
This is a repository copy of The Emergence Computation of Overflow in Dynamic XML
Tree Based on Prefix and Interval Labelling Schemes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/119839/

Version: Accepted Version

Proceedings Paper:
Al-khazraji, S. and North, S.D. orcid.org/0000-0002-8478-8960 (2018) The Emergence
Computation of Overflow in Dynamic XML Tree Based on Prefix and Interval Labelling
Schemes. In: 2017 International Conference on Engineering and Technology (ICET). The
International Conference on Engineering & Technology 2017, 21-23 Aug 2017, Akdeniz
University, Antalya, Turkey. IEEE . ISBN 978-1-5386-1949-0

https://doi.org/10.1109/ICEngTechnol.2017.8308213

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The Emergence Computation of Overflow in

Dynamic XML Tree Based on Prefix and Interval

Labelling Schemes

Samer Al-khazraji

Department of Computer Science

The Education College for Pure Science,

The University of Diyala

Diyala, Iraq,
samerbaq@yahoo.com

Siobhán North

Department of Computer Science

The University of Sheffield

Sheffield, United Kingdom

s.north@sheffield.ac.uk

Abstract— Despite the fact that dynamic XML labelling

schemes have been investigated widely, some challenges still need
to be tackled. Dynamic XML documents are subject to change. An
efficient dynamic labelling scheme is able to maintain the node
relationships throughout continuous changes to the XML tree
structure. Such a scheme generates labels for new nodes to avoid
the need to relabel the whole tree. The main problem for dynamic
XML is overflow that occurs when the label length of the new
node is over the reserved space limit. There has not been sufficient
analysis to determine the class of labelling scheme which faces this
problem in the early stages of update. To this end a series of
experiments were performed when updating the Nasa XML
database, which contains real data. Five sets of new nodes (50, 100,
400, 800, 1200) were inserted into this dataset using two versions
of XML node indexing system: a Prefix and an Interval labelling
scheme. It was found that Interval falls victim to the problem of
overflow after the insertion of only 100 nodes whereas Prefix has
no problem even when adding 1200 nodes.

Keywords— XML labelling scheme, Prefix, Interval, Dewey,

Containment.

I. INTRODUCTION

The extensive exploitation to XML documents for data

storage and exchange in different applications [1; 2; 3; 4] has

attracted researchers to search for techniques to manage the

increased data [5]. Some conventional database management

systems known as XML-enable databases support XML

documents such as Oracle XDK and Microsoft SQL Server [6;

7]. To store XML data in these databases, a mapping process is

needed to transfer the data from an XML tree into a table format

of rows and columns. Another kind of XML database called

Native-XML databases XSD has a similar structure to XML and

eliminates the need for the mapping process and this kind of

XML databases is the center of this study [6; 7].

Relational database management systems have a mature

indexing system to process user queries efficiently and

effectively. However, this indexing system is not suitable for a

data that has an hierarchical structures such as XML [5]. XML

documents can be represented as a tree through different

relationships: parent-child P-C, ancestor-descendant A-D, and

sibling relationships [8; 2]. To access the intended node in this

hierarchical tree structure, an indexing system is required which

is capable of representing the node relationships and as result

improves query processing [9].

Node labelling schemes are used as the indexing system for

XML documents by assigning a single label to each node and

this label represents its relationships in the XML tree [10; 11].

XML query languages such as XPath and XQuery have the same

structure as XML documents and a comparison of the structures

of the node labels and the query can speed up the query

processing [9; 12].

Labelling schemes are evaluated in three terms: they should

be Compact the label length should be small in order to fit in

computer memory. Flexible, the scheme should be able to

represent the different kinds of node relationships, and Dynamic

the issue analysed in this paper, where the scheme should be able

to assign labels dynamically during the update without a

relabelling process [13; 14; 15].

Node labelling schemes are employed to assign a single label

to a node that clarifies the structure of the node and its

relationships in the document. This class of scheme is useful for

the static XML databases. However, XML databases which are

regularly updated cause problems for these schemes [16; 17; 18;

19; 20]. Labelling schemes for dynamic documents need to keep

the node relationships during update to maintain the

effectiveness of query processing [16]. Dynamic labelling

schemes can preserve query processing efficiency through

dynamic label generation but the label length will increase with

increasing file size and that can have a detrimental effect the

scheme performance because it needs a lot of storage [21].

Researchers in the XML labelling scheme domain have

proposed a number labelling schemes which permit the addition

of more data without the need for relabelling. In this study, the

Vector Order-Centric labelling scheme designed by [22] was

analysed for its ability to update XML documents dynamically.

As was addressed in [22] the issue of XML node insertion occurs

in two forms: uniform insertion, where the node is inserted

between random pairs of successive nodes and skewed insertion

which is split into two sub-categories: order skewed insertion is

a repeated insertion before or after a specific node and random

skewed insertion is repeatedly inserting between two random

nodes.

The paper will be organised as follows: section (II) will

explain three kinds of labelling scheme. Section (III) will define

the problem of overflow. Section (IV) includes the experiments

results and discussion and Section (V) concludes the paper.

II.THE RELATED WORKS

XML mark up was proposed to provide flexibility in
designing document structure [23]. This characteristic made
XML a global technology for data transmission and
representation in various applications [8], such as
Bioinformatics [24], Geography [25], Mathematical Markup
Language MathML [26], Distributed Learning Transferring
ADL [27]. In order to enable these structures to be queried
efficiently labelling schemes have been devised to provide an
index to the tree's structure [28].

In this paper, a number of labelling schemes will be
discussed. They are classified as: Interval Labelling Scheme,
Prefix Labelling scheme, and Multiplicative Labelling Scheme.

A. interval-based labelling schemes

The labels of an Interval Labelling schemes represent the
node location in the XML tree as a pair of numbers assigned
during preorder and postorder tree traversal [29; 30]. This
scheme is known as an Interval labelling scheme because the
interval between the two numbers that form the label identifies
the node's parent, ancestor or descendant node relationships (
[30] as cited in [5]).

The earliest XML labelling scheme is called Pre-Post
labelling scheme and was designed by [31]. It generates labels
to represent the node relationships in the tree using two integers.
For instance, in the Figure 1 the node School is the parent of
Student because the Student's label is (2,3) which in the interval
of the School's label (1,7). Moreover, School in the Figure 1 is
the ancestor node of student's ID because the label of ID is (3,1)
which is in the range of School label (1,7).

In [22], it was reported that a Pre-Post labelling scheme is able

to represent A-D relationships but not P-C

Figure 1: Preorder/Postorder-Based Labelling Scheme.

relationships explicitly. So [32] proposed a new interval
labelling scheme which is dubbed the Containment labelling
scheme. The suggested scheme allocates labels for each node

which consist of three sections: Start, End, and Position to define
the node correlations as shows in Figure 2.

It can be seen that the node level of School in Figure 2 is a
higher level of the node Student, therefore, a P-C relationship
must exist between them.

 In [9], it was reported that the Interval labelling schemes
produce labels sequentially in depth first tree traversal which
enables node relationships definition. However, these schemes
do not support dynamic XML documents. To cover this
drawback, space is reserved for node insertions but this approach
has a disadvantage. With extensive use of the XML database,
the allocated space may be insufficient for the number of nodes
inserted and this situation is known as overflow. It means that
relabelling of the whole tree is required [33; 29].

Therefore, a group of researcher adopted another technique
for static and dynamic label generation as will be explained in
the next section.

B. Prefix Labelling Scheme

Prefix labelling schemes are based on a system used by
librarians called Dewey Decimal Coding [34] and it can be used
to define the structural relationships through node labels [13].
Prefix labelling schemes assign labels during a depth first
traversal of the XML tree. Each label consists of sections and
are separated by delimiters ',' or '.'. The prefix section of the
node's label is the parent label which itself contains its parent’s
label and so on starting from the root [35; 13; 16]. The Figure 3
illustrates Dewey Encoding which is the most known Prefix
Labelling Scheme and was designed by [35].

Many schemes have been proposed based on Dewey
Encoding to provide labels for the dynamic update of XML
documents. However, these schemes required a great deal of
storage space for deep trees [29]. So another group of
researchers adopted the mathematical operations to assign labels
that define the relationships effectively as will be explained in
the next section.

C. Multiplicative Labelling Schemes

Schemes of this class use integers as labels and employ
mathematical operations such as modulus [36], division,
multiplication and the Chinese reminder operation [30]. Another
group of researches exploited graph vectors to define the node
relationships through label encoding.

Figure 2:Containement labelling scheme.

Figure 3: Dewey Encoding labelling scheme.

and designed a new dynamic labelling scheme known as vector
order-centric [22]. Vector order-centric schemes can encode
labels produced by the static schemes, such as Interval
(Containment) as can be seen in Figure 4 and Prefix (Dewey
Encoding) as illustrated in Error! Reference source not found.
.

In spite of the benefits of vector order-centric labelling
scheme [22], it was reported that it has a weakness [13; 21]
which is the target of this paper.

III.THE OVERFLOW PROBLEM IN VECTOR ORDER-CENTRIC

LABELLING SCHEME

Static labelling schemes cannot change the node labels when
the structure of the XML tree is changed [11]. Therefore, [22]
suggested a labelling scheme, called vector order-centric that
employed graph vectors to maintain the node labels when the
tree structure is changed. The labels were initially generated by
one of the conventional static labelling schemes.

The tree update was addressed by [22] through looking at
two insertion process: uniform insertion and skewed insertion.
Uniform insertion is inserting a new node between two
randomly chosen consecutive nodes. Skewed insertion was
classified into two classes: ordered skewed insertion, is
repeatedly inserting new nodes before or after a particular node.
Random skewed insertion, is repeatedly adding new nodes
between two nodes in random order.

In [22], it was explained that vector order-centric labelling is
efficient when labelling XML trees dynamically without a
relabelling process. However, [21] reported that the some results
of vector order-centric are unavailable because it exploits UTF-
8 mechanism for label representation. They did not give further
information of the mechanism impact on the label representation
which can assist the later studies.

To address the problem, a vector order-centric labelling
scheme was implemented using both Prefix and Interval
schemes. Dewey Encoding, an example of a Prefix labelling
scheme was used for the initial labelling. V-Dewey will be used

Figure 4: Vector order-centric based on Containment Labelling Scheme.

Figure 5: Vector order-centric based on Dewey Encoding labelling scheme.

to show the resulting labels for Dewey Encoding within a vector
order-centric scheme. From the Interval schemes, Containment
was used for the initial labelling of the XML dataset. V-
Containment is the result of Containment labelling encoded by
the vector order-centric scheme.

Two groups of experiments were executed using V-
Containment and V-Prefix to insert 200, 500 and 1000 elements
into the database based on ordered skewed insertion. The first
group experiments were used to measure the time required to
insert the three sets of elements into the document. The second
series of experiments were used to evaluate the storage space
needed to store the labels as will be explained in the next section.

IV.EXPERIMENTS AND RESULTS ANALYSIS

A. System Setup

The experiments were run using 'Release 4.4.0RC1' as an
integrated development environment IDE to execute Java code
on a computer has Intel (R) Core (TM) i5-3570t CPU 2.30 GHz,
RAM 4 MB, and windows 7 Enterprise. V-Containment and V-
Dewey were adopted to update Nasa XML dataset which is a
real XML dataset. This database has a balance between the depth
and width of its tree structure as shown in Table 1. The Nasa
dataset can be downloaded from the website of the University of
Washington [37] for research purposes. In addition the statistical
application SPSS was employed to investigate the results.

B. Discussion

Five groups of nodes: 50, 100, 400, 800, and 1200 were
inserted into Nasa to analyse the impact of depth increasing on
the label size using V-Containment and V-Dewey schemes. The
time required to generate labels for the new nodes are displayed
in Table 2 and they are illustrated in Figure 6.

As can be seen in Table 2, the mean time for encoding 50
new nodes using V-Dewey is 10,763 ms which is half of
32,829ms the mean time for encoding 100 nodes. In addition,
the mean time for labelling 100 new nodes has doubled around
8 times for labelling 400 update nodes and time consumption has
steeply with the increased number of new nodes.

Table 1: The Characteristics of Nasa XML Database.

XML
Database

No. of
Elements

Max Depth
(Level)

File Size

Nasa 476646 8 23MB

Table 2: The statistical information of mean time for insertion five groups of

nodes.

Scheme
50

nodes
insertion

100
nodes

insertion

400
nodes

insertion

800
node

insertion

1200
 nodes

insertion

V-Cont. 2247 4185 13204 24562 35233

V-Dewey 10763 32829 266425 811827 1439715

On the other hand, the mean time for encoding 50 new nodes
using V-Containment is 2,247ms and it is about doubled for the
insertion of 100 new nodes. Moreover, the mean time for
generating labels for the new 400 nodes is 13,204ms, three times
the mean tome for 100 nodes. The mean time gradually declined
after insertion of 800 new nodes starting from 24,562ms.

To investigate this case, another set of experiments were
conducted to study the storage space requirement for updated the
same set of nodes.

 The storage space needed to store these groups of new nodes
is shown in Table 3 which clarifies the differences of time
consumptions for labels generating. The storage required for
storing 50 labels produced by V-Containment is 86 Byte and it
increased to 87 Byte for the new 100 labels. After that, the
number is reduced to 13 Byte for the over 100 new nodes. On
the contrary, the storage required for storing new node labels
generated using V-Dewey rose from 22,009 Byte for 50 new
nodes to 528,009 Byte for the 1200 labels as shown in Figure 7.

It can be shown Figure 7, the scale of storage for labels
generated by V-Dewey is very large in comparison to the scale
of V-Containment. 528,009 Byte is needed for 1,200 inserted
labels produced by V-Dewey in contrast to 13 Byte for labels
generated by V-Containment. As a result, the storage spaces of
V-Containment cannot be seen in Figure 6, therefore, logarithm
was employed to amplify the values of storage capacities as
shows in Figure 8. So, it is clear that the space size for over 100
elements has reduced from 87 byte to be steady on 13 byte.
Whilst, the storage space for the new labels which were
generated by V-Dewey has increased sharply from 44,009 Byte
to 528,009 Byte for over 100 nodes.

V-Dewey is based on Prefix labelling scheme which
generates labels linearly and the label size depends on the
number of label sections which in turn relies on the node’s depth
in the tree [35].

Table 3: space required for insertion five groups of nodes.

Scheme
50

nodes
insertion

100
nodes

insertion

400
nodes

insertion

800
node

insertion

1200
 nodes

insertion

V-Cont. 86 87 13 13 13

V-Dewey 22009 44009 176009 352009 528009

Figure 6: The mean time for insertion five grpups.

Based on the node’s depth, the time range in V-Dewey has
scaled up with the increase on the node numbers to represent the
structural relationships from the root [38].

However, the view of V-Containment is different. It is based
on an Interval labelling technique which generates labels
exponentially that consists of a fixed number of sections and it
is calculated based on the Node’s parent label [32]. The label
size will rise and so will the time consumption with the increase
of the tree’s depth. The decline of the storage space over 100
nodes insertion due to the label size has become over the ability
of the mechanism for label representation which is known as
overflow problem and relabelling process is inevitable [21].

Vector order-centric scheme uses UTF-8 mechanism [39]
which is qualified to represent node label up to 231 bits [21]
which is less than the label size over 100 nodes. So, Figure 8
shows that the storage space of 400 elements and over is steady
at around 1.11394 which is the natural log of 13 and time
consumption has decreased with increase of the updated nodes
as illustrated in Figure 6.

Figure 7: The Space required in KB to add three groups of elements in Nasa.

Figure 8: Logarithm of space vlause.

V.CONCLUSION

A common problem of dynamic XML tree update known as
overflow was investigated in this paper. This problem has
significant effect on the performance of dynamic XML trees.
The node relationships need to be maintained during changes to
the XML without the relabelling the existing nodes. However,
the problem's emergence using different labelling schemes has
not been addressed sufficiently. The Prefix and Containment
labelling schemes were employed to define the nodes
relationships of Nasa XML database. In addition, the vector
order-centric technique [38] was employed to preserve the
relationships during XML update. A number of experiments
were conducted to insert three groups of elements into the
dataset to identify the overflow problem using V-Containment
and V-Prefix. It was found that the problem emerged after 100
node insertions using V-Containment. The representation of the
node's context through labels needs more analysis to improve the
dynamic labelling schemes.

ACKNOWLEDGMENT

This research was supported in part by the Iraq Ministry of

Higher Education and Scientific Research and the University

of Diyala.

VI.BIBLIOGRAPHY

1. XML and data integration. Bertino, Elisa and Ferrari,
Elena. 2001, IEEE, pp. 75--76.

2. Element similarity measures in XML schema matching.

Algergawy, Alsayed and Nayak, Richi and Saake, Gunter.
2010, Elsevier, pp. 4975--4998.

3. XML data clustering: An overview. Algergawy, Alsayed
and Mesiti, Marco and Nayak, Richi and Saake, Gunter.

2011, ACM, p. 25.

4. Tim Bary, Jeaqn Paoli, C.M. Sperberg-McQueen, Eva
Maler, François Yergeau, John Cowan. Extensible Markup

Language (XML) 1.1 (Second Edition). W3C. [Online] W3C,

29 September 2006. [Cited: 31 January 2016.]

https://www.w3.org/TR/xml11/.

5. Almelibari, Alaa. Labelling Dynamic XML Documents: A

GroupBased Approach. Sheffield : University of Sheffield,

2015.

6. Asia-Pacific Web Conference: efficient native XML storage

system. Win, Khin-Myo and Ng, Wee-Keong and Lim, Ee-
Peng. s.l. : Springer, 2003. 59-70.

7. Kurt, Atakan and Atay, Mustafa. International Workshop

on Databases in Networked Information Systems: An

experimental study on query processing efficiency of native-

XML and XML-enabled database systems. s.l. : Springer,

2002. 268--284.

8. Wilde, Erik. Wilde's WWW: technical foundations of the

World Wide Web. s.l. : Springer Science \& Business Media,

2012.

9. Dynamic interval-based labeling scheme for efficient XML

query and update processing. Yun, Jung-Hee and Chung,
Chin-Wan. 1, s.l. : Elsevier, 2008, Vol. 81. 56--70.

10. An Analysis of Approaches to XML Schema Inference.

Mlynkov'a, Irena. s.l. : IEEE, 2008. 16-23.

11. Labeling dynamic XML trees. Cohen, Edith and Kaplan,
Haim and Milo, Tova. 5, s.l. : SIAM Journal on Computing,

2012, Vol. 39. 2048--2074.

12. Query processing and optimization for regular path

expressions. Wang, Guoren and Liu, Mengchi. s.l. :

Springer, 2003. 30--45.

13. Orderbased labeling scheme for dynamic XML query

processing. Assefa, Beakal Gizachew and Ergenc, Belgin.
s.l. : Springer, 2012. 287--301.

14. Dynamic labelling scheme for XML data processing.

Duong, Maggie and Zhang, Yanchun. s.l. : Springer, 2008.

1183--1199.

15. Triple Code: An Efficient Labeling Scheme for Query

Answering in XML Data. Fu, Lizhen and Meng, Xiaofeng.
s.l. : IEEE, 2013. 42--47.

16. Dynamic labeling scheme for XML updates. Liu, Jian and
Zhang, XX. s.l. : Elsevier, 2016.

17. Efficient updates in dynamic XML data: from binary string

to quaternary string. Li, Changqing and Ling, Tok Wang
and Hu, Min. 3, s.l. : Springer, 2008, Vol. 17. 573--601.

18. Efficient labeling scheme for dynamic XML trees. Liu,
Jian and Ma, ZM and Yan, Li. s.l. : Elsevier, 2013, Vol.

221. 338--354.

19. QED: A novel quaternary encoding to completely avoid

re-labeling in XML updates. Li, Changqing and Ling, Tok
Wang. s.l. : ACM, 2005. 501--508.

20. Full tree-based encoding technique for dynamic XML

labeling schemes. Zhuang, Canwei and Feng, Shaorong.
s.l. : Springer, 2012. 357--368},.

21. SCOOTER: A compact and scalable dynamic labeling

scheme for XML updates. O'Connor, Martin F and
Roantree, Mark. s.l. : Springer, 2012. 26--40.

22. Labeling dynamic xml documents: an order-centric

approach. Xu, Liang and Ling, Tok Wang and Wu, Huayu.
1, s.l. : IEEE, 2012, Vol. 24. 100--113.

23. Harold, E.R. and Means, W.S. XML in a Nutshell. s.l. :

O'Reilly Media, 2004. 9781449379049.

24. XML, bioinformatics and data integration. Achard,
Frederic and Vaysseix, Guy and Barillot, Emmanuel. 2,

s.l. : Oxford Univ Press, 2001, Vol. 17. 115--125.

25. The roles of geography markup language (GML), scalable

vector graphics (SVG), and Web feature service (WFS)

specifications in the development of Internet geographic

information systems (GIS). Peng, Zhong-Ren and Zhang,
Chuanrong. 2, s.l. : Springer, 2004, Vol. 6. 95--116.

26. Carlisle, D., Ion, P., Miner, P. Mathematical Markup

Language (MathML) Version 3.0. W3C. [Online] W3C, 10 4

2014. [Cited: 21 5 2016.] http://www.w3.org/TR/MathML/.

27. SCORM 2004 4th Edition Version 1.1 Overview. ADL.

[Online] ADL. [Cited: 23 5 2016.]

http://www.immagic.com/eLibrary/ARCHIVES/TECH/US_D

OD/A090814O.pdf.

28. Dynamic interval-based labeling scheme for efficient XML

query and update processing},. Yun, Jung-Hee and Chung,
Chin-Wan. 1, s.l. : Elsevier, 2008, Vol. 81. 56--70.

29. Data storage practices and query processing in XML

databases: A survey. Haw, Su-Cheng and Lee, Chien-Sing.
8, s.l. : Elsevier, 2011, Vol. 24. 1317--1340.

30. A prime number labeling scheme for dynamic ordered

XML trees. Wu, Xiaodong and Lee, Mong-Li and Hsu,
Wynne. s.l. : IEEE, 2004. 66--78.

31. Maintaining order in a linked list. Dietz, Paul F. s.l. :

ACM, 1982. 122--127.

32. On supporting containment queries in relational database

management systems. Zhang, Chun and Naughton, Jeffrey
and DeWitt, David and Luo, Qiong and Lohman, Guy. 2,

s.l. : ACM, 2001, Vol. 30. 425--436.

33. Labeling and querying dynamic XML trees. Lu, Jiaheng
and Ling, Tok Wang. s.l. : Sprunger, 2004. 180--189.

34. Prefix based numbering schemes for XML: techniques,

applications and performances. Sans, Virginie and Laurent,
Dominique. 2, s.l. : ACM, 2002, Vol. 1. 204--215.

35. Storing and querying ordered XML using a relational

database system. Tatarinov, Igor and Viglas, Stratis D and
Beyer, Kevin and Shanmugasundaram, Jayavel and

Shekita, Eugene and Zhang, Chun. s.l. : ACM, 2002. {204--

215.

36. A modulo-based labeling scheme for dynamically ordered

XML trees. Al-Shaikh, Raed and Hashim, Ghalib and
BinHuraib, AbdulRahman and Mohammed, Salahadin.

s.l. : IEEE, 2010. 213--221.

37. Datasets, Details, and Download. XML Data Repository.

[Online] Washington University. [Cited: 10 5 2016.]

http://aiweb.cs.washington.edu/research/projects/xmltk/xmldat

a/www/repository.html.

38. A Relevance Comparison between Interval and Prefix

Labelling Schemes. Samer, Al-khazraji and Siobhán North.
s.l. : IEEE, 2017. 1-6.

39. UTF-8, a transformation format of ISO 10646. Yergeau,
Francois. 2003.

