of measurement errors of test scores has been found to be a U-shaped

function of the ability level and to lead to a relationship between the current and lagged test

score which is S-shaped even if the relationship between current and lagged true ability is

linear (see Boyd et al. 2013). In an attempt to explore how much this heteroscedasticity

issue can affect our results, we consider our child fixed effect estimation of the persistence ρ,

allowing ρ to differ at the top and bottom 10th percentile of the distribution of the lagged

test. We find that ρ is equal to 0.278 (s.e. 0.001) at the bottom decile, 0.315 (s.e. 0.001)

between the 10th and 90th percentiles and 0.337 (s.e. 0.001) at the top 10th percentile.

These results do not seem to suggest an S-shaped relationship between the current and

lagged test score; there are some statistically significant changes in the persistence across
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levels of the lagged test but these changes a very small in magnitude. Therefore we conclude

that the issue of heteroscedastic measurement errors does not seem to be a major concern

in our application.

An issue that we have overlooked so far is the potential measurement error in the ex-

penditure per pupil. Theoretically we would like to consider a measure of expenditure per

pupil which reflects long term rather than short term school investments. This is because

short term expenditure may include sporadic components which are noisy signals that do

not really capture school investments in the pupils’ cognitive development. We expect that

averaging the expenditure per pupil over multiple years reduces the possible measurement

error. To assess this claim, we also consider a set of alternative measures of expenditure per

pupil, i.e. using the current expenditure in the Key Stage 4 exam year only, and using 2,

3, 4 and 5-year averages. Our benchmark estimation is based on a 3-year average. In Table

3 we report the results for the effect of expenditure per pupil defined using the 5 different

definitions. In all cases we use the two-step estimation with correction for measurement error

in test scores. The effect of expenditure per pupil tends to increase with the number of years

used to compute the average expenditure per pupil but stabilizes and even decreases when

using more than 4 years. This corroborates our suspicion of bigger measurement error in

the yearly expenditure per pupil, which cancels out or at least reduces substantially when

considering average expenditure over multiple years.

5.3 Maintained assumptions M1-M6

Our value-added model imposes the following relationship between subject-specific test

scores, Yihs,11, and latent general cognitive ability, Y ∗ih,11

Yihs,11 = Y
∗

ih,11 + eihs,11 and Yihs,16 = Y
∗

ih,16 + eihs,16, (17)

where eihs,t = vihs,t + ǫihs,t and the properties of vihs,t and ǫihs,t are described by assumptions

M1-M6. To assess the validity of these assumptions we first run an exploratory factor analysis

on the three test scores at age 11 (16) and find that the first factor explains on average more

than 75% the variance of the subject-specific test scores at age 11 (16) and therefore supports

a single factor model. We then estimate a structural equation model with one single factor,

separately for Key Stages 2 and 4. Estimation results of this model are reported in Table 4.
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The top panel reports the factor loadings for the three subject tests where Mathematics is

constrained to be 1. Results suggest that the subject-specific test scores are equal to Y ∗ih,11

with factor loadings quite close to 1.

We check the assumptions that both vihs,t and ǫihs,t have equal variance across subjects

and between age 11 and 16 (see M1 and M3) by looking at the variance of eihs,t = vihs,t+ǫihs,t

and find that there are statistically significant differences. Results in the second panel of

Table 4 show that the percentage of total variation in subject-specific test scores explained

by eihs,t does indeed vary between about 20% and 30%. On the other hand, when allowing

for correlation between eihs,t and eihs′,t for s ≠ s′ we do not reject the assumption of zero

correlation in line with what is imposed by assumptions M2 and M4 (see bottom panel in

Table 4). Furthermore, we report in Table 5 correlations between test scores in Maths,

Science and English at ages 11 and 16. The correlations are high and range from 0.611 to

0.819. We see that correlation between tests taken at two different Key Stages is higher

when the two tests are in the same subject, and this supports assumption M2.

We also assess whether eihs,t = vihs,t+ǫihs,t is uncorrelated with the latent general cognitive

ability, Y ∗ih,11 (assumption M5) by estimating the structural equation model for test scores at

age 16 separately for high and low ability children at age 11.29 We find that the percentage

of total variation in subject-specific test scores explained by eihs,t varies more across subjects

than across level of ability, and there does not seem any pattern in the relation between the

variance in measurement error and the level of ability.

Finally we also check whether the assumption of equal persistence for subject-specific

ability (assumption M6) is supported empirically by allowing the coefficient ρ estimated

in our first step, child fixed effects estimation to differ across subject (without analytical

correction). We find an estimated persistence of 0.340, 0.294 and 0.276 for Maths, English

and Science respectively, indicating that there are some differences but that they are not so

large as to overturn our results (not reported in Table).

29Low (high) ability children are defined as pupils with an average test scores across the three subjects at
age 11 below (above) the population mean.
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5.4 Parametric functional form assumptions

Because the main aim of this paper is to assess the potential biases caused by unobserved

family, school, child, neighbourhood and LEA characteristics in linear value-added models

that impose constant return to school investments and to compare our results with previous

papers using such models, we work under the assumption that time invariance, additive

separability and linearity hold. While time invariance of our model is not rejected by formal

testing,30 the remaining two assumptions are restrictive and are rejected. The aim of this

section is to evaluate the consequences for our results and to assess the potential direction

of the biases.

We assess the consequences of the linearity assumption by comparing results obtained us-

ing a linear and a quadratic polynomial relationship between test scores and expenditure per

pupil. Figure 1 compares the predicted outcomes (standard deviation improvements in test

scores) using the linear and quadratic polynomial relationships and plots them against ex-

penditure per pupil. There are some differences especially at the extremes of the expenditure

distribution, but the predictions are more similar for the central part of the distribution. For

this reason we think that we can interpret the effect of expenditure per pupil obtained using

the linear value-added model as an approximately unbiased effect for values of the expen-

diture per pupil which are not extremes. The linearity assumption is generally not rejected

when using samples of smaller size than ours. Harris (2007), who uses data from 32 countries

with samples sizes varying between 2,000 and 9,000 observations, tests the assumption of

linearity in school inputs and find that it cannot be rejected within countries.

To relax the assumption of additive separability we should allow for a heterogenous effect

of the expenditure per pupil by level of other inputs and by level of lagged cognitive ability

(see Figlio 1999). We cannot test whether the return to school expenditure changes by level

of other inputs, because these are unobserved; but we can test whether the effect changes

across levels of pupils’ achievements measured by their past test scores at age 11. We do

this in a companion paper using the same data (see Nicoletti and Rabe 2013b) and we find

that the effect of school expenditure is larger for children with higher test scores at age 11.

30We test time invariance by splitting our sample in two time-periods, academic years 2007 and 2008, and
academic years 2009 and 2010 and performing separate analysis on these samples. Our estimates of the effect
of school resources are identical across the two models, and the estimated persistence is very similar.
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Furthermore, we find that the estimated effect of school expenditure for students whose test

scores at the end of primary school are close to the median is similar to the effect found

when imposing a constant return to school expenditure. For this reason we expect the effect

of expenditure per pupil estimated using the linear value-added model (6) to be generally

underestimated (overestimated) for high (low) ability children, but to be approximately

unbiased for pupils with a median level of test scores at age 11.

In conclusion, the estimated effect of expenditure per pupil when imposing linearity and

additive separability is generally biased but can be considered a good proxy of the effect

for levels of expenditure which are not extremes and for pupils whose lagged test scores are

around the median.

6 Conclusions

In this paper, we use unusually rich English register data from the National Pupil Database

to investigate biases in the estimation of the effect of school resources in value-added educa-

tion production models. Econometric issues that are typically encountered when estimating

education production models using administrative data are input omission and measurement

error in test scores. We develop a new two-step estimation technique that tackles the en-

dogeneity of the lagged test scores, unobserved school and family inputs and measurement

error. The first step provides a consistent estimate of the persistence of achievement between

education stages by applying a within-pupil between-subject (child fixed effect) estimation

which controls for the correlation between the unobserved child-specific endowment and past

test scores. The second step provides a consistent estimate of the effect of school expendi-

ture and controls for unobserved school and LEA characteristics by using school fixed effect

estimation. Further, we correct for measurement error in past test scores by using analytic

correction methods.

Our estimates of the effect of school spending on test scores in Mathematics, English

and Science at the end of secondary school indicate that a rise in the expenditure per pupil

of 1000 pounds leads to an increase in test scores of about 6% of a standard deviation.

This estimation tackles unobserved heterogeneity better than previous approaches but relies

on a number of parametric and structural form assumptions which we discuss throughout
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the paper. We investigate the biases associated with input omission and mis-measurement

by applying a number of estimation techniques that neglect to control for some or all of

the econometric issues. This allows us to assess which sources of estimation bias are most

important.

To summarize, our results suggest that causal inference on the effect of school spend-

ing on student achievement requires controlling for both observed and unobserved school

characteristics. The omission of such controls leads to severe underestimation of the effect.

This is because schools with more disadvantaged students receive more money. On the other

hand, after controlling for school differences the omission of family background does not

affect the estimation of the expenditure effect. Controlling for unobserved child endowments

also does not seem to bias the estimation of the spending effect. This indicates that in

our quasi-experimental setting school spending is largely uncorrelated with unobserved fam-

ily and child characteristics. Therefore controlling for school characteristics seems to be the

main requirement to correct for the potential bias in the estimation of the school expenditure

effect, supporting the credibility of previous studies based on administrative data that were

unable to control for child and family factors to the same extent as we are (e.g. Holmlund

et al. 2010, Machin et al. 2010). Our results do show, however, that failing to control for

child endowments leads to an over-estimation of the net persistence of student achievements

from one stage of education to the next.

Our estimation results are important for future applications that due to data limitations

are forced to estimate value-added models omitting relevant inputs and using tests with

measurement error. They suggest that the most important source of bias is the omission of

school characteristics, followed by the omission of family and child endowments, and lastly

and least by the measurement error in the lagged test.
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Figure 1: Comparing linear and quadratic value added model
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Table 1: Assessing the bias caused by omitted variables

OLS OLS School FE Sibling FE Two-step Two-step
No controls All controls All controls All controls sibling FE school FE

(1) (2) (3) (4) (5) (6)

Sample of siblings going to same school, N=1,019,730

ExpPup3 -0.040** -0.001 0.059** 0.061** 0.068** 0.068**
(0.001) (0.007) (0.009) (0.005) (0.007) (0.005)

Net persistence 0.709** 0.583** 0.578** 0.503** 0.305** 0.305**
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Sample of all students, N=5,092,503

ExpPup3 -0.038** -0.005** 0.053** 0.057**
(0.000) (0.001) (0.008) - - (0.002)

Net persistence 0.713** 0.575** 0.570** 0.303**
(0.000) (0.000) (0.001) (0.001)

Notes: + p < .10, * p < .05, ** p < .01. Test scores are standardized. Robust standard errors (estimated
using a sandwich estimator, the Huber-White estimator) are in parentheses. Standard errors for the
expenditure per pupil for the two-step estimation are bootstrapped using 50 replications. The top panel
uses the sample of siblings going to the same school, the bottom panel uses the full sample. In column (5)
the net persistence is estimated using child fixed estimation (first step), while the effect of expenditure
is estimated using the second step sibling fixed effect estimation. Column (6) uses school fixed effect
estimation in the second step. Control variables include all variables listed in Online Appendix Table C1
plus dummies for academic year. FE stands for fixed effects estimation.
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Table 2: Analytic correction of measurement error

Two-step Two-step, analytical Two-step, analytical Two-step, analytical
not corrected correction 1 correction 2 correction 3

(1) (2) (3) (4)

Exp. per pupil 0.057** 0.055** 0.054** 0.053**
(0.002) (0.002) (0.002) (0.002)

Net persistence 0.303** 0.425** 0.470** 0.547**
(0.001) (0.001) (0.001) (0.001)

Observations 5,092,503 5,092,503 5,092,503 5,092,503
Notes: + p < .10, * p < .05, ** p < .01. Test scores are standardized. Bootstrapped robust standard errors
in parenthesis. Control variables include all variables listed in Online Appendix Table C1 and dummies for
academic year. Analytic corrections 1, 2 and 3 are based on correction factors of 1.403, 1.550 and 1.806.
The net persistence is estimated using child fixed estimation with analytic correction (first step), while the
effect of expenditure is estimated using the second step school fixed effect estimation.

Table 3: Effect of expenditure per pupil using different measurements of expenditure
Two-step school FE Observations

with analytical correction

Separate models using expenditure measured over different time-periods

Current expenditure per pupil 0.022** 5,092,503
(0.001)

2-year average expenditure per pupil 0.039** 5,092,503
(0.002)

3-year average expenditure per pupil 0.055** 5,092,503
(0.002)

4-year average expenditure per pupil 0.073** 5,077,644
(0.003)

5-year average expenditure per pupil 0.066** 5,037,183
(0.003)

Notes: + p < .10, * p < .05, ** p < .01. Test scores are standardized. Robust standard
errors (estimated using a sandwich estimator, the Huber-White estimator) in parenthesis.
Control variables include all variables listed in Online Appendix Table C1 and dummies
for academic year. The net persistence is estimated using child fixed estimation with
analytic correction (factor 1.403) and using school fixed effects in the second step.
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Table 4: Structural equation models for the subject-specific test scores

Key Stage 2 tests Key Stage 4 tests
(1) (2)

Model with independent errors eih,s across s
Factor loading Factor loading

English 0.937** 0.930**
(0.001) (0.001)

Science 1.019** 1.031**
(0.001) (0.001)

Maths 1 1

V ar(Y ∗ih,t) 0.775** 0.794**

(0.001) (0.001)

Uniqueness

V ar(eih,Maths)/[V ar(Y ∗ih,t) + V ar(eih,Maths)] 0.225 0.206

V ar(eih,English)/[V ar(Y ∗ih,t) + V ar(eih,English)] 0.292 0.283

V ar(eih,Science)/[V ar(Y ∗ih,t) + V ar(eih,Science)] 0.201 0.164

Separate models by past
high ability low ability

V ar(eih,Maths)/[V ar(Y ∗ih,t) + V ar(eih,Maths)] 0.324 0.341

V ar(eih,English)/[V ar(Y ∗ih,t) + V ar(eih,English)] 0.469 0.395

V ar(eih,Science)/[V ar(Y ∗ih,t) + V ar(eih,Science)] 0.244 0.288

Models allowing for correlation between errors
Covariance of errors

Cov(eih,Maths, eih,English) 0.000 0.000
(3.130) (7.162)

Cov(eih,English, eih,Science) 0.000 0.000
(1.868) (5.068)

Cov(eih,Maths, eih,Science) 0.000 0.000
(9.479) (2.730)

Notes: + p < .10, * p < .05, ** p < .01. Test scores are standardized. Results are from structural
equation models assuming a single factor and constraining the factor loading for maths to 1.

Table 5: Correlations between test scores

Maths, KS4 English, KS4 Science, KS4 Maths, KS2 English, KS2 Science, KS2

Maths, KS4 1.000
English, KS4 0.738 1.000
Science, KS4 0.819 0.762 1.000
Maths, KS2 0.767 0.612 0.674 1.000
English, KS2 0.636 0.705 0.638 0.726 1.000
Science, KS2 0.674 0.611 0.675 0.790 0.740 1.000
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