
This is a repository copy of Novel Optimised Structural Aluminium Cross-Sections Towards
3D Printing.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119717/

Version: Accepted Version

Proceedings Paper:
Tsavdaridis, KD orcid.org/0000-0001-8349-3979, Hughes, JA, Grekavicius, L et al. (1 more
author) (2018) Novel Optimised Structural Aluminium Cross-Sections Towards 3D Printing.
In: Meboldt, M and Klahn, C, (eds.) Industrializing Additive Manufacturing - Proceedings of 
the Conference on Additive Manufacturing in Products and Applications - AMPA 2017. 
AMPA 2017, 13-15 Sep 2017, Zurich, Switzerland. Springer , Cham, Switzerland , pp. 
34-46. ISBN 978-3-319-66865-9 

https://doi.org/10.1007/978-3-319-66866-6_4

© Springer International Publishing AG 2018. This is an author produced version of a 
paper published in AMPA 2017: Industrializing Additive Manufacturing - Proceedings of 
Additive Manufacturing in Products and Applications. The final publication is available at 
Springer via https://doi.org/10.1007/978-3-319-66866-6_4. Uploaded in accordance with 
the publisher's self-archiving policy. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Novel Optimised Structural Aluminium Cross-Sections Towards 3D Printing  

 

Konstantinos Daniel Tsavdaridis
1*

, Jack Antony Hughes
2
, Lukas Grekavicius

3
, and Evangelos Efthymiou

4 

1 
Associate Professor, Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, 

Woodhouse Lane, LS2 9JT, Leeds, UK (k.tsavdaridis@leeds.ac.uk) 

2
 Graduate Engineer, Robert Bird Group, Level 2 Harling House, 47-51 Great Suffolk St, London SE1 0BS 

(jack.hughes@robertbird.com) 

 
3 
Graduate Engineer, Cundall, 4th Floor, Partnership House, Regent Farm Road, Gosforth, Newcastle upon 

Tyne, NE3 3AF (l.grekavicius@cundall.com) 

4
 Assistant Professor, Institute of Metal Structures, Department of Civil Engineering, 

Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece (vefth@civil.auth.gr) 

 
*
Corresponding and Presenting Author 

Keywords: Manufacturing processes, aluminium structural members, novel cross-section design, structural 

topology optimisation, SIMP technique, extrusion, 3D Printing. 

Abstract 

In the last decades, the deployment of aluminium and its alloys in engineering fields has been 

increased significantly, due to the material’s special features accompanied by supportive 

technological and industrial development such as the extrusion manufacturing method. However, the 

extent of aluminium structural applications in building activities is still rather limited, and barriers 

related to strength and stability issues prevent its wider use. In the context of topology optimisation, 

appropriate design in aluminium cross-sections can overcome inherent deficiencies, such as the 

material’s low elastic modulus. 

The current study investigates the application of structural topology optimisation to the design of 

aluminium beam and column cross-sections, through a combination of 2D and 3D approaches, with 

focus on post-processing and manufacturability. Ten unique cross-sectional profiles are proposed 

based on structural testing through Finite Element Analysis (FEA). Conclusions attempt to highlight 

the general characteristics of the optimised aluminium cross-sections as well as the benefits of the 

using extrusion and 3D printed manufacturing methods in order to realise these results.  

Introduction 

Aluminium is a unique material that has the potential of competing within the construction 

industry. Successful application of aluminium alloys in structural engineering is connected to its 

inherent physical and mechanical properties: low density, which allows reduced loads on foundations 

and easier construction process; excellent corrosion resistance, which reduces its maintenance 

requirements; and the extrusion process, which allows the production of members with efficient and 

optimised cross-sections [1]. In particular, although available for some other non-ferrous metals, such 

as brass and bronze, it is with aluminium that the extrusion process has become a major manufacturing 

method [2]. The extrusion process allows aluminium sections to be formed in an almost unlimited 

range of shapes, while a significant advantage is the ability to produce sections that are very thin 

relative to their overall size [3]. Additive manufacturing and in particular 3D printing process delivers 

similar advantages in the design and fabrication of monolithic structural elements of complex shapes, 

and in particular those are irregular along the length of the member. 

Aluminium cross-sections are separated into four classes based on b/t ratio limits of reinforced 

and un-reinforced parts. When compared to standardised steel sections, aluminium cross-sections are 

often asymmetric, more complex, contain thin walls and are reinforced with ribs, bulbs and lips [4]. 

Local instability is, therefore, the governing factor when designing such sections. Another factor that 

is linearly related to buckling resistance of beams and columns is the stiffness of cross-sections (EI). 



To compensate for the low elastic modulus and achieve higher stiffness, the moment of inertia has to 

be increased. When considering standard shapes this would result in deeper and slenderer sections, 

which are more susceptible to buckling. However, sections obtained through advanced topology 

optimisation techniques can achieve a high I-value with an optimal amount of material.  

Structural topology optimisation is based on the principle of optimising the number and size of 

openings within a design space, in order to satisfy the applied loading and constraints. There are 

numerous topology optimisation techniques available in the literature. The currently most popular 

one is the Solid Isotropic Material Penalisation (SIMP) technique, which is based on discretising the 

design domain into finite elements and utilising FE analysis to vary the densities in each element. 

Depending on the intensity of stresses, the elements are characterised as being low, high or 

intermediate density [5]. The process is iterative until convergence is reached.  

Topologies may resemble complex natural forms; therefore, it is often up to the designer to 

interpret them. Interpretation is a crucial part of the overall optimisation process and needs to be 

performed carefully with consideration of manufacturing and practicality factors. This has been 

unaddressed in the existing literature [6, 7, 8], which is limited to a selection of a few load conditions 

and there have not been any attempts made yet at optimising aluminium cross-sections. Therefore, 

this study aims to utilise the complimentary of the co-authors in optimisation and aluminium and 

propose new efficient structural shapes by conducting cross-sectional topology optimisation analysis 

of 6063-T6 aluminium alloy beams and columns. It is intended to achieve a minimum possible weight 

with maximum stiffness, as weight savings can render significant reductions in manufacturing and 

construction costs, as well as environmental impact.  

 

Manufacturing processes 

Aluminium is presently extracted exclusively from bauxite, however, it also exists in other 

minerals within the earth’s crust to make it the third most abundant element. Combined with the high 

recyclability rate of the end product, this ensures that there is adequate material for continued 

sustainable construction for an almost indefinite period.  

Once combined with its alloying elements, the new material is classed as being a casting or 

wrought alloy, dependent on whether it is to be melted before casting. As a result, most hot rolled 

and extruded applications utilise wrought alloys. The heat treatment process is then followed by 

quenching and ageing, during which the majority of hardening occurs. 

The current state-of-the-art manufacturing process for aluminium member is the extrusion process 

Fig. 1(a)-left. The extrusion process creates cross-sectional shapes by forcing hot metal, in the form 

of a billet, through an opening called a die (e.g., porthole and bridge dies). The corresponding cross-

section then matches the profile of the die, regardless of it complexity. This enables designers to 

create specific sections to meet requirements, simply by producing the appropriate die; such as the 

complex shapes shown in Fig. 1(a)-right. This method provides a relatively high quality result with 

national specifications allowing a deviation of approximately 5% from the nominal thickness. 

The cost influencing criterial as being very similar to those for rolled sections, however, specific 

costs may vary dramatically for bespoke die designs. In general, costs for hollow sections have been 

reported as being up to five times more expensive than solid or open profiles. Cheaper manufacture 

methods are available, such as shell casting rather than die casting, however, larger tolerances for 

imperfection may be expected.  

On the other hand, recently, designers are pushing technologies to realise the full potential of 3D 

printing and overcome material quality, monitoring, and size limitations (Fig. 1(b) – the biggest 3D 

printing for metallic members). This method of fabrication is a new process of making a 3D solid 

object directly from a digital model. It is an additive process where successive layers of material are 

laid down in a controlled way to achieve the desired (optimised) shape, replacing traditional 

machining techniques, dealing with material removal through cutting and splitting, 

sawing/drilling/rounding off, and CNC turning/milling. There are three 3D printing techniques such 

as: (i) Extrusion type – Fuse Deposition Modelling (FDM) used for thermoplastics: PLA, ABS, nylon, 



alumide (a mix of nylon and aluminium); (ii) Granular type – Selective Laser Sintering (SLS) used 

for thermoplastics, metal powders, and ceramic powders; (iii) Liquid type – Multi Jet Modelling 

(MJM) used for acrylic plastic.  

The cost of the 3D printing is comparable to the one of the extrusion process, but cannot be 

precisely evaluated since massive production is required while the industry is still experimenting. For 

this reason, this paper contributes to the effort demonstrating the need for larger scale 3D printers as 

well as focus on high production of structural elements through comprehensive comparisons between 

typical structural aluminium cross-section members that can be produced by extrusion process, and 

fully optimised structural aluminium members that can only be manufactured by 3D printers. Table 

1 below, is the first attempt to compare the pros and cons of the two aforementioned manufacturing 

processes and draw the overall picture of the current state-of-the-art. 

 

 
Figure 1(a). Extrusion process (left) and products (right) 

  
Figure 1(b). Biggest 3D printer (left) and manageable complexity of product design (right) 

Table 1. Overview of manufacturing processes 

 Extrusion 3D Printing 

Advantages •! Length (long span, 

<30m) 

•! Quick production (20-

70m/min) 

•! Similar cost to cold 

forming 

•! No trimming or milling 

is required 

•! Very few 

imperfections and 

residual stresses 

•! No supply chain is 

required 

•! Achieve any optimised 

complex shape 

(decrease weight to 

stiffness ratio)  



Disadvantages •! Constant cross-section 

along the length of the 

member 

•! Need pre-production of 

the die 

•! Can be five times more 

expensive than solid or 

open profile 

•! Size limitations (so far) 

•! Brittle performance in 

certain occasions 

•! Cracking control is 

required 

•! Roughness control is 

required (direction 

dependent) 

•! Time expensive 

process 

•! Certain models only 

suitable for limited 

temperature range 

 

Topology Optimisation Approach  

This research undertook a combination of approaches, in order to consider all necessary degrees 

of freedom identified in Fig. 2. A 2D approach was used to identify a wide variety of cross-sectional 

profiles, however this approach did not consider variations in bending and shear along the length of 

the member. A 3D approach was then used to provide a series of comparative cross-sectional slices, 

to capture the effect of this variation. All optimisation was performed using Altair Engineering’s 

software package HyperWorks v13.0. Through this, more than 40 different combinations of loading 

and support conditions were analysed. Loading conditions were chosen with reference to the standard 

cross-section classification procedure for outstand and internal compression elements given by 

codified provisions [9].  

 

Figure 2. Considered directions of rotation and translation 

Linear static analysis was performed on an elastic material model with the following properties: 

Young’s modulus of 70 GPa, Poisson’s ratio of 0.3, shear modulus of 27 GPa and density of 2700 

kg/m
3
. Shell elements with a nominal size of 1 mm and solid elements with a nominal size of 5 mm 

were used to model the 2D and 3D members, respectively. All models have been optimised for 

minimum compliance (therefore maximum stiffness) subject to a constraint on the final volume 

fraction of 0.275. Manufacturability is addressed through constraints on symmetry and a minimum 

member size of 7 mm. This optimisation problem has been validated in both the 2D and 3D cases. 

When compared to the results obtained in existing literature [6, 8] a close agreement of the patterns 

has been identified. 

Identical analysis has been performed to compare topologies obtained with aluminium and steel. 

Aluminium alloy 6063-T6 (with a tensile strength of 245 N/mm
2
) was compared to grade S355 steel 

with Young’s modulus of 210 GPa and Poisson’s ratio of 0.3. Identical topologies reveal that the 

optimisation constraints and geometry are dominant, therefore the results are applicable to both 

materials. 

A 100x100mm square section has been chosen as the initial design domain in order to provide 

maximum flexibility in the resulting topologies. So as to provide a comparison however, sections 

with aspect ratios of 100x200mm and 200x100mm have also been optimised. Fig. 3 demonstrates 



that very similar density plots are achieved regardless of the aspect ratio, therefore the sections may 

be adapted into similar forms as required. 

 
Figure 3. Topologies of cross-sections with various aspect ratios 

Topology optimisation results must be carefully interpreted into a suitable structure. The results 

are highly sensitive to geometry, so a method of post-processing multiple results to allow for these 

sensitivities is proposed. The contour plots shown previously have been smoothed with a density 

threshold of 0.3 using Altair Engineering’s OSSmooth and extracted into AutoCAD. Afterwards, the 

results from multiple loading and support conditions have been overlaid and presented in a form 

appearing similar to x-rays. These show the most frequently stressed material to be darker in colour 

and allow for the interaction of various load cases to be considered.  

Optimisation processes for lightweight structures typically result in thin-walled cross-sections. 

When combined with aluminium’s lower modulus of elasticity, local instability modes including 

distortional and local buckling are typically dominant. In order to minimise the likelihood of these 

failures, optimal placement of compression members and stiffeners is of vital importance. Using the 

described post-processing method, this stability criterion should be satisfied by comparing the typical 

stresses in cross-sections subjected to torsion, compression, yielding and one or two plane buckling. 

Topology Optimisation of Cross-sections 

Beams. Pinned supports to 2 and 4 nodes are compared, in order to propose sections suitable for 

simply supported and fixed beams respectively. Major axis bending and torsion have then been 

applied. Fig. 4 shows 5 beam cross-sections developed after processing. Section properties are then 

presented in Table 2. For beams that are primarily subjected to bending about one axis only, the 

proposed sections are symmetric about one plane. Asymmetric cross-sections are also included for 

additional stiffness when subjected to torsion. Regardless of the applied symmetry, it is noticed that 

the topology results have a similar moment of inertia about both axes. 

 
Figure 4. Post-processing of beam cross-sections 

Table 2. Beam section properties 

Section A B C D E 

Area [cm
2
] 44.39 30.32 39.43 48.84 37.82 

Moment of inertia, y [cm
4
] 340.26 337.32 399.50 528.69 436.66 

Moment of inertia, z [cm
4
] 448.14 312.46 423.15 479.10 426.65 

 

3D optimisation was performed on a 2 m extruded 100mm square beam, with total of six different 

loading and support combinations; including the case of fixed supports and a uniformly distributed 

load to the top flange as shown in Fig. 5(a). These reveal constant cross-sections such as elliptical 

hollow profile across 45-50% of the length of the beam. The remaining portion shows three distinct 



regions of low stress at approximately ¼, ½, and ¾ of the span, as seen in Fig. 5(b). These regions 

are observed to correspond with the intersections of the lines of principal tensile and compressive 

stresses in a homogeneous beam. 

 
Figure 5. 3D optimisation input (a) and resulting topology with cross-sectional slices (b) 

Columns. Optimisation of 2D column cross-sections with various support and loading conditions 

was initially attempted. Sections with two and four corner pin supports were analysed, subjected to 

axial compression, which include failure by yielding and one or two plane buckling. Column cross-

sections found in practice are most commonly symmetric and have high buckling resistance about 

one or more axes depending on specific applications, hence this logic is followed in developing the 

final cross-sections shown in Fig. 6. The first attempt considers a column under pure compression, 

such cross-sectional profile would reach its yield stress limit and experience material failure. The 

shape resembles a standard double webbed compound column cross-section used in the industry. The 

second attempt considers column failure due to buckling. Fig. 6 B and C represent a cross-sectional 

profile of a column having high stiffness in the y-y axis. The cross-sections are a combination of 

resulting stress plots with loading replicating compression and bending of a member as it buckles. 

Therefore, they are applicable in cases when an eccentric axial load or a moment are applied 

triggering one plane buckling. Sections presented in Fig. 6 D and E are resistant to compression and 

buckling in two axes. These profiles have equal stiffness in both axes and appear more resistant to 

local buckling. The section properties are presented in Table 3. 

 
Figure 6. Post-processing of column cross-sections 

Table 3. Column section properties 

Section A B C D E 

Area [cm
2
] 35.36 49.95 52.00 59.13 49.10 

Moment of inertia, y [cm
4
] 461.63 565.23 582.67 608.38 442.67 

Moment of inertia, z [cm
4
] 224.58 449.33 578.80 608.38 442.67 

 

3D optimisation was performed on a 2 m extruded 100x100 mm square column with fixed-pinned 

supports as shown in Fig. 7(a). An axial compressive load was applied at the top and loads triggering 

buckling in two planes – in the middle of the member. Symmetry manufacturing constraint was 

applied to the model about y-y and z-z axes. When subjected to two plane buckling the column 

developed concentrations of material at the four corners (Fig. 7), resembling a box section at multiple 

locations along the length of the member. Formation of a web connecting the flanges is also observed 

in the middle of the member at the location of the lateral load. The box shape of the cross-section 

could be related to the fully symmetric profiles obtained through 2D optimisation (Fig. 6 D and E). 

a) b) 



  

Figure 7. 3D optimisation input (a) and resulting topology with cross-sectional slices (b) 

Finite Element Analysis 

Analysis Parameters. Finite element analysis (FEA) software ANSYS v14.0 is adopted in this 

study to assess the performance of the unique cross-sectional shapes. Geometrical and material non-

linear analysis was employed, which takes into account the plastic behaviour of aluminium. 

Results - Beams. Two of the optimised beam cross-sections developed have been tested through 

the FE analysis. In order to provide a reliable benchmark for how suitable the optimisation method is 

for developing new cross-sections, the two chosen have been compared against a selection of three 

conventional and two additional novel cross-sections, each of which are shown in Fig. 8. SHS and 

UB profiles have been included within the compared cross-sections as they are also available as steel 

profiles. A conventional Y-profile has then also been included, as an additional section that is only 

used in aluminium. Two novel cross-sections are then additionally included within the comparison, 

one of which is the result of previous optimisation studies by Kim and Kim [10]. As in the 

optimisation analysis, the models adopt a 100mm square cross-section, and have been tested with 

lengths of both 2m and 1m in order to consider both extremities of span to depth ratios with 20 and 

10.  

 
Figure 8. Beam Cross-Sections Employed in Finite Element Analysis 

All beams analysed have been subject to a uniformly distributed pressure to the top flange, along 

with a variety of two different support conditions. The first set of models have been analysed with 

fully fixed ends to prevent both translation and rotation, whilst the second set was modelled using a 

pinned bottom flange. 

The members with 2m length experienced significant plastic deformation and clearly demonstrate 

that serviceability criteria are the critical design aspect. Each of the members was able to resist the 

maximum applied load of 2MPa, however they show significant mid-span deflections that are 

unacceptable in practice. At this ultimate load, the optimised cross-section A shows the least 

deflection, and the conventional SHS showing the most. Due to the large deflections however, the 

failure load of the members has been taken as that at a serviceability limit of the deflections of 

span/250. At the 8mm deflection limit imposed by this criterion the performance of the various cross-

sections dramatically differs, with the conventional sections marginally out-performing the optimised 

profiles. Due to the large mid-span deflections seen in the beams analysed with span-depth ratios of 

20, it was considered necessary to analyse a series of stockier beams at span-depth ratios of 10. Pinned 

a) b) 



supports have been used in this set of results, to enable failure of the cross-sections at the high stress 

concentrations observed near the supports. These members were subjected to identical loading, and 

due to their alternate dimensions experienced much more acceptable levels of deflection at the 

ultimate load. The failure loads and corresponding deflections are presented in Table 4, along with 

the load-deflection curves in Fig. 9. The results show a much larger variation in the experienced 

deflections and failure loads, and therefore enable a clearer comparison when looking at the load-

deflection curve. 

Table 4. Analysis Results for 1m Pinned Beams 

Section A B C D E F G 

Ultimate Pressure [N/mm
2
] 1.75 1.69 1.82 1.63 1.89 1.95 1.61 

Von-Mises Stress [MPa] 179.91 169.81 169.91 179.67 177.16 169.80 185.52 

Mid-span deflection [mm] 12.98 13.69 16.82 18.49 23.93 11.45 20.83 

 

Figure 9. Load-Deflection Curves for 1m Pinned Beams 

Both optimised cross-sections A and B have performed well in this comparison, and show 

relatively low levels of deflections. Novel cross-section F is quite significantly the most efficient 

however, showing both the highest failure load and the lowest deflection simultaneously. 

Results - Columns. Two of the optimised shapes were chosen to be analysed; one with large 

stiffness in one axis and one with equal stiffness about both axes. In addition, two conventional and 

two novel shape sections with similar mass were chosen for a comparative analysis similarly to the 

beams. The tested cross-sectional profiles are shown in Fig. 10. 

1) 

 

2) 

 

3) 

 

4) 

 

5) 

 

6) 

 

Figure 10. Column Cross-Sections Employed in Finite Element Analysis 
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The models were constrained with pined support conditions. All translational degrees of freedom 

were restrained at both ends, apart from the one in the axial direction at one end. A compressive axial 

load was applied to the column extrusions by specifying pressure on the top face. The critical buckling 

loads and their corresponding deflections were extracted for all cross-section models (shown in Table 

5). The performance of all sections is also presented in the load-deflection curve Fig. 11. 

Table 5. Analysis Results for 2m Pinned Columns 

Section 1 2 3 4 5 6 

Ultimate load [N/mm
2
] 154.09 144.94 151.01 144.94 155.44 151.01 

Deflection at mid-span [mm] 0.67 1.66 0.53 1.43 0.59 0.72 

Max lateral deflection [mm] 0.72 1.80 0.58 1.58 0.64 0.78 

Vertical deflection [mm] 4.43 4.29 4.38 4.27 4.47 4.40 

 

Figure 11. Load-Deflection Curves for 2m Pinned Columns 

A clear separation between Sections 2 and 4, and the rest of the specimens is observed with Sections 

2 and 4 indicating the worst performance. Despite the same load limit, Section 2 shows a worse 

response due to the largest magnitude of the lateral deflection at mid-span. Even though Section 4 

(H-section) column stiffness in the minor axis (z-z) is lower than any other sections, it does not 

experience the largest deflection. Instead, Section 2 was the one that performed poorly in terms of 

lateral deflection. Thus, it can be concluded that Section 2 has the smallest stiffness and load-capacity 

out of all the specimens, despite being one of the two optimised cross-sectional profiles. Analysis 

results for Section 5 indicate the best performance. This box section with a circular hollow, despite 

possessing a smaller cross-sectional area, performed better than a standard box section (Section 3). 

Section 1 – one of the two optimised cross-sections – indicated a better performance than most within 

the comparison. Therefore, Section 1 is only slightly weaker than the stiffest (Section 5). Sections 3 

and 6 also performed relatively well. Surprisingly, a square box section without internal stiffeners 

(Section 3) performed better than a square box section with stiffeners (Section 6).  

Concluding Remarks 

Extrusion processes and 3D printing provides engineers the freedom to design structural products 

that cannot be manufactured with traditional ways such as the typical steel members made through a 

cold or a hot formed process. Especially, the most recently developed 3D printed manufacturing 

process, is a process of adding material, as opposed to subtracting material in the classic methods, 

and allows for more intricate optimised shapes that inherently provide strength and stiffness. This has 

given engineers an unprecedented chance to design lighter, more organic looking products which are 

aesthetically pleasing and practical and fully exploit the advanced optimisation tools to design new 

structural elements. Moreover, 3D printing offers another benefit to design engineers; no supply chain 
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is required. The final product does not need welding and bolting anymore and this guarantees its long 

lasting performance. 

In this paper, new cross-sectional topologies for aluminium structural members have been 

investigated through structural topology optimisation. A series of unique cross-sections have been 

generated using the SIMP technique, subject to different loading and support conditions. A tailored 

method for post-processing the 2D planar results is presented which aimed to address stability and 

manufacturability criteria. In this way, different density plots have been overlaid to identify the most 

frequently stressed areas of the cross-section, which resulted in five novel section profiles for beams 

and columns. A 3D optimisation approach was also presented to identify correlation between 2D and 

3D results. 

Both approaches for beams and columns predominantly result in complex hollow-like sections, 

with a large central opening and other smaller peripheral openings. Due to the square (but also the 

rectangular) design domain, most sections have a similar moment of inertia about both axes. Beam 

sections have an approximately central neutral axis despite only one plane of symmetry has been 

applied. As it was expected, all column sections are symmetric about both axes and have high or 

equal stiffness about one or two axes, respectively. Four of the optimised cross-sections are compared 

with a range of more conventional aluminium profiles under static loads using a FEA package. 

Results for beams and columns are presented, and indicate that the optimised cross-sections are able 

to provide a large stiffness and out-perform some conventional profiles, with one typology 

demonstrating the best efficiency for both beams and columns. The next step of this research project 

is to experimentally test the optimised scaled beam and column members manufactured through 

extrusion and 3D printing processes, with scope to investigate their structural performance under 

bending, compression (and combined actions) as well as fatigue. Due to the 3D printing process, 

surface roughness and crack control should be also checked at that stage in order to achieve similar 

stiffness in static and cyclic loads. Thus, safety factors will be employed in an attempt to allow 

Eurocode 9 for the design of such 3D printed and optimised aluminium structural elements.   
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