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Individual foraging specializations, where individuals use a small com-

ponent of the population niche width, are widespread in nature with

important ecological and evolutionary implications. In long-lived animals,

foraging ability develops with age, but we know little about the ontogeny

of individuality in foraging. Here we use precision global positioning

system (GPS) loggers to examine how individual foraging site fidelity

(IFSF), a common component of foraging specialization, varies between

breeders, failed breeders and immatures in a long-lived marine predator—

the northern gannet Morus bassanus. Breeders (aged 5þ) showed strong

IFSF: they had similar routes and were faithful to distal points during

successive trips. However, centrally placed immatures (aged 2–3) were far

more exploratory and lacked route or foraging site fidelity. Failed breeders

were intermediate: some with strong fidelity, others being more exploratory.

Individual foraging specializations were previously thought to arise as a

function of heritable phenotypic differences or via social transmission. Our

results instead suggest a third alternative—in long-lived species foraging

sites are learned during exploratory behaviours early in life, which

become canalized with age and experience, and refined where possible—

the exploration-refinement foraging hypothesis. We speculate similar

patterns may be present in other long-lived species and moreover that

long periods of immaturity may be a consequence of such memory-based

individual foraging strategies.
1. Introduction
Individual foraging specializations are widespread and occur where animals

use a small component of the population niche width [1]. Such inter-individual

differences have profound consequences for population dynamics and commu-

nity structure [1,2], but for long-lived species with delayed maturation, research

is biased towards experienced animals, with the significance of individuality in

young age classes unknown (but see [3]). This omission may be problematic

since age-related differences in other aspects of foraging appear frequently.
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For example, foraging competency tends to increase with age,

with implications for life-history traits [4]. However, the ways

in which individual specializations develop as individuals

grow towards maturity is unknown.

Individual foraging specializations are generally thought

to arise because of heritable phenotypic differences or via

social transmission. For example, variation in body-size, jaw

or beak morphology may influence diet choice (e.g. [5,6]),

and heritable personality differences may covary with

differences in foraging location [7]. Alternatively, foraging

specializations may be passed on culturally either to off-

spring (e.g. in sea otters Enhydra lutris [8]) or among a

wider social group (e.g. in primates [9] and dolphins [10]).

In the majority of cases, however, individual specializations

arise in the absence of obvious phenotypic differences and

independently from conspecifics [1,2]. Therefore, a third

alternative explanation is that foraging specializations are

learned during individual exploratory behaviours early in

life, which then become canalized with age and experience.

This may be especially important for some forms of individ-

ual specialization such as individual foraging site fidelity

(IFSF), where an animal repeatedly uses the same foraging

location [11]. Previously, this ‘exploration-refinement’

hypothesis had been proposed to explain inter-individual

differences in migratory behaviour of some long-lived

animals [12]. By comparing the degree of IFSF between indi-

vidual birds that vary in terms of constraint and experience,

here we provide a first test of this exploration refinement

foraging hypothesis.

Seabirds represent an excellent group to study how indi-

vidual specialization varies with age and reproductive status.

First, individual specialization appears common among adult

seabirds—approximately 87% of studies found evidence of

specialization in terms of foraging or feeding, particularly

IFSF [11,13–16]. Such consistent behaviours are likely to be

linked with the predictability of marine resources where, par-

ticularly in sub-polar, temperate, neritic and frontal waters,

oceanographic features create prey patches that are persistent

in both time and space, favouring learning and hence IFSF

[17]. Second, seabirds have bet-hedging life-history strategies

with long periods of immaturity [18]. This period is impor-

tant for the development of effective foraging, particularly

for finding patchy prey distant from land [18–20]. However,

it is unknown whether IFSF may also play a role during this

period of development. Third, many seabirds are large

enough to carry bio-logging devices without major impacts

upon behaviour, making it possible to reconstruct individual

spatial foraging behaviour in fine detail, and precisely reveal

the degree of IFSF.

Here we focus on IFSF in northern gannets Morus bassa-
nus (hereafter ‘gannets’), large (approx. 3 kg), long-lived

(annual survival probability approximately 92%), medium-

ranging (100 s of km) colonial-nesting seabirds that breed

along the coasts of temperate and boreal waters in the

North Atlantic [21,22]. Longitudinal research reveals adult

gannets have highly consistent individual differences in fora-

ging behaviours including searching [13], site fidelity [11,15],

route fidelity [15,16] and diet [14]. Moreover, IFSF is repeata-

ble both within and among years indicating this does not

simply reflect short-term differences in prey gain, such as

would be expected by, for example, a win–stay, lose–shift

strategy [11–15]. Gannets do not breed for the first time

until they are a minimum of 4–5 years old [21]. Inexperienced
immatures either engage in prospecting or become central

place foragers during the breeding season [23], but nothing

is known about foraging individuality.

We use high-precision global positioning system (GPS)

telemetry to compare IFSF of gannets in three groups: (i) suc-

cessful breeders, (ii) failed breeders (experienced birds not

constrained by chick rearing) and (iii) immatures, all tracked

over successive foraging trips. Specifically, we compare IFSF

in terms of foraging locations (distal point of trips) and

foraging route fidelity, as well as foraging effort (distance tra-

velled). If immatures have lower IFSF than adults, this would

provide support for the exploration refinement foraging

hypothesis. Moreover, by tracking failed breeders we can

also better understand the potentially confounding influence

of reproductive constraint. If the degree of IFSF were similar

between breeders and immatures, this would indicate some

other mechanism at play.
2. Material and methods
(a) Study site and device deployment
Fieldwork was conducted on an uninhabited island, Grassholm,

Wales, UK (518430 N, 058280 W), during July/August 2010, 2015

and 2016 where approximately 40 000 pairs of gannets breed

alongside several thousand immatures [23].

To compare at-sea behaviour among birds of different age

classes and reproductive status we tracked 15 immatures

(8 females, 7 males; aged 2–3 years), 46 chick-rearing adults

(15 females, 31 males; aged more than 5 years; hereafter ‘bree-

ders’) and five individually marked adults that had bred

successfully in the past but had failed by the time of capture

(while it is possible these birds may have been taking a sabbatical

year, this sort of breeding deferral is unknown in gannets [21];

two females, three males; aged more than 5 years; hereafter

‘failed breeders’). Immatures were caught (using a metal crook

attached to an approximately 5 m carbon fibre pole) while attend-

ing non-breeding aggregations at the colony periphery, and

approximately aged (up to 5 years, although we focused only

on 2–3-year-olds) on the basis of plumage and bare parts [21].

They were fitted either with a 40 g GPS-platform terminal trans-

mitter in 2010 (GPS-PTT; Microwave Telemetry), a 38 g GPS

global system for mobile communications tag in 2015 (GPS-

GSM; Ecotone, Poland) or a 35 g GPS-GSM tag in 2016 (Nanofix;

Pathtrack) attached using Tesa tape and, for the GPS-PTTs, steel

lock cable ties (Ty-Rap) to the tail, representing 1.2–1.4% of

immature body mass (2857 g+167.5). Breeders and failed bree-

ders were caught at the nest on changeover (using the same

metal crook), targeting the departing bird to ensure any chicks

were not left unattended and/or to ensure a foraging trip

began immediately upon release. In 2010 birds were fitted with

a 30 g I-gotU GPS logger (GT200 or GT600, Mobile Action Tech-

nology) fitted to the tail using Tesaw tape and in 2015/16 a 20 g

GPS logger (GT120) fitted in the same way along with a 16 g alti-

meter (the altimeter data not included in this study). These

devices represent 1.0–1.2% of breeder/failed breeder body

mass (3010 g+284.1). Despite the difference in percentage

logger mass deployed on immatures and adults, we think it

extremely unlikely that such a small difference (less than 0.5%

of body mass) would have any detectable effect on the foraging

behaviour studied here. GPS-PTTs were programmed to obtain a

GPS fix hourly, relayed via the Argos satellite system every 48 h.

GPS-GSM tags took a fix every 30 min (Ecotone) or a maximum

of 5 min (Pathtrack), relayed via the mobile phone network.

I-gotU GPS loggers were programmed to obtain a fix every

two minutes, with data downloaded upon bird recapture and

http://rspb.royalsocietypublishing.org/
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Figure 1. Foraging movements of breeding, failed breeding and immature gannets. Central-place foraging trips reconstructed from GPS tracked birds from Grass-
holm, UK (July/August 2010, 2015 and 2016). (a) Chick-rearing birds aged 5þ years (n ¼ 46 individuals, 152 trips; median 3 trips per individual), (b) failed
breeders aged 5þ years (n ¼ 5 individuals, 15 trips; median 3 trips per individual) and (c) immatures aged 2 – 3 years (n ¼ 15 individuals, 70 trips;
median 4 trips per individual). (Online version in colour.)
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device retrieval. We took approximately 0.1 ml of blood from the

tarsal vein for molecular sexing (at the University of Exeter or

commercially outsourced to AvianBiotech.com).

(b) Analysis of tracking data
To allow comparison of GPS tracking data from immatures (GPS-

PTT: 85% hourly fixes 15% every two hours; GPS-GSM: fixes

between 5 and 30 min) and adults (100% of fixes every two min-

utes), we first filtered the data to remove erroneous fixes as

indicated by unrealistic flight speeds [24]. Next, all tracking

data were sub-sampled to ensure a resolution of one fix per hour.

Immature movements can be broadly divided into two states:

(i) central place foraging and (ii) prospecting [23]. Prospecting

has a very different function from central place foraging [25],

therefore we removed all prospecting trips from immatures [26]

and from one breeder.

To compare IFSF between immatures, breeders and failed

breeders, we calculated three indices from complete foraging

trips: (i) foraging route fidelity, (ii) foraging site fidelity and

(iii) foraging effort.

(i) Foraging route fidelity
We calculated individual route fidelity using nearest-neighbour

distance (NND, in km). This technique quantifies the spatial

similarity between a focal trip and comparison trip by calculating

the distance from each location along a track to its nearest neigh-

bour on the comparison track [27]. The NND calculated between

two trips decreases with the spatial similarity. NND was calcu-

lated in two ways: (i) for all within individual trips (i.e. a

measure of route fidelity across all repeat trips of the same

bird) and (ii) for all among-individual trips for breeders, failed

breeders and immatures separately (i.e. a comparison of route

fidelity within all individuals of the same age class). Locations

less than 2 km from the colony were excluded because gannets

often gather on the water here in non-foraging rafts [26].

We used linear mixed models (LMM) to assess whether

route fidelity varied significantly between the three groups.

We compared within-individual NND to among-individual

NND for breeders, failed breeders and immatures separately,

as well as comparing within-individual NND among all three

groups, including sex and year as fixed effects, and pair as a

random effect, and comparing each model with the null (inter-

cept only) model based upon likelihood-ratio tests (LRTs).

NND was natural-square-root-transformed to obtain normality.

To account for differences in NND due to differences in
trip length, we added the difference in trip length between

each pair of trips compared as a covariate. In total we used

152 trips from 46 breeders, 15 trips from 5 failed breeders and

70 trips from 15 immatures.

(ii) Foraging site fidelity
As a measure of foraging site fidelity we first estimated the distal

point (longitude and latitude) of each foraging trip and then

compared the similarity of these values between repeat distal

locations both within and among individuals. Even though gan-

nets may forage throughout the course of a foraging trip, distal

location is considered an appropriate measure of IFSF as a high

percentage of dives occur at the furthest point from the colony

[28,29].

(iii) Foraging effort
We calculated two measures of foraging effort: (i) total distance

travelled (km) and (ii) distance to distal point (furthest distance

from the colony, km).

We compared individual consistency of foraging site fidelity

and foraging effort among immatures, breeders and failed breed-

ers by calculating repeatability (r) for each group using the rptR

package in R [30], with sex included as a fixed effect in all

models, and year included as a fixed effect where multiple years

are present (0¼ low repeatability, 1 ¼ high repeatability). Repeat-

ability of total distance travelled and maximum distance from the

colony were both transformed using Box–Cox transformations.
3. Results
(a) Foraging trips
During July/August 2010, 2015 and 2016 we obtained central

placed movements from 15 immatures, 5 failed breeders

and 46 breeders. For the breeders, we GPS-tracked 152 com-

plete foraging trips, a median of 3 repeat trips per bird (range

2–8 trips per bird; trip duration 84–4504 min; total distance

travelled 11.6–1246.1 km and maximum distance from the

colony 10.8–516.7 km; figure 1; electronic supplementary

material, figure S2). For immatures, we obtained 70 foraging

trips, with a median of 4 repeat trips per bird (range 2–8 trips

per bird; trip duration 34–16 470 min; total distance travelled

4.2–2216.6 km and maximum distance from the colony

2.1–5538.0 km; figure 1; electronic supplementary material,

http://rspb.royalsocietypublishing.org/


Table 1. Nearest-neighbour distance (NND) reveals within-individual route fidelity varies by age in gannets. Adults show within-individual route fidelity,
whereas immatures and failed breeders do not.

age group mean NND+++++ s.e. (km) pairs of trips individuals (trips)

adults (within individual) 49.4+ 3.1 214 46 (152)

adults (among individuals) 73.9+ 0.4 10 961 46 (152)

failed breeders (within individuals) 55.2+ 9.8 17 5 (15)

failed breeders (among individuals) 62.1+ 3.5 88 5 (15)

immatures (within individual) 95.7+ 4.7 165 15 (70)

immatures (among individuals) 107.1+ 1.3 2250 15 (70)
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figure S3). For the failed breeders, we obtained 15 foraging

trips with a median of 3 repeat trips per bird (range 2–4

trips per bird; trip duration 136–2898 min; total distance tra-

velled 47.7–436.8 km and maximum distance from the

colony 23.9–184.7 km; figure 1; electronic supplementary

material, figure S4).

(b) Foraging route fidelity
NNDs of breeders showed that repeat foraging routes

were more similar within than among individuals

(LRT:x2
1 ¼ 43:7, p , 0.001, R2 ¼ 0.68; table 1, figures 2 and 3).

In contrast, for immatures, variation in NND within individuals

was similar to variation among individuals (LRT:x2
1 ¼ 0:12, p ¼

0.729, R2 ¼ 0.42; table 1, figures 2 and 3). This was also the case

for failed breeders (LRT:x2
1 ¼ 1:44, p ¼ 0.230, R2 ¼ 0.42). A

comparison of NNDs between age classes revealed that there

were significant differences in within-individual route consist-

ency among age groups (LRT: x2
2 ¼ 14:4, p , 0.001, R2 ¼

0.67). Routes followed by different individuals of the same

group were as dissimilar among all groups (LRT: x2
2 ¼ 0:3,

p ¼ 0.853, R2 ¼ 0.63). Trip duration, year and sex were all

retained in the analysis, but, given they are beyond the focus

of the study, are not discussed further (electronic

supplementary material, table S1 and figure S1).

(c) Foraging site fidelity
During repeat trips breeders had highly repeatable distal lati-

tude and longitude (table 2, figure 2a–d ). In contrast,

immatures showed highly variable distal locations (table 2,

figure 2i– l ). Failed breeders were intermediate (figure 2e–h),

having highly repeatable distal longitudes, but not lati-

tude—although the majority of tracked birds showed very

similar foraging locations (table 2, figure 2e–h; electronic

supplementary material, figure S3).

(d) Repeatability of foraging effort
Analysis of within-individual variation showed that foraging

effort (total distance travelled and distance to distal point)

was not repeatable, regardless of group (table 2).
4. Discussion
Our study shows clear differences in IFSF between breeding

and immature gannets. Breeders returned repeatedly to

similar locations, using similar routes during consecutive

foraging trips (figures 2 and 3). By contrast, immatures

tracked over the same period showed little or no evidence
of IFSF, with highly variable distal points and low levels of

route fidelity (figures 2 and 3). Both age groups had similarly

very low repeatability in terms of foraging effort. Failed

breeders were somewhat intermediate—some individuals

showed strong site fidelity, while others were less repeatable

(figures 2 and 3). The potential causes of these differences, as

well as their implications for life history, conservation and

the development of individual foraging specializations, are

discussed below.

(a) Individual foraging site fidelity in breeders
Individual specializations may be ubiquitous among marine

vertebrates, with consistent foraging behaviours reported

across a diversity of wide-ranging taxa including cartilaginous

fish [31], bony fish [32], reptiles [33], mammals [34] and

seabirds [13,16]. These predators are probably responding to

the generally predictable distribution of marine prey, but long-

term IFSF shows this is not simply a response to short-term

opportunities [11–15]. Gannets, for example, return repeatedly

to the same sites characterized by persistent ocean fronts

[11,35] or consistently high fishing activity [36]. The high

degree of IFSF exhibited by breeders here contrasts with low

repeatability in foraging effort, which may relate to variation

in transit costs because of wind [37] or visibility, or fluctuations

in individual energetic demands. Nevertheless, site fidelity

varied within individuals (electronic supplementary material,

table S1), revealing that foraging sites are not absolute.

(b) Individual foraging site fidelity in immatures
and failed breeders

In contrast to breeders, immatures showed low IFSF—they

had highly variable routes and distal points varied over

time (figures 2 and 3). This difference may arise for a

number of reasons. First, as predicted by the exploration

refinement foraging hypothesis, these differences may relate

to learning. Site familiarity could be attained via individual

exploration [12] or social information use [28,38] early in

life, with acquired navigational memory canalizing such

behaviours [12]. Immature gannets perform directed commu-

tes followed by area-restricted searches [23], and such

searching is learned rapidly in post-fledging albatrosses

[19]. However, our data suggest that knowledge of site fide-

lity may take much longer to accrue. Second, the magnitude

of individual foraging specialization may be positively

correlated with intra-specific competition [2,39], with longer

immature foraging trips producing lower conspecific den-

sities compared with breeders. While we cannot completely

exclude this possibility, we think it is unlikely for the

http://rspb.royalsocietypublishing.org/
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following reasons: (i) immature gannets also make many

short trips, being exposed to similar levels of competition

experienced by breeders (figure 2; electronic supplementary

material, figure S3); (ii) during long trips, immatures share

foraging grounds with adults from adjacent colonies [38],
exposing them to high levels of inter-colony competition;

and (iii) a comparison of adult IFSF among seven gannet colo-

nies revealed no relationship with colony size (T.W.B. et al.
2017, unpublished). Therefore, while intra-specific competition

could be an important driver of foraging site fidelity in some

taxa [1,2], the current evidence suggests this is unlikely for

gannets. Third, differences between breeders and immatures

may arise because of differences in habitat predictability

(figure 1). We think this is an unlikely explanation for the

differences among age groups, however, since all birds

forage in water masses characterized by highly productive

and predictable oceanographic conditions [40]. Fourth, IFSF

may arise because reproduction imposes strong time and ener-

getic constraints, reducing opportunities for exploratory

movements [11]. We believe that reproductive constraints are

important, but are not the primary cause of age-specific differ-

ences in IFSF. While immatures had longer trips overall

(figures 1 and 2), ranges overlap considerably and differences

in NND remain despite including trip duration as a covariate.

Hence, if there is not an experience-based difference in IFSF

between immatures and breeders when trips are of similar

length, then breeders should explore in much the same way

that immatures do, which is not the case. Furthermore, the

majority of failed breeders were highly site faithful,

(figure 2e–h; electronic supplementary material, figure S4), in

the absence of breeding constraints. We therefore conclude

http://rspb.royalsocietypublishing.org/


Table 2. Repeatability (r+ s.e., with 95% CIs in parentheses) of gannet foraging site fidelity (decimal degrees) and foraging effort (0 ¼ low repeatability,
1 ¼ high repeatability). Breeders showed repeatable foraging sites (distal longitude and latitude), in contrast to immatures, which showed highly variable
foraging sites. Failed breeders showed repeatable foraging longitudes, but not latitude with much variation. Foraging effort showed low repeatability for all
groups. Significantly repeatable foraging behaviours are given in italics.

breeders (n 5 46) failed breeders (n 5 5) immatures (n 5 15)

foraging site fidelity

longitude of distal point (DD) 0.51+ 0.08 (0.33, 0.66) 0.42+ 0.27 (0, 0.82) 0.00+ 0.07 (0, 0.24)

latitude of distal point (DD) 0.34+ 0.09 (0.14, 0.51) 0.00+ 0.17 (0, 0.56) 0.00+ 0.07 (0, 0.24)

foraging effort

total distance travelled (km) 0.11+ 0.08 (0, 0.29) 0.01+ 0.18 (0, 0.61) 0.00+ 0.07 (0, 0.25)

distance to distal point (km) 0.15+ 0.08 (0, 0.31) 0.00+ 0.17 (0, 0.56) 0.00+ 0.07 (0, 0.22)
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the observed patterns are best explained by differences in

experience, with young birds yet to learn the whereabouts of

suitable foraging sites. We also note that since IFSF is not

absolute, exploration and refinement may continue through-

out life, with exploratory movements being more likely, and

likely to occur more often, when not constrained by breeding.

(c) Age-specific variation in foraging individuality
Age-specific differences in avian foraging are not uncommon

[4], but our study is, as far as we know, the first to demon-

strate differences in IFSF. The ability to find sufficient food

for both self-maintenance and reproduction is believed to

influence age at first breeding in many long-lived species

[41], and is also related to the positive correlation between

foraging efficiency and age [20]. Based on our findings, we

propose that individual foraging specialization may also

play an important, previously overlooked role in age-specific

foraging. Further work should examine the relationship

between individual foraging specialization and age at first

breeding, as well as revealing more about refinement of

individuality beyond age at first breeding.

(d) Wider implications
Individuality in behavioural traits has wide-reaching applied

implications [2], as do the age-related differences in foraging

specialization reported here. Conservation biologists recog-

nize the importance of foraging individuality in terms of

maintaining diversity and risk management [1]. For example,

variation in individual specialization may mean adults and

immatures have different levels of risk from fisheries bycatch

[14] or collision with marine renewables.
5. Conclusion
Our study found that breeding gannets had individually

consistent foraging routes and sites, failed breeders were

less consistent, while immatures tended to switch between
different sites and routes during successive trips. Since IFSF

is probably driven by site familiarity [11], the age-specific

differences reported here are probably best explained by

age-specific differences in experience. We conclude that imma-

ture seabirds are likely to be accruing experience of suitable

foraging sites, which become canalized later in life, as posited

by the exploration-refinement foraging hypothesis. We also

hypothesize that energetic and time constraints imposed by

reproduction may shape opportunities for exploration (and

therefore IFSF), and moreover that foraging refinement prob-

ably continues throughout an animal’s lifetime. More work

is needed to understand whether age-specific variation in indi-

vidual foraging occurs in other long-lived species and whether

it plays a role in key life-history characters such as age at

first breeding.
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