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ABSTRACT

Information from different bio–signals such as speech, hand-

writing, and gait have been used to monitor the state of

Parkinson’s disease (PD) patients, however, all the multi-

modal bio–signals may not always be available. We propose

a method based on multi-view representation learning via

generalized canonical correlation analysis (GCCA) for learn-

ing a representation of features extracted from handwriting

and gait that can be used as a complement to speech–based

features. Three different problems are addressed: classi-

fication of PD patients vs. healthy controls, prediction of

the neurological state of PD patients according to the UP-

DRS score, and the prediction of a modified version of the

Frenchay dysarthria assessment (m-FDA). According to the

results, the proposed approach is suitable to improve the re-

sults in the addressed problems, specially in the prediction of

the UPDRS, and m-FDA scores.

Index Terms— Parkinson’s disease, Multi-view learn-

ing, GCCA, Speech processing, Handwriting processing,

Gait processing, UPDRS, Frenchay dysarthria assessment.

1. INTRODUCTION

Parkinson’s disease (PD) is a neurological disorder charac-

terized by the progressive loss of dopaminergic neurons in

the midbrain producing several motor and non-motor im-

pairments [1]. The motor symptoms include, among others,

bradykinesia, rigidity, resting tremor, micrographia, and dif-

ferent speech impairments. The progression of the disease

in the motor capabilities is currently evaluated with the third

section of the movement disorder society, unified Parkinson’s

disease rating scale (MDS-UPDRS-III) [2], which is assigned

by neurologist experts. The scale contains several items to

evaluate the motor capabilities of the patients such as finger

tapping, gait, speech, and facial expression. For simplicity, in

the rest of the paper, the scale will be referred as UPDRS.

Several studies have analyzed different bio–signals such

as speech, gait, and handwriting to monitor the state of the PD

patients. In [3] the authors investigated the suitability of fea-

tures extracted from sustained vowel phonations to evaluate

whether the speech is “acceptable” or “unacceptable” in or-

der to assess the rehabilitation treatment of PD patients. The

authors reported accuracies close to 90% on a dataset with

utterances from 14 PD patients. In [4] the authors evaluated

the classification of emotional speech of 5 PD patients us-

ing different acoustic features, and reported an accuracy of

65.5%. In the “2015 computational paralinguistic challenge

(ComParE)” [5] one of the sub-challenges was to predict the

UPDRS score of PD patients. Utterances from 61 PD pa-

tients were used, and a Spearman’s correlation coefficient of

0.39 was obtained as baseline in the test set. The winner of

the challenge [6] grouped the patients tasks automatically and

used deep neural networks and Gaussian processes to predict

the UPDRS score. They reported a correlation coefficient of

0.65. In [7], the authors analyzed features related to artic-

ulation and intelligibility to predict the UPDRS score of 50

PD patients, and reported a Spearman’s correlation of up to

0.72 in a similar scheme as part of the ComParE 2015 chal-

lenge. For the gait analysis, in [8], the authors analyzed the

influence of gait features to classify PD vs. healthy controls

(HC) subjects. The gait signals are obtained from accelerom-

eters and gyroscopes attached to the shoes of the patients [9].

The authors reported an accuracy of up to 81% for the de-

tection of PD. In [10], the authors used several inertial sen-

sors attached to the lower and higher limbs with the aim of

predicting the UPDRS score of PD patients. They computed

features related to the stance time, the length of the stride,

and the velocity of each step, and reported a correlation co-

efficient of 0.60 in a dataset formed with signals from 34 PD

patients. For handwriting analysis, in [11], the authors as-

sessed whether handwriting measures extracted from the pen

trajectory can be used to classify PD vs. HC participants. The



computed features include the velocity and the acceleration of

the pen, and the time and the size of the drawing. The authors

performed statistical tests and found significant differences in

the features extracted from the HC and PD subjects. In [12]

the authors used features related to the velocity, acceleration

and jerk of the pen, the on-surface time, and the average pres-

sure to classify PD vs. HC subjects. The authors reported an

accuracy of up to 81% in a database with drawings of 37 PD

patients and 38 HC.

To the best of our knowledge, the different modalities

(speech, gait and handwriting) have not been analyzed to-

gether to monitor the state of PD patients so far. The main

reason is because the information from the three modalities

cannot be guaranteed to always be available at both training

and run-time. In this study, a multimodal monitoring of PD

patients using features from speech, handwriting, and gait is

performed. As the information from multiple modalities is

not always available, we apply a method for multi-view learn-

ing based on the generalized canonical correlation analysis

(GCCA). This method allows the transformation and repre-

sentation of features from different modalities into a different

feature space, where only one modality is available [13, 14].

Three experiments are performed with the proposed ap-

proach: (1) classification of PD vs. HC, (2) the prediction of

the UPDRS score of the patients, and (3) the prediction of a

perceptual scale designed to assess only the speech impair-

ments of the speakers. The perceptual scale is a modification

of the Frenchay dysarthria assessment (FDA) [15]. Accord-

ing to the results, gait is the most suitable modality to predict

the UPDRS score, and the use of GCCA improves the results

obtained in the three performed experiments.

2. METHODS

2.1. Feature extraction

Features from Speech– Two different feature sets are con-

sidered for speech analysis: The first one is formed with

articulation–based features, and includes 86 features such as

the energy content in the Bark scale in the transition from

voiced to unvoiced segments (22 features), and from un-

voiced to voiced segments (22 features) [7]. The feature set

is completed with the first and second formant frequencies,

and 12 MFCC with their derivatives. The extracted fea-

tures are grouped and four functionals are computed (mean,

standard deviation, skewness, and kurtosis), forming a 344-

dimensional feature vector per utterance. The second feature

set from speech contains prosody–based features computed

with the Erlangen prosody module [16], using voiced seg-

ments as speech unit. The set of features comprises a total

of 95 features. 19 of them are based on duration and include

among others the number and the length of voiced frames,

and duration of pauses. 36 of the features are based on the

F0 contour, including the mean, standard deviation, jitter, and

others. The energy-based features include measures of the

energy within the voiced frames, shimmer, position of the

maximum energy, and others. The features are grouped into

one feature vector and four functionals are also computed:

mean, standard deviation, maximum, and minimum, forming

a 380-dimensional feature vector per utterance.

Features from Handwriting– A total of 21 features are

considered. They are based on kinematics of the x and y po-

sition, and the pressure of the pen. The feature set includes

the speed of the stroke, velocity, acceleration, and jerk of the

trajectory, and the average pressure of the pen.

Features from Gait– This feature set is formed with

12 bio-mechanical features including the swing, stance and

stride times, the length of the stride, the maximum toe clear-

ance, the gait velocity, the cadence, the rotation angle at

stance, and the number of recognized strides. The mean

and standard deviation of the features per each stride are

computed, forming a 24-dimensional feature vector.

2.2. Multi-view representation learning

The multi-view learning is performed using GCCA, with the

aim of obtaining a feature embedding that represents the max-

imally correlated projection from the multimodal information

and the speech respectively. This projected feature space can

be used even when the multimodal information is not avail-

able. Let Xj ∈ R
N×dj be the mean centered feature matrix

from the modality j, dj the number of features of the modal-

ity j, N the number of subjects in the data, and k the number

of components of the representation matrix. The GCCA pro-

cess can be expressed according to the following optimization

problem:

Find G ∈ R
N×k and Uj ∈ R

dj×k that solve:

argmin
G,Uj

J∑

j=1

‖G−XjUj‖
2

F
s.t. GTG = I (1)

G is our original representation matrix, and Uj corre-

sponds to the transformation matrix of the modality j. In the

optimization problem, a projection matrix P̃j ∈ R
N×N is de-

fined according to Equation 2, which is regularized by adding

the parameter rj before doing the inversion for numerical

stability [14].

P̃j = Xj(X
T
j Xj + rjI)

−1XT
j (2)

The parameters rj are optimized in a range from 10−8 to

100 into powers of 10, The other parameter to be optimized

is the number of components k of the representation matrix

(k ∈ {5, 10, 15, 20}). The optimization is performed using

a KNN regressor following a 6–fold cross-validation on the

training set. Finally, we obtain a representation matrix based

on the multimodal information, which can be stacked to the

features from speech that are available in the test data.



2.3. Classification and regression

Three tasks are performed to analyze the suitability of the pro-

posed method: (1) The classification of PD vs. HC subjects,

(2) the prediction of the UPDRS score of the PD patients, and

(3) the prediction of the m-FDA score to evaluate the level of

dysarthria of the participants. For the classification we use an

SVM with a Gaussian kernel. The parameters C and γ are op-

timized in a grid search, with selection criterion based on the

accuracy obtained in the train set (C ∈ {10−5, 10−4, . . . 104}
and γ ∈ {10−6, 10−5, . . . 102}). For the regression problems

we use an SVR with an ε-insensitive loss function and a lin-

ear kernel. The parameters of the regressor C and ε are opti-

mized in a grid-search with C ∈ {10−4, 10−3, . . . , 100} and

ε ∈ {10−4, 10−3, . . . , 10, 20}. The performance is evaluated

using the Spearman’s correlation coefficient between the pre-

dicted values and the real scores. For the three tasks a leave-

one-subject-out (LOSO) cross-validation is performed.

3. DATA

3.1. Training Data

The training data contains recordings from speech in Span-

ish, online handwriting and gait from 30 PD patients labeled

according to the UPDRS score. The speech signals were

recorded with a sampling frequency of 44.1 kHz and 16-

bit resolution, using an omnidirectional microphone, and a

portable sound-proof booth. The speech tasks include the

repetition of /pa-ta-ka/, a read text, and a monologue. The

handwriting data consists of online drawings that are obtained

with a tablet Wacom cintiq 13-HD [17] with a sampling fre-

quency of 180 Hz. The tablet captures six different signals:

x-position, y-position, in-air movement, azimuth, altitude,

and pressure. The patients performed 14 tasks including

among others draw a cube, their ID number, their name, Rey-

Osterrieth figure [18], and a spiral. The acquisition of the

gait signals was performed using the embedded gait analy-

sis using intelligent technology (eGaIT) platform [9]. The

system consists of inertial sensors (three axes gyroscopes and

accelerometers) attached to the lateral heel of a shoe [8]. Data

from both foot was captured with sampling rate of 102 Hz.

The tasks performed by the patients include among others

20 meters walking with a stop at 10 meters (2×10), and 40

meters walking with a stop every 10 meters (4×10).

3.2. Test Data

Spanish– We consider the PC-GITA database [19], which

contains speech utterances from 50 PD and 50 HC Colom-

bian native speakers, recorded in a sound-proof booth with

a sampling frequency of 44.1 kHz and with the same micro-

phone used in the training data. The patients were labeled

also according to the UPDRS score by the same neurologist

expert than the training data.

German– The German data contains recordings from

88 PD and 88 HC subjects. The speakers perform different

speech tasks, including the repetition of /pa-ta-ka/, a read

text, and a monologue [20].

Czech– The Czech data is formed with recordings from

20 PD patients and 15 HC. The patients were newly diag-

nosed with PD, and none of them had been medicated before

or during the recording session. The speech tasks performed

by the speakers include also the repetition of /pa-ta-ka/, a read

text and a monologue [20].

3.3. Modified Frenchay dysarthria assessment

Additionally to the UPDRS score, the training and test sub-

jects in Spanish were labeled by three phoniatricians accord-

ing to a modified version of the FDA [15]. The main aim

was to evaluate only the speech impairments that the PD pa-

tients develop. The original version of the FDA needs the

patient to be with the examiner. We introduced a modified

version that considers only the speech recordings and evalu-

ates 13 items including among others the movements of the

lips, larinx, palate and tongue, the respiration, and the intel-

ligibility. The evaluation of each item ranges from 0 to 4,

for a total range from 0 to 52 (0 normal, and 52 completely

dysarthric). The three phoniatricians agreed in the first ten

evaluations, and then performed the evaluation of the other

recordings. The inter-rater reliability among the labelers is

0.75. The median among the labels of the three evaluators

was considered as the label of the speaker.

4. RESULTS AND DISCUSSION

Table 1 shows the results obtained with each modality sepa-

rately for the prediction of the UPDRS and the m-FDA scores.

The highest correlation w.r.t the UPDRS is obtained with gait

(0.72), followed by handwriting, and speech. The results pre-

dicting the m-FDA are higher than those obtained predict-

ing the UPDRS using only the speech modality. Considering

these results we decided to choose the articulation–based fea-

tures in /pa-ta-ka/ and the prosody–based features in the read

text to train the GCCA using the speech modality. For the

gait and the handwriting modalities, we selected the features

extracted from the 4×10 both foot and the cube respectively,

to train the GCCA approach. Table 2 contains the results for

the test data where only the speech information is available.

These results are used as baseline for the GCCA. The classi-

fication accuracy ranges from 69% to 82%, depending on the

language and the feature set. The highest correlation predict-

ing the UPDRS score is obtained with the prosody–based fea-

tures in the read text (0.41). The results predicting the m-FDA

score range from 0.39 to 0.67, where the best result is ob-

tained with the repetition of /pa-ta-ka/ using the articulation–

based features. After training the GCCA, the learnt features

are stacked to the baseline features. The results with these



Features # of Pediction Prediction

and tasks Feat. of UPDRS of m-FDA

Speech Modality

Art.–/pa-ta-ka/ 344 -0.33 0.40

Art.–monologue 344 -0.39 0.19

Art.–read text 344 -0.19 0.13

Pros.–monologue 380 -0.23 0.22

Pros.–read text 380 -0.11 -0.31

Gait Modality

4x10–left 24 0.68 0.49

4x10–right 24 0.66 0.32

4x10–both 24 0.72 0.42

2x10–left 24 0.72 0.39

2x10–right 24 0.59 0.42

2x10–both 24 0.66 0.38

Handwriting Modality

Cube 21 0.48 -0.18

ID 21 0.47 0.25

Name 21 0.20 0.20

Digits 21 0.32 0.36

Rey-Osterrieth 21 0.44 -0.22

Spiral 21 0.12 -0.22

Table 1. Baseline results for the multimodal database. Art:

articulation, Pros: prosody

Features # of Classif. Pediction Prediction

and tasks Feat. Acc. of UPDRS of m-FDA

Speech Modality in Spanish

Art.–/pa-ta-ka/ 344 77% 0.34 0.67

Art.–monologue 344 70% 0.32 0.39

Art.–read text 344 78% 0.28 0.56

Pros.–monologue 380 69% -0.43 0.41

Pros.–read text 380 69% 0.41 0.39

Speech Modality in German

Art.–/pa-ta-ka/ 344 70% 0.11 -

Art.–monologue 344 73% 0.01 -

Art.–read text 344 79% 0.03 -

Pros.–monologue 380 76% -0.69 -

Pros.–read text 380 77% 0.31 -

Speech Modality in Czech

Art.–/pa-ta-ka/ 344 82% 0.29 -

Art.–monologue 344 77% -0.51 -

Art.–read text 344 80% -0.59 -

Pros.–monologue 380 69% 0.00 -

Pros.–read text 380 80% 0.59 -

Table 2. Baseline results for the test databases. Art: articula-

tion, Pros: prosody.

new feature sets are shown in Table 3. Improvements in a

range from 1% to 3% are observed in the classification task,

depending on the language and on the feature set. For the pre-

diction of the UPDRS score, high improvements are observed

in Spanish and Czech, which indicates that the GCCA–based

transformed features from gait and handwriting are represent-

ing additional information that help to predict the neurolog-

ical state of the patients. Finally, for the prediction of the

m-FDA score in the Spanish database, most of the results are

improved using the GCCA, specially those obtained with the

Features # of Classif. Pediction Prediction

and tasks Feat. Acc. of UPDRS of m-FDA

Speech Modality in Spanish

Art.–/pa-ta-ka/ 364 78% 0.40 0.72

Art.–monologue 364 73% 0.30 0.40

Art.–read text 364 78% 0.39 0.59

Pros.–monologue 400 70% 0.14 0.40

Pros.–read text 400 71% 0.41 0.39

Speech Modality in German

Art.–/pa-ta-ka/ 364 71% 0.14 -

Art.–monologue 364 74% -0.03 -

Art.–read text 364 76% 0.03 -

Pros.–monologue 400 76% -0.69 -

Pros.–read text 400 76% 0.40 -

Speech Modality in Czech

Art.–/pa-ta-ka/ 364 82% 0.46 -

Art.–monologue 364 77% 0.12 -

Art.–read text 364 80% -0.59 -

Pros.–monologue 400 69% 0.51 -

Pros.–read text 400 77% 0.60 -

Table 3. Results for the test databases using GCCA. Art: ar-

ticulation, Pros: prosody.

articulation–based features in /pa-ta-ka/.

5. CONCLUSION

A method based on GCCA is applied to map features from

three modalities (speech, gait, and handwriting) into a dif-

ferent dataset that contains only features from one modality

(speech). The suitability of this approach is tested in three

databases for PD analysis in different languages. Three prob-

lems are addressed: the classification of PD vs. HC, the

prediction of the UPDRS score, and the prediction of the

dysarthric level of the patients (m-FDA score). An improve-

ment in the performance of the three tasks is observed, spe-

cially in the prediction of the UPDRS score in Spanish and

Czech, and the prediction of the m-FDA score in Spanish.

These results indicate that the proposed approach is suitable

to map the features from other modalities that are not always

available, providing additional information for the PD anal-

ysis, including the cases when the language of the test data

is different. For the separately analysis of each modality, the

best results predicting the UPDRS score of PD patients is ob-

tained with gait, followed by handwriting, and speech. Fur-

ther experiments may be performed with new features from

gait and handwriting with the aim of improving the results.
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“New Spanish speech corpus database for the analysis

of people suffering from Parkinson’s disease,” in Lan-

guage Resources and Evaluation Conference, (LREC),

2014, pp. 342–347.

[20] J. R. Orozco-Arroyave, F. Hönig, J. D. Arias-Londoño,

J. F. Vargas-Bonilla, K. Daqrouq, S. Skodda, J. Rusz,
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