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ABSTRACT
An idealized fluid model of convective-scale numerical weather prediction, intended for use in inexpensive data
assimilation experiments, is described here and its distinctive dynamics are investigated. The model modifies the rotating
shallow water equations to include some simplified dynamics of cumulus convection and associated precipitation,
extending and improving the model of Würsch and Craig. Changes to this original model are the removal of ad hoc
diffusive terms and the addition of Coriolis rotation terms, leading to a so-called 1.5-dimensional model. Despite the
non-trivial modifications to the parent equations, it is shown that this shallow water type model remains hyperbolic in
character and can be integrated accordingly using a discontinuous Galerkin finite element method for nonconservative
hyperbolic systems of partial differential equations. Combined with methods to ensure well-balancedness and non-
negativity, the resulting numerical solver is novel, efficient and robust. Classical numerical experiments in the shallow
water theory, such as the Rossby geostrophic adjustment and flow over topography, are reproduced for the standard
shallow water model and used to highlight the modified dynamics of the new model. In particular, it exhibits important
aspects of convective-scale dynamics relating to the disruption of large-scale balance and is able to simulate other
features related to convecting and precipitating weather systems. Our analysis here and preliminary results suggest that
the model is well suited for efficiently and robustly investigating data assimilation schemes in an idealized ‘convective-
scale’ forecast assimilation framework.

Keywords: shallow water models, data assimilation, numerical weather prediction, convection dynamics, discontinuous

Galerkin finite element method

1. Introduction

Numerical weather prediction (NWP) models solve non-linear
partial differential equations (PDEs) that describe atmospheric
motions on many scales, whilst parameterizing unresolved
processes at the smaller scales as a function of the resolved state.
In the context of NWP, data assimilation (DA) involves incor-
porating meteorological observations in the forecast model in a
dynamically consistent manner to provide the ‘optimal’ initial
condition for a forecast of the future atmospheric state, taking
into account errors in both observations and previous forecasts
(Kalnay, 2003). Optimality of the initial state is crucial in such
a highly non-linear system with limited predictability. Indeed,
significant gains in the accuracy of NWP can be attributed to
improvements in assimilation algorithms and observing systems.

Until recently, operational NWP models were running with
a horizontal resolution larger than the size of most convective
disturbances, such as cumulus cloud formation, which were
accordingly parameterized. Despite the coarse resolution

∗Corresponding author. e-mail: o.bokhove@leeds.ac.uk

leaving many ‘subgrid’-scale dynamical processes unresolved,
there has been a great deal of success in weather forecasting
owing mainly to the dominance of large-scale dynamics in mete-
orology (Cullen, 2006). Variational DAalgorithms have success-
fully exploited this notion that atmospheric dynamics are close
to a balanced state (e.g. hydrostatic and semi-/quasi-geostrophic
balance), resulting in analysed states and forecasts that remain
likewise close to this balance (Bannister, 2010).

Increasing computational capability has led in recent years to

the development of high-resolution models at national meteoro-

logical centres in which some of the convective-scale dynamics

are explicitly (or at least partially) resolved (e.g. Done et al.,

2004; Baldauf et al., 2011; Tang et al., 2013). This so-called

‘grey-zone’, the range of horizontal scales in which convec-

tion and cloud processes are being partly resolved dynamically

and partly by subgrid parameterizations, presents a considerable

challenge to the NWP and DA community (Hong and Dudhia,

2012). Current regional NWP models are running at a spatial
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2 T. KENT ET AL.

gridsize on the order of 1 km with future refinement inevitable,
and smaller scale processes are known to interfere with DA
algorithms based on the aforesaid balance principles (Vetra-
Carvalho et al., 2012). As such, high-resolution NWP benefits
hugely from having its own DA system, rather than using a
downscaled large-scale analysis (Dow and Macpherson, 2013).

To aid understanding of and facilitate research into such large
and complex operational forecast assimilation systems, simpli-
fied models can be utilized that represent some essential features
of these systems yet are computationally inexpensive and easy to
implement. This allows one to investigate and optimize current
and alternative assimilation algorithms in a cleaner environment
before making insights or considering implementation in a full
NWP model with real observing systems (Ehrendorfer, 2007).
Systems of ordinary differential equations (ODEs), such as the
L63 model (Lorenz, 1963) and its successors Lorenz, 1986;
Lorenz, 1996; (Lorenz and Emanuel, 1998; Lorenz, 2005), con-
tinue to be the basis for numerous DA studies (e.g. Neef et al.
(2006, 2009); Subramanian et al. (2012); Bowler et al. (2013);
Fairbairn et al. (2014)). They provide chaotic dynamics on a
range of scales yet their low dimensionality means that they are
computationally cheap and easy to implement in an idealized
forecast assimilation system. The gap in the complexity of such
ODE models and the primitive equation models of operational
forecasting is, however, too large. Shallow water type models
attempt to bridge this gap. They capture interactions between
waves and vortical motions in rotating stratified fluids and have
received attention in DA research for the ocean and atmosphere
(e.g. Zhu et al., 1994; Žagar et al., 2004; Salman et al., 2006;
Stewart et al., 2013). Here, we extend and analyse a modified
shallow water model originally proposed by Würsch and Craig
(2014) for DA research (herein WC14).

Convective (cumulus) clouds are characterized by highly
buoyant, unstable air that accelerates upwards in a localized
region to significant heights (see, e.g. Houze, 1993a). If the air
reaches a sufficient height, precipitation forms and subsequently
falls through the convective column, reducing the buoyancy
and turning the updraft into a downdraft (along with associ-
ated effects from latent heat release). The model of WC14 cap-
tures some aspects of this life cycle of single-cell convection,
while following the classical shallow water dynamics in non-
convecting and non-precipitating regions. The binary ‘on–off’
nature of convection and precipitation is inherently difficult to re-
solve in NWP models, requiring highly non-linear functions that
pose further issues for convective-scale DAalgorithms. Thus, the
inclusion of switches, in the form of threshold heights, provides a
relevant analogy to operational NWP and is an important aspect
of the modified model.

The difference between the model proposed here and that
of WC14 is twofold. First, incorporating a meridional veloc-
ity component and Coriolis terms means that dynamics associ-
ated with rotating fluids, such as geostrophy, are present in the
model. Second, and more importantly, the diffusion terms used to

stabilize the model of WC14 are removed, resulting in a
hyperbolic system of PDEs. Accordingly, the model can be in-
tegrated robustly using a discontinuous Galerkin finite element
method (DGFEM) for hyperbolic systems, cf. Rhebergen et al.
(2008), coupled with the method of Audusse et al. (2004) to
ensure well-balancedness. This novel framework ensures non-
negativity of the layer depth and the ‘rain mass fraction’variable;
it is also more versatile for analysis than using a leading order fi-
nite volume approach. While the DG formulation includes higher
order discretization in space, the model and methodology is
demonstrated here at leading order in a series of test simulations
chosen to illustrate the model’s distinctive dynamics.

The purpose of this paper is to introduce the model and the
above-mentioned numerical solver, and consequently to inves-
tigate its distinctive dynamics. We consider this of scientific
interest in itself, but also as a prerequisite for its use in DA
experiments. In the next section, the physical motivation and
mathematical description of the model are given. A key aspect
of the model is that, despite the modifications, it remains hyper-
bolic, thus permitting the use of a powerful class of numerical
methods for such PDE systems. Sections 3 and 4 introduce a new
scheme for the numerical integration and illustrate the modified
dynamics of the model with respect to the classical shallow water
theory. We conclude with a summary of the key features of the
dynamics of the model and some comments on its intended use
in an idealized forecast assimilation framework.

2. Model description

2.1. Classical shallow water

Shallow water (SW) flows are ubiquitous in nature and their
governing equations have wide applications in the dynamics of
rotating, stratified fluids. The shallow water equations (SWEs)
are considered a useful tool for modelling dynamical processes
of the Earth’s atmosphere and oceans. They approximately de-
scribe inviscid, incompressible free surface fluid flows under
the assumption that the depth of the fluid is much smaller than
the wavelength of any disturbances to the free surface, i.e. a
fluid in which the vertical length scale is much smaller than the
horizontal length scale.

Interesting dynamical features of the SWEs are gravity waves,
vortical motions and shocks. Models based on the SWEs capture
the interaction between fast gravity waves and the slowly varying
geostrophic vortical mode. Gravity waves are known to play an
important role in the initiation of atmospheric convection, par-
ticularly in the presence of orography, suggesting a model based
on the SWEs is appropriate for investigating convective-scale
DA. By definition, shock waves occur wherever the solution
is discontinuous. Such discontinuities in the model variables (or
their spatial derivatives) are mathematical idealizations of severe
gradients, akin to fronts in an atmosphere. As such, propagation
of shock waves in the model can be thought of as the propagation
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DYNAMICS OF AN IDEALIZED FLUID MODEL 3

of atmospheric fronts (Parrett and Cullen, 1984; Frierson et al.,
2004; Bouchut et al., 2009).

The standard shallow water model on a rotating Cartesian
f -plane (2dRSW) in which dynamical variables do not depend
on one of the spatial coordinates (here the y-coordinate, so that
∂(·)/∂y := ∂y(·) = 0) can be written as (see, e.g. Zeitlin (2007)):

∂t h + ∂x (hu) = 0, (1a)

∂t (hu) + ∂x (hu2 + p(h)) − f hv = −gh∂x b, (1b)

∂t (hv) + ∂x (huv) + f hu = 0, (1c)

where h = h(x, t) is the space- and time-dependent fluid depth,
b = b(x) is the prescribed underlying topography (so that h +
b is the free surface height), u(x, t) and v(x, t) are velocity
components in the zonal x- and meridional y-direction, f is
the Coriolis parameter (typically 10−4s−1 in the mid-latitudes)
and g is the gravitational acceleration. This system of equations,
together with specified initial and, where appropriate, boundary
conditions, determine how the flow evolves in time. The effec-
tive pressure p(h), following the terminology of isentropic gas
dynamics, has the standard form: p(h) = 1

2 gh2. It is useful to
introduce the equations in this form to illustrate the modifications
described in the next section.

Physically, this model extends the one-dimensional SWEs by
adding transverse flow v and Coriolis effects. The existence of
transverse flow with no variation in the y-direction means the
model should not be considered one- or two-dimensional, but
rather one-and-a-half-dimensional (e.g. Bouchut et al., 2009).
This set-up offers more complex dynamics associated with ro-
tating fluids (e.g. geostrophy) than a purely 1D model whilst
remaining computationally inexpensive, a crucial factor for a
‘toy’ model.

2.2. Modified shallow water

The model introduced by WC14 extends the one-dimensional
SWEs to mimic conditional instability and include idealized
moisture transport via a ‘rain mass fraction’ r or, alternatively,
‘precipitated water fraction’. We use similar physical concepts
and argumentation here but employ a mathematically cleaner
approach without diffusive terms which results in a hyperbolic
system of PDEs. Other ‘moist’ SW models have been developed
for atmospheric dynamics on the synoptic scale, perhaps most
famously by Gill (1982) and more recently by, e.g. Bouchut
et al. (2009), Zerroukat and Allen (2015). Our interest in the
WC14 model stems from its simplicity in incorporating convec-
tive motions, namely rapidly evolving updrafts, downdrafts and
idealized precipitation effects, without the need for explicitly
considering temperature and other thermodynamic properties.

Heuristically, atmospheric moist convection can be thought
of as a two-fluid problem, in which one fluid can transform it-
self into another simply through vertical displacement (Stevens,
2005). It is this concept that is attractive in the WC14 model
and that we seek to capture in our idealized ‘convective–scale’
model: the single-layer SWEs (1) are modified when the height of
the fluid crosses certain thresholds. When the fluid exceeds these
threshold heights, which can be seen as switches for the onset of
convection and precipitation, different mechanisms kick in and
alter the classical shallow water dynamics. In these modified
regions, the behaviour of the flow is transformed from the stan-
dard shallow water dynamics to a simplified representation of
cumulus convection. The changes to the governing equations are
as follows. The mass (1a) and hv-momentum (1c) equations are
unchanged. The hu-momentum Equation (1b) is altered by the
effective pressure and the inclusion of a ‘rain water mass poten-
tial’, c2

0r . To close the system, an evolution equation for the ‘rain
mass fraction’ r is required, including source and sink terms (2d
below). The modified rotating shallow water (modRSW) model
is described by the following equations:

∂t h + ∂x (hu) = 0, (2a)

∂t (hu) + ∂x (hu2 + P) + hc2
0∂xr − f hv = −Q∂x b, (2b)

∂t (hv) + ∂x (huv) + f hu = 0, (2c)

∂t (hr) + ∂x (hur) + hβ̃∂x u + αhr = 0, (2d)

where P and Q are defined via the effective pressure p =
p(h) = 1

2 gh2 by:

P(h; b) =
{

p(Hc − b), for h + b > Hc,

p(h), otherwise,
(3a)

Q(h; b) =
{

p′(Hc − b), for h + b > Hc,

p′(h), otherwise,
(3b)

with p′ denoting the derivative of p with respect to its argument
h, and:

β̃ =
{

β, for h + b > Hr and ∂x u < 0,

0, otherwise.
(4)

The constants α > 0 (s−1) and β > 0 (dimensionless) control
the removal and production of rain, respectively, c2

0 (m2s−2)
converts the dimensionless r into a potential in the momentum
equation and controls the strength of the feedback, and Hc < Hr

(m) are critical heights pertaining to the onset of convection and
precipitation. For h + b < Hc and r initially zero, it is clear that
the model reduces exactly to the classical shallow water model
(1).
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4 T. KENT ET AL.

Fig. 1. Schematic of the pressure term P(h; b) in (3): the modified
pressure p(Hc − b) = 1

2 g(Hc − b)2 above the threshold Hc is lower

than the standard pressure p(h) = 1
2 gh2, thus forcing the fluid to rise

where h + b > Hc .

The modification to the standard SWEs first occurs when the
free surface height h + b exceeds the threshold Hc in (3). The
fundamental dynamics of cumulus convection are the dynamics
of buoyant air: air motions in all convective clouds emerge in
the form of vertical accelerations that occur when moist air
becomes locally unstable (i.e. less dense) than its environment
(see, e.g. Markowski and Richardson (2011b)). Initiation of deep
convection requires that air parcels reach their level of free
convection (LFC), the height at which the air parcel achieves
positive buoyancy due to latent heat release from condensation,
thus forcing it further upwards through the atmosphere. Asso-
ciated with the rapid ascent (and subsequent descent) of air in
a localized region is the adjustment of the mass field in and
around the cloud due to perturbations of a characteristic pressure
field (Houze, 1993a). Thus, it can be expected intuitively that
buoyancy cannot be instigated without a simultaneous distur-
bance to the pressure field (Houze, 1993b). This mechanism is
exemplified by the threshold height Hc which can be thought of
as the LFC: exceedance of Hc forces fluid in that region to rise by
modifying the pressure terms (3). The pressure at a given height
above Hc, namely p(Hc −b), is lower than the standard pressure
p(h) at that same height (see the schematic in Fig. 1). Owing to
this relative reduction in pressure, the fluid experiences a reduced
restoring force due to gravity and should therefore rise. Thus, the
changes to the pressure terms (3) instigate positive buoyancy and
a representation of conditional instability.

Model ‘rain’ is produced (i.e. the ‘rain mass fraction’ r in-
creases) when the fluid exceeds a second threshold height Hr >

Hc (higher to ensure that precipitation forms at some time after
the onset of convection), in addition to positive wind conver-
gence (∂x u < 0). This convergence condition is synonymous
with the upward displacement of an air parcel from the surface
and subsequent convective updraft. In three-dimensional mod-
els, horizontal moisture convergence, −∇ · (quuu H ), for some

moisture field q and horizontal velocity uuu H , is often used to
parameterize bulk convection and is also a forecasting diagnos-
tic for the initiation of deep moist convection (Markowski and
Richardson, 2011a). It is well known that moisture convergence
is correlated with horizontal wind convergence −∇ · uuu H ; thus,
the condition ∂x u < 0 is conceptually credible and ensures that
air is still rising for precipitation to form. The β term in (2d)
and (4) controls how much ‘rain’ is produced and is a tunable
parameter. Once there is model ‘rain’ in the system, it feeds
back to the hu-momentum Equation (2b) via the hc2

0∂xr term,
and precipitates via a linear removal term involving the tunable
parameter α. In nature, as precipitation forms and subsequently
falls through a cloud, it reduces and eventually overcomes the
positive buoyancy, thus turning an updraft into a downdraft. This
gradient term imitates this effect and can be considered as a
contribution to the pressure, increasing it locally where there is
model ‘rain’ present. As a consequence, we expect the presence
of ‘rain’ to enhance the restoring force and therefore suppress
the updraft, eventually leading to the collapse of the convective
column and limiting the growth of convection in the model. The
strength of this feedback is controlled by the tunable parameter
c2

0, with higher values leading to enhanced suppression.
We stress that what we refer to as model ‘rain’, namely the

model variable r , is an artefact of our model and clearly not
the same as nature’s rain. In essence, it is the mass fraction
of precipitated water in the system and engenders some highly
non-linear effects of precipitation in a simplified modelling en-
vironment. Accordingly, one can think of 1 − r as the mass
fraction of precipitable water (i.e. the whole column is a source
for precipitation), with the total mass being conserved. Thus,
removal of ‘rain’ by the α sink term in (2d) does not remove
mass from the system, rather it transfers it between precipitated
and precipitable water so that it may precipitate again at a later
time. This is not a realistic feature, however, it means that there
is a continual source of model ‘rain’ and so the model does not
work for a limited time only, a crucial point when considering
its use in idealized DA experiments. The nature of these pa-
rameterizations, viz. the tunable parameters α, β, and c2

0, are by
their construction ad hoc, but as demonstrated by our numerical
simulations in Section 4 and Würsch and Craig (2014), they
provide a plausible way to parameterize the idealized transport
of moisture in the modified system.

The essential thermodynamic properties central to moist con-
vection (namely latent heat release due to condensation) are in
some sense hidden in our model (2). It should be noted though
that the effects of these properties are not absent, rather they are
modelled indirectly by the modification of the pressure terms.
This achieves some simplified dynamics of convection associ-
ated with buoyancy, as demonstrated in the numerical experi-
ments in Section 4, without the explicit inclusion of
temperature and condensation. Together with the idealized pre-
cipitation process, we argue that our simplified approach pro-
vides a ‘toy’ model with interesting dynamics nonetheless.
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DYNAMICS OF AN IDEALIZED FLUID MODEL 5

2.3. Hyperbolicity

Hyperbolic systems of PDEs arise from physical phenomena
that exhibit wave motion or advective transport. Such systems
have a rich mathematical structure and have been extensively
researched from both an analytical (e.g. Whitham, 1974) and
numerical perspective (e.g. LeVeque, 2002). The classical SWEs
are a well-known example of a system of hyperbolic PDEs, being
a special case of isentropic gas dynamics. Here, we show that
the modRSW model remains hyperbolic despite the non-trivial
modifications and non-conservative products (NCPs).

A system of n PDEs is hyperbolic if all the eigenvalues λi (UUU ),
i = 1, . . . , n, of its Jacobian matrix are real and the Jacobian
is diagonalizable (i.e. its eigenvectors form a basis in R

n). To
show hyperbolicity (and facilitate numerical implementation in
the next section), the modRSW model (2) is expressed in non-
conservative vector form:

∂tUUU + ∂x FFF(UUU ) + GGG(UUU )∂xUUU + SSS(UUU ) = 0, (5)

where:

UUU =

⎡⎢⎢⎢⎣
h

hu
hv

hr

⎤⎥⎥⎥⎦ , FFF(UUU ) =

⎡⎢⎢⎢⎣
hu

hu2 + P
huv

hur

⎤⎥⎥⎥⎦ ,

GGG(UUU ) =

⎡⎢⎢⎢⎣
0 0 0 0

−c2
0r 0 0 c2

0
0 0 0 0

−β̃u β̃ 0 0

⎤⎥⎥⎥⎦ , SSS(UUU ) =

⎡⎢⎢⎢⎣
0

Q∂x b − f hv

f hu
αhr

⎤⎥⎥⎥⎦ ,

(6)

and P , Q and β̃ given by (3) and (4), respectively. It is non-
conservative in the sense that the system cannot be written in
divergence form, i.e. the NCP GGG(UUU )∂xUUU cannot be expressed in
terms of a flux function ∂x F̃FF(UUU ) (there is no function F̃FF such that
∂UUU F̃FF = GGG). The Jacobian matrix JJJ = ∂UUU FFF + GGG of the system
(5) is given by:

JJJ (UUU ) =

⎡⎢⎢⎢⎣
0 1 0 0

−u2 − c2
0r + ∂h P 2u 0 c2

0
−uv v u 0

−u(β̃ + r) β̃ + r 0 u

⎤⎥⎥⎥⎦ , (7)

and its four eigenvalues are:

λ1,2 = u ±
√

∂h P + c2
0β̃, λ3,4 = u. (8)

Clearly, λ3,4 are real. Since β̃ is non-negative and P(h, b) is
non-decreasing (hence ∂h P ≥ 0), the term under the square root

is non-negative. Hence, λ1,2 are real and, since there are repeated
eigenvalues, we conclude that the modRSW model is (weakly)
hyperbolic.

Hyperbolic systems are often studied analytically via the
method of characteristics. This leads to a transformation of vari-
ables UUU into a new set of Riemann variables that propagate
along characteristic curves in (x, t)-space (Whitham, 1974). Al-
though this is in principle possible for the modRSW model,
the complexity of the system results in abstruse expressions for
Riemann variables, offering little insight analytically. But as the
prime purpose here is to provide a physically plausible numerical
forecast model for conducting idealized DAexperiments, further
Riemann analysis is neglected. However, one aspect relating
to the wave speeds (determined by the eigenvalues) deserves a
further comment. It is well known that waves travelling through
saturated regions of convection slow down (e.g. Harlim and
Majda (2013)), and simplified models of a moist atmosphere
should naturally reflect this. For example, the SW model of
Bouchut et al. (2009) for a large-scale moist atmosphere has
lower wave speeds in ‘moist’ regions compared to dry regions.
For comparison, the eigenvalues of the classical shallow water
system (1) are:

μ1,2 = u ±√
p′(h) = u ±√

gh, μ3 = u. (9)

For the modRSW model (2), max{|λ1,2|} is smaller when Hc <

h + b < Hr , since then ∂h P = 0, and smaller for h + b > Hr

when c2
0β̃ is sufficiently small (specifically, less than gh), both

relative to the standard shallow water case with h + b < Hc.
Hence, modulation of the wave speeds by convection is captured
in the model too.

Properties such as moist enthalpy and potential vorticity con-
servation, which are present in moist SWEs derived from the
vertically averaged primitive equations in pressure coordinates
(see Bouchut et al. (2009)), are absent in our model. However,
since our goal is to provide a ‘toy’model that exhibits some basic
features of convecting and precipitating weather systems for use
in inexpensive and idealized DA experiments, these properties
are of secondary importance.

3. Numerical formulation

3.1. Methodology

There exists a powerful class of numerical methods for solving
hyperbolic problems, motivated by the need to capture shock
formation in the solutions, a consequence of non-linearities in
the governing equations. Efficient and accurate finite volume
schemes for systems of conservation laws are very well de-
veloped (e.g. LeVeque, 2002; Toro, 2009). For shallow water
models, there are well-balanced schemes that deal accurately
with topography and Coriolis effects, maintaining steady states
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6 T. KENT ET AL.

at rest and non-negative fluid depth h(x, t) (Audusse et al., 2004;
Bouchut, 2007). However, the nature of the modRSW model
(namely, the presence of NCPs including step functions) requires
careful treatment beyond the typical methods for conservation
laws. The DGFEM developed by Rhebergen et al. (2008) of-
fers a robust method for solving systems of non-conservative
hyperbolic PDEs of the form (5) and is developed here for the
modRSW model (2).

The first step of any finite element method is to convert the
PDE of interest into its equivalent weak formulation using
the standard test function and integration approach. However,
the presence of NCPs in the governing equations complicates
this somewhat because the weak solution in the classical sense
of distributions does not exist when the solution becomes dis-
continuous (Rhebergen et al., 2008). To overcome the absence
of a weak solution for systems of equations of the form (5),
Rhebergen et al. (2008) employ DLM theory (after Dal Maso,
LeFloch, and Murat; Dal Maso (1995)) for NCPs which defines
an NCP as a bounded measure in such a way to enable the weak
solution to be defined. This is achieved by considering a single
NCP g(u)∂x u, where g is a smooth function but u may admit
discontinuities, and defining a smooth regularization uε of the
discontinuous u:

g(u)
du

dx
≡ lim

ε→0
g(uε)

duε

dx
= Cδxd , with

C =
∫ 1

0
g(φ(τ))

∂φ

∂τ
(τ )dτ, (10)

where δxd is the Dirac measure at the discontinuity xd and
φ is a Lipschitiz continuous path connecting the model states
across the discontinuity, an artefact of the regularization. In
DGFEM, the computational states are generally continuous on
each element but discontinuous across an element boundary.
It is in this context that the framework afforded by the DLM
theory (and culminating in (10)) appears naturally in the weak
formulation and subsequent discretization.

Here, we provide a summary of the scheme developed for the
modRSW model; further technical material is appended and is
referenced accordingly. For full details of the methodology for
general systems, including the key theorems employed from the
DLM theory, the reader is directed to Rhebergen et al. (2008).

3.2. Discretization

The one-dimensional flow domain 
 = [0, L] is divided into
N open elements Kk = (xk , xk+1) for k = 1, 2, . . . , N with
N + 1 nodes/edges 0 = x1, x2, . . . , xN , xN+1 = L . Element
lengths |Kk | = xk+1 − xk may vary. Formally, one can define a
tessellation Th of the N elements Kk :

Th =
⎧⎨⎩Kk :

N⋃
k=1

K̄k = 
̄, Kk ∩ Kk′

= ∅ if k 
= k′, 1 ≤ k, k′ ≤ N

⎫⎬⎭ , (11)

where overbar denotes closure of an element Kk with its bound-
ary ∂Kk , i.e. K̄k = Kk ∪ ∂Kk = [xk , xk+1]. This simply
means that the elements Kk cover the whole domain and do not
overlap. The space-DGFEM weak formulation is obtained by (i)
multiplying each equation of the system (5) by an arbitrary test
function w ∈ C1(Kk), generally continuous on each element but
discontinuous across an element boundary; and (ii) integrating
(by parts) over each element Kk ∈ Th and summing over all
elements. The space discretization is achieved by replacing the
exact model states UUU and test functions w by approximations
UUU h , wh in terms of polynomial basis function expansions, with
the order of the polynomials determining the order of the scheme.

In the following, repeated i, j-subscript indices are used for
the summation convention with i, j = 1, . . . , 4 denoting com-
ponents of vectors, k-subscript denotes values in element Kk
and L , R-superscript denotes limiting values to the left/right of
an element edge (e.g. wR

k = w(x R
k ) = limx↓xk w(x, t), and

wL
k = w(x L

k ) = limx↑xk w(x, t)). In one space dimension and
considering cell Kk only at a given t , the weak form reads (from
Equation A11 in Rhebergen et al., 2008):

0 =
∫

Kk

[
w∂t Ui − Fi ∂xw + wGi j ∂xU j + wSi

]
dx

+
[
w(x L

k+1)P p
i (UUU L

k+1,UUU R
k+1) − w(x R

k )Pm
i (UUU L

k ,UUU R
k )
]
,

(12)

where P p
i and Pm

i are the numerical flux terms given by:

P p
i = P NC

i + 1

2

∫ 1

0
Gi j (φφφ)

∂φ j

∂τ
dτ, (13a)

Pm
i = P NC

i − 1

2

∫ 1

0
Gi j (φφφ)

∂φ j

∂τ
dτ, (13b)

and the NCP flux through an element edge is:

P NC
i (UUU L ,UUU R)

=

⎧⎪⎪⎨⎪⎪⎩
F L

i − 1
2

∫ 1
0 Gi j (φφφ)

∂φ j
∂τ

dτ, if SL > 0;
F H L L

i − 1
2

SL+SR

SR−SL

∫ 1
0 Gi j (φφφ)

∂φ j
∂τ

dτ, if SL < 0 < SR;
F R

i + 1
2

∫ 1
0 Gi j (φφφ)

∂φ j
∂τ

dτ, if SR < 0.

(14)
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DYNAMICS OF AN IDEALIZED FLUID MODEL 7

Here, F H L L
i is the standard HLL numerical flux,

F H L L
i = F L

i SR − F R
i SL + SL SR(U R

i − U L
i )

SR − SL
, (15)

Gi j is the i j-th element of the matrix GGG, and SL ,R are the fastest
left- and right-moving signal speeds (cf. (8)) in the solution
of the Riemann problem, determined by the eigenvalues of the
Jacobian of the system:

SL = min

(
uL −

√
(∂h P)|L + c2

0β̃|L , u R

−
√

(∂h P)|R + c2
0β̃|R

)
, (16a)

SR = max

(
uL +

√
(∂h P)|L + c2

0β̃|L , u R

+
√

(∂h P)|R + c2
0β̃|R

)
. (16b)

Since the goal here is a toy model for DA research, it is prefer-
able to keep the scheme as computationally efficient as possible
and acknowledge higher order accuracy as of secondary im-
portance. The lowest order space discretization uses piecewise
constant basis functions to approximate the model states (so-
called ‘zero-th’ order (DG0); equivalent to the finite volume
method in one dimension). In principle, the topography b can
be treated as a model variable (b = b(x, t) with ∂t b = 0) such
that the topographic source term Q∂x b in (6) is then treated as an
NCP. However, hitherto less well-known issues with
well-balancedness for DG0 discretizations with varying topog-
raphy mean this approach is unsatisfactory; instead, we dis-
cretize the topographic source term directly using the established
method of Audusse et al. (2004), resulting in a well-balanced
scheme at lowest order that efficiently preserves non-negativity
of fluid depth h and rain hr . It is first necessary to isolate the
topographic source term in (6) from the other terms pertaining
to rotation and removal of rain: SSS(UUU ) = SSSO (UUU ) + SSSB(UUU ) =
[0, − f hv, f hu, αhr ]T + [0, Q∂x b, 0, 0]T . Then, SSSO is dis-
cretized as a standard linear extraneous forcing term and SSSB

via the method of Audusse et al. (2004).
Using piecewise constant basis functions UUU ≈ UUU h = Uk(t)

and wh = 1 alternately in each element (since the test function
w ≈ wh is arbitrary), the semi-discrete space-DGFEM scheme
for element Kk ∈ Th reads:

0 = |Kk |dUk

dt
+ |Kk |SO

k + S B
k + P p

(
U−

k+1, U+
k+1

)
− Pm

(
U−

k , U+
k

)
, (17)

where U±
k are reconstructed states to the left and right of node xk ,

and S B
k is the discretized topographic source term. See

Appendix 2 for further details pertaining to these reconstructions,
S B

k , and the scheme of Audusse et al. (2004).
The contribution from DLM theory (10) is apparent through-

out the flux terms, as is its dependence on the regularization path
φφφ : [0, 1] → R

4 connecting the left state to the right state. Here
we employ a linear path φφφ(τ ;UUU L ,UUU R) = UUU L + τ(UUU R −UUU L ).
It is clear from (14) that in the absence of NCPs (Gi j = 0 for
all i, j) the numerical flux reduces exactly to the standard flux.
However, for Gi j 
= 0, the NCP contributions of the form in
(10) must be calculated. The NCP flux (14) for the modRSW
model is:

P NC (UUU L ,UUU R)

=

⎧⎪⎪⎨⎪⎪⎩
FFF L − 1

2 VVV NC , if SL > 0;
FFF H L L − 1

2
SL+SR

SR−SL VVV NC , if SL < 0 < SR;
FFF R + 1

2 VVV NC , if SR < 0;
(18)

where VVV NC contains the contribution from the NCP integral
expressions:

VVV NC =

⎡⎢⎢⎢⎣
0

−c2
0�r�{{h}}

0

−β�u��(�u�)
(

h R Iβ + �h�Iτβ
)
⎤⎥⎥⎥⎦ , (19)

and Iβ , Iτβ are expressions containing Heaviside functions asso-
ciated with the instantaneous thresholds Hc and Hr . The average
of a quantity is denoted by {{·}} = 1

2 ((·)L + (·)R) and the jump
of a quantity across a node is denoted by �·� = (·)L − (·)R . The
full derivation of the NCP flux is given in Appendix 3.

4. Numerical experiments and dynamics

This section presents some numerical experiments which have
been chosen to highlight the dynamics of the modified rotating
shallow water model (2) compared to those of the classical model
(1). The experiments are based on: (i) a Rossby adjustment
scenario and (ii) non-rotating flow over topography, both of
which have a rich history in shallow water theory including
known exact steady-state solutions. To illustrate the effect that
exceeding the threshold heights Hc < Hr has on the dynamics,
a hierarchy of model ‘cases’ is employed:

• Case I: h + b < Hc always (effectively setting Hc, Hr →
∞). The model (2) reduces to standard RSWEs (1) if
hr = 0 initially.

• Case II: h + b < Hr always, but may exceed Hc. This is
considered a ‘stepping stone’ to the full model to isolate
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Fig. 2. Time evolution of the height profile for the standard shallow water case I (left), case II with convection and no rain with Hr → ∞ (middle)
and case III with convection and rain for finite Hc, Hr (right). Non-dimensional simulation details: Ro = 0.1, Fr = 1, N = 250; (Hc, Hr ) =
(1.01, 1.05); (α, β, c2

0) = (10, 0.1, 0.81).

the effect of the first threshold exceedance. Thus, given
Hc exceedance and the consequent modification to the
gradient of the pressure (3a), we expect the fluid to be forced
upwards (a ‘convective updraft’).

• Case III: h + b may exceed both Hc, Hr (and ∂x u < 0).
This is the full modRSW model with convecting and rain
processes to be used for idealized convective-scale DA
research.

For the modRSW model to have credibility as a shallow water-
type model, it is crucial that it reproduces, in case I, known
results of the standard SWEs. The existence of exact steady-state
solutions thus provides a benchmark to test this and the solutions
can be used as reference states to compare the subsequent modi-
fications introduced by cases II and III. We expect simulations in
cases II and III to display markedly different behaviour compared
to the ‘dry’system, and will elucidate these distinctive dynamics
with reference to the physical basis described in Section 2.2.

The non-dimensionalized equations (Appendix 1) are imple-
mented on a domain of unit length using the mixed NCP-Audusse
numerical scheme derived in the previous section and the for-
ward Euler time discretization. Neuman outflow (cf. LeVeque,
2002) boundary conditions are applied in all simulations. This
means that the fluid is allowed to leave the flow domain in
a physically consistent manner, essentially setting the domain
to be infinitely large. In this case, the required information is
typically extrapolated from the interior solution. This is achieved
by extending the computational mesh to include so-called ‘ghost’
elements K0 and KN+1. Values in these elements are set at
the beginning of each time step in a way that takes into con-
sideration the boundary conditions, and the updating algorithm
is then exactly the same in every element. Care needs to be

taken when implementing outflow conditions to ensure that the
specified boundary information does not contaminate the interior
solution. Outgoing waves should propagate out of the domain
without generating spurious reflections from the artificial bound-
ary. The most simple, yet sufficient, approach uses a zero-order
extrapolation, that sets the same value to the model variables
in the first and last two elements of the domain at the start of
each time step. This does not prevent reflections completely but
any artificial effects are negligible compared to the solution.
Further simulation details for each experiment are given in figure
captions and the main text.

4.1. Rossby adjustment (unbalanced velocity)

The following experiment, motivated by Bouchut et al. (2004),
explores Rossby adjustment dynamics in which the evolution
of the free surface height is disturbed from its rest state by a
transverse jet, i.e. fluid with an initial constant height profile is
subject to a localized v-velocity distribution. In order to adjust
to this initial momentum imbalance, the height field evolves
rapidly, emitting inertia gravity waves and shocks that propagate
out from the jet and eventually reach a state of geostrophic
balance. The shape of the initial velocity profile of the jet v(x)

is that employed by Bouchut et al. (2004):

Nv(x) = (1 + tanh(4x + 2))(1 − tanh(4x − 2))

(1 + tanh(2))2
, (20)

and the initial conditions are h = 1, hu = hr = 0 and hv =
Nv(x). The bottom topography b is zero throughout the domain.
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Fig. 3. Hovmöller plots for the Rossby adjustment process with initial transverse jet: case I (left), II (middle) and III (right). From top to bottom:
h(x, t), u(x, t), v(x, t) and r(x, t). Non-dimensional simulation details: same as Fig. 2.
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Fig. 4. Evolution of h and r for the Rossby adjustment process with initial transverse jet: case I (left), II (middle) and III (right). Top row: Hovmöller
plots for h. Subsequent rows: profiles of h (black line; left axis) and r (blue line; right axis) at different times denoted by the dashed lines in the top
row. Non-dimensional simulation details: same as Fig. 2.
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Fig. 5. Hovmöller plots for the Rossby adjustment process with initial transverse jet, highlighting the conditions for the production of rain:
case III. From left to right: h > Hr , −∂x u > 0, and r(x, t). Non-dimensional simulation details: same as Fig. 2.

Snapshots of the time evolution of the height field are shown
in Fig. 2. In case I, we observe two low-amplitude gravity waves
propagating to the left and right of the jet core, in agreement with
the results of Bouchut et al. (2004) for the standard shallow water
theory. Doubling the number of elements reduces the error by a
factor 2 (not shown), as expected for a DG0 scheme, verifying
numerical convergence. Thus, the model reduces analytically
and numerically to the classical rotating shallow water model
when the fluid does not exceed the threshold heights Hc and Hr .

For case II, exceedance of Hc modifies the pressure terms,
triggering positive buoyancy and leading to a convective updraft.
However, no ‘rain’ is produced as Hr is not exceeded. It may
be the case that, as t → ∞, the solution diverges in case II
(especially, as |Kk | → 0) since there is no restoring force
provided by the downdraft. However, numerical diffusion at
the element nodes plays a key role at lowest order where the
gradients are steep (i.e. at shocks or significant updrafts), and
prevents continuous growth of the convective columns, even
in case II. We expect that, in case III, given Hr exceedance
and convergence (∂x u < 0), ‘rain’ is produced (β contribution)
and then slowly removed (i.e, transformed back to precipitable
water due to α), providing a downdraft to suppress convection.
The strength of the downdraft and consequent suppression of the
height field is controlled directly by the c2

0 parameter. This en-
hanced suppression is apparent in Figs. 2 and 4, comparing cases
II and III: as rain is produced the vertical extent of the updraft
in case III is diminished, yet it remains a coherent convective
column. Physically, this is due to the feedback of r in (2b) and
provides justification of the conceptual arguments put forward
in Section 2.

The evolution of all four model variables for each case is illus-
trated in Fig. 3 and detailed further for the fluid depth and rain in
Fig. 4. The inertia–gravity waves, indicated by a sharp contour
gradient, in the h and u fields in Fig. 3 are clearly apparent as

they propagate from the jet core. In cases II and III, the wave
fronts exceed the threshold Hc and become convection-coupled
waves. The shallow left wave propagates slightly slower than in
the standard shallow water case from t = 0 to 0.5 before leaving
the domain. The right wave becomes strongly coupled to the
deep convection and slows down. This confirms the wave speed
analysis in the ‘Hyperbolicity’ part of Section 2: convection-
coupled waves are slower than their ‘dry’ counterparts, and in
particular slower in case II than case III. This is also corroborates
the numerical simulations of Bouchut et al. (2009).

Multicellular convection (probably the most common form of
convection in mid-latitudes) is characterized by repeated devel-
opment of new cells along the gust front and enables the survival
of a larger scale convective system (Markowski and Richardson,
2011c). A basic representation of this is achieved here: the initial
convective column subsides around t = 0.5 and a new updraft
develops in its place with the associated production of rain. The
downdraft from the subsiding column instigates a gravity wave
that propagates leftward and initiates a region of light convection
and rain away from the initial disturbance, another key aspect of
atmospheric convection. This is apparent in the top left corner
of the Hovmöller plots for h and u in Fig. 3 for cases II and III
and the h and r profiles at t = 0.5, 0.75 in Fig. 4.

Figure 5 shows fluid height > Hr and positive wind conver-
gence −∂x u > 0 alongside the evolution of r . The production
of rain requires both Hr exceedance and convergence, hence we
see rain forming in regions where these two processes coincide.
It should be noted here that the amount of rain produced and the
speed at which it subsequently precipitates is controlled by the
parameters β and α, respectively. Different values would lead
to different solutions, not just for hr but all variables, due to the
coupling in (2b). Moreover, the rate of rain production is directly
proportional to the strength of convergence; this explains why
there is more rain produced in the deep convection-coupled wave
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Fig. 6. Top row: Hovmöller diagram plotting the evolution of the departure from geostrophic balance g∂x h − f v: light (deep) shading denotes
regions close to (far from) geostrophic balance. Subsequent rows: profiles of f v (red) and g∂x h (black) at different times denoted by the dashed lines
in the top figure. For case I (left), II (middle), and III (right). Non-dimensional simulation details: same as Fig. 2.
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Fig. 7. Flow over topography (bc = 0.5, a = 0.05 and x p = 0.1): profiles of h + b, b (black; left y-axis), exact steady-state solution for the
SWEs (red dashed; as derived in Appendix 4) and rain r (blue; right y-axis) at different times: case I (left), II (middle) and III (right). The dotted lines
denote the threshold heights Hc < Hr . Non-dimensional simulation details: Fr = 2; Ro = ∞; Nel = 1000; (Hc, Hr ) = (1.2, 1.25); (α, β, c2

0) =
(10, 0.1, 0.081).
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14 T. KENT ET AL.

Fig. 8. Hovmöller plots for flow over topography (Fr = 2), highlighting the conditions for the production and subsequent evolution of rain: case
III. From left to right: h + b, −∂x u and r . Non-dimensional simulation details: same as Fig. 7.

than in the smaller updraft associated with the left-propagating
gravity wave.

The Rossby adjustment scenario (Blumen, 1972; Arakawa,
1997) describes how an initial momentum imbalance adjusts
to a state of geostrophic balance between the pressure gradient
and rotation. Shallow water flow in perfect geostrophic balance
satisfies (to leading order with quadratic terms neglected):

g∂x h − f v = 0 and u = 0. (21)

In the standard shallow water theory, the geostrophic mean state
(i.e. g∂x h ≈ f v) is rapidly achieved via the emission of gravity
waves (in some cases forming shocks) from the jet core (Bouchut
et al., 2004). The shift from large- to convective-scale NWP is
in some sense a shift from balanced to unbalanced dynamics.
Traditional DA systems developed for large-scale NWP exploit
the fact the mid-latitude dynamics at the synoptic scale are close
to geostrophic and hydrostatic balance. However, this balance
is no longer manifest at smaller scales where rotation no longer
dominates and vertical accelerations modulate the flow. Hence,
an interesting point here, in the context of convective-scale dy-
namics and DA, is the disruption of these large-scale balances
in the model. By construction of the effective pressure (3a), and
hence its gradient, a breakdown of the balance (21) is to be
expected in cases II and III, and the numerical results verify this.
The top row of Fig. 6 plots the difference (21) as a function of
space and time for the three cases, illustrating where a state close
to geostrophic balance is achieved (light shading) and where this
balance is broken (deep shading); subsequent rows show profiles
of f v and g∂x h at different times.

In case I, the height field adjusts by emitting shocks from
the jet core and quickly approaches the expected balanced state
with the Coriolis acceleration f v. Bouchut et al. (2004) note that

oscillations may persist for some time in the jet core. Exceedance
of the first threshold causes the fluid in that region to rise and
instigates deep convection. The gradient of the height field is
severely altered and so we see the breakdown of geostrophic
balance in the jet (case II: Fig. 6, middle column). The same is
true for case III – the height field is qualitatively similar to case II
and thus geostrophic balance is not achieved. The leftward prop-
agation of the gravity wave is also manifest here from t = 0.5
as a region far from geostrophic balance.

The modRSW model thus exhibits a range of dynamics in
which flow is far from geostrophic in the presence of convection
whilst remaining ‘classical’ in the shallow water sense in non-
convecting and non-precipitating regions. The breakdown of
such balance principles is a fundamental feature of convective-
scale dynamics and is therefore a desirable feature of the model
and its subsequent use in idealized DA experiments.

4.2. Flow over topography

We consider non-rotating (infinite Rossby number) flow over an
isolated parabolic ridge defined by:

b(x) =

⎧⎪⎨⎪⎩bc

(
1 −

(
x−x p

a

)2
)

, for |x − x p| ≤ a;
0, otherwise;

(22)

where bc is the height of the hill crest, a is the hill width parame-
ter and x p its location in the domain. Such flow over topography
has been extensively researched (see, e.g. Baines, 1998) and is
often used as a test case in numerical studies owing to the range of
dynamics (dependent on Froude number Fr), including shocks,
and the existence of analytical non-trivial steady-state solutions.
Here, we consider supercritical flow with Fr = 2. In this regime,
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Fig. 9. Same as Fig. 7 but with two orographic ridges: bc = 0.4, a = 0.05, and (x p1 , x p2 ) = (0.0875, 0.2625). Non-dimensional simulation
details: same as Fig. 7.
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Fig. 10. Same as Fig. 8 but with two orographic ridges. Non-dimensional simulation details: same as Fig. 7.

the fluid depth increases over the ridge (as opposed to subcritical
flow (Fr < 1) in which the depth decreases over the ridge) and
a shock wave propagates at a height above the rest depth to the
right of the ridge. Such a set-up caters for the present purpose of
illustrating the modifications via the hierarchy of model cases as
the fluid rises naturally and exceeds the chosen thresholds above
the rest height.

The initial conditions are: h + b = 1, hu = 1, hr = hv = 0.
Since there is no rotation, the transverse velocity v is zero always
and the dynamics are purely one-dimensional in space. For stan-
dard shallow water flow (case I), the exact steady-state solution
is found by solving a third-order equation in h (Houghton and
Kasahara, 1968):

h3 +
(

b(x) − 1

2
Fr2 − 1

)
h2 + 1

2
Fr2 = 0, with hu = 1. (23)

Note that although b is a function of x , it is considered a
parameter when solving for h. This is obtained by considering
the steady-state system (i.e. (1) with v = f = 0 and ∂t (·) = 0)
and then solving for h conditional on hu = 1. For modRSW
flow, such an analytical equation for the steady-state solution
does not exist when h + b > Hc (cases II and III). However, it
is possible to derive a system of ordinary differential equations
(ODEs) in h and r and solve for their steady states for all three
cases, which can then be used as a benchmark for the numerical
PDE solution for large t for all three cases. The ODE solution
for case I matches the analytical solution (23) (not shown); see
Appendix 4 for full details.

Figure 7 shows the evolution of the free surface height h + b
and rain r for the three cases. In case I, flow over the ridge
reaches the known exact steady-state solution (red-dashed line),
thus confirming that correct solutions of the classical shallow
water model have not been violated. The ‘convection’ threshold
Hc (and later Hr ) is exceeded in two regions: (i) directly over
the ridge and (ii) downstream from the ridge where the wave

propagates to the right (cases II and III, respectively; Fig. 7), and
the long-time numerical PDE steady-state solution (black solid
line) for these cases converges to the ODE solution (red-dashed
line). As with the previous experiment, the extent of the updraft
in case III is slightly reduced owing to the c2

0r contribution to
the hu-momentum equation when r is positive. The extent of
this suppression is less than the Rossby adjustment scenario,
reflecting the value of c2

0 in this simulation. We emphasize here
that a different choice of c2

0 (and indeed α and β) leads to
different dynamics relating to the convection and precipitation.
Values chosen here are for illustrative purposes, highlighting the
modified the dynamics. When using the model for idealized DA
experiments, these parameters can be tuned to yield different
configurations as desired.

It is apparent from Fig. 7 that the wave that triggers the
downstream updraft becomes a convection-coupled wave and
subsequently propagates slower than for the standard SW flow,
as was observed in the Rossby adjustment experiment and an-
ticipated by the wave-speed analysis. Rain is produced in and
advected with the convective column as it propagates down-
stream from the ridge and slowly precipitates. Such lee-side
enhancement and propagation of deep convection downstream
from a ridge is a characteristic phenomenon of orographically
induced clouds (Houze, 1993c). Figure 8 plots Hr exceedance
and wind convergence alongside r and, as with the Rossby
adjustment scenario, illustrates the conditions required for the
production of rain. Generating rain both requires and is pro-
portional to positive wind convergence, so we see more rain
where this is greater. This corroborates the physical argument
put forward in Section 2.2 that rain is produced only when the
fluid is rising and the amount of rain is controlled by the strength
of the updraft.

Figures 9 and 10 show corresponding results with two oro-
graphic ridges. Again, the steady-state solution is achieved in all
three cases, whilst the inclusion of a second obstacle for the fluid
introduces more complex and nonlinear dynamics with multiple
rapidly evolving regions of convection and precipitation.
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5. Conclusion

We have presented an idealized fluid model, based on the rotating
SWEs and the model of WC14 for cumulus cloud dynamics,
intended for use in inexpensive DA experiments at convective
scales. Changes to the dynamics are brought about by the ex-
ceedance of two threshold heights, akin to (i) the LFC (Hc)
and (ii) the onset of precipitation (Hr ). When the fluid exceeds
these heights, the classical shallow water dynamics are altered
to include a representation of conditional instability (leading
to a convective updraft) and idealized moisture transport with
associated downdraft and precipitation effects.

The mathematical modifications to the parent equations de-
scribed herein, and the physical arguments behind the changes,
are strongly motivated by the model of WC14 but improve upon
it in two ways. First, the inclusion of a meridional velocity
component and Coriolis effects means that dynamics associ-
ated with rotating fluids are present in the model. Second and,
more importantly, the diffusion terms in WC14 have been re-
moved. The dynamics of WC14 are highly sensitive to these
diffusion terms, which are tuned to stabilize the model for a
specific set-up and are the dominant controlling factor of the
system’s dynamics. As such, the original numerical implemen-
tation is not robust to alterations to, e.g. the bottom topography,
the gridsize and model parameters, each change requiring ad
hoc tuning of the diffusion coefficients and integration time
step.

Despite these modifications, the resulting model is shown
to be (weakly) hyperbolic, thus constituting a hyperbolic sys-
tem of non-conservative PDEs. The numerical methodology of
Rhebergen et al. (2008) has been developed here for our model
and is shown to deal robustly with the threshold nature of the
NCPs, whilst well-balancedness is ensured by discretizing the
non-zero topography via the method of Audusse et al. (2004).

Classical numerical experiments in shallow water theory,
based on the Rossby geostrophic adjustment problem and non-
rotating flow over topography, have been reproduced here and
used to illustrate the modified dynamics of the model. Cru-
cially, the model reduces exactly to the standard SWEs in non-
convecting, non-precipitating regions. This is clear from the
model formulation in Equations (2)–(4), and further confirmed
by the numerical model which reproduces known shallow water
results in case I. The model also exhibits important aspects of
convective-scale dynamics relating to the disruption of large-
scale balance principles which are of particular interest from
a DA perspective (Bannister, 2010). The Rossby adjustment
scenario clearly illustrates the breakdown of geostrophic bal-
ance in the presence of convection and precipitation, while the
breakdown of hydrostatic balance is implicitly enforced by
the modified pressure when the LFC is exceeded. Furthermore,
the experiments simulated here have illustrated other features
related to convecting and precipitating weather systems, such
as the initiation of daughter cells away from the parent cell by

gravity wave propagation, and convection downstream from an
orographic ridge.

Although based on the model of WC14, the absence of arti-
ficial diffusion terms from the governing equations results in a
mathematically cleaner formulation with conservation of total
mass (‘dry’ plus ‘rain’), and a markedly different dynamical
behaviour emerges. With the addition of rotation (and conse-
quent Rossby adjustment dynamics) and analysis of steady-state
solutions for flow over topography, we have developed and
tested a robust numerical solver and investigated the model’s
distinctive dynamics in advance of its use in idealized DA
experiments.

DA research using idealized models is primarily carried out
in a so-called ‘twin’ experiment setting, whereby the same nu-
merical model is used to generate a ‘nature’ run (which acts as
a surrogate truth and is used to generate pseudo-observations)
and the forecast. Preliminary results from an idealized forecast
assimilation system demonstrate the model’s suitability for con-
ducting inexpensive experiments to evaluate DA schemes in
the presence of convection and precipitation (Kent, 2016), and
further investigations will presented elsewhere. A basic fore-
cast assimilation framework (briefly comprising scripts for the
numerical solver, idealized forecast assimilation routines, plot-
ting and data analysis) is deposited online and is free to access
(Kent, 2017). In particular, it is hoped that the numerical solver
arising from this study provides a useful tool to the community
and facilitates other studies in the field of convective-scale DA
research.
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Appendix 1. Non-dimensionalized modRSW
equations

It is useful to work with the non-dimensionalized equations.
This parameterizes the problem, yielding non-dimensional pa-
rameters that characterize the modelled system and embody
its dynamics. The dimensionless coordinates and variables are
related to their dimensional counterparts by characteristic scales
L0, H0 and V0:

x = L0 x̂, (u, v) = V0(û, v̂),

(h, b, Hc,r ) = H0(ĥ, b̂, Ĥc,r ), r = r̂ . (A1)

Then the dimensionless time coordinate and relevant derivatives
are:

t = T0 t̂ = L0

V0
t̂, ∂x = 1

L0
∂x̂ , ∂t = V0

L0
∂t̂ , ∂h = 1

H0
∂ĥ .

(A2)
Substituting these into the model equations and defining the non-
dimensional effective pressure p = gH2

0 p̂ yields the following
dimensionless system (with the hats dropped):

∂t h + ∂x (hu) = 0, (A3a)

∂t (hu) + ∂x (hu2 + P) + Q∂x b + hc̃0
2∂xr − 1

Ro
hv = 0,

(A3b)

∂t (hv) + ∂x (huv) + 1

Ro
hu = 0, (A3c)

∂t (hr) + ∂x (hur) + hβ̃∂x u + α̃hr = 0, (A3d)

where:

P(h, b) = 1

2Fr2

[
h2 + ((Hc − b)2 − h2)�(h + b − Hc)

]
,

(A4)

Q(h, b) = 1

Fr2
[h + (Hc − b − h)�(h + b − Hc)] , (A5)

β̃ = β�(h + b − Hr )�(−∂x u), (A6)

�(x) = 1 if x > 0; and 0 if x ≤ 0, and the following parame-
ters are introduced:

Fr = V0√
gH0

, Ro = V0

f L0
, c̃0

2 = c2
0

V 2
0

, α̃ = L0

V0
α.

(A7)
The Rossby number, Ro and Froude number, Fr, control the
strength of rotation and stratification, respectively, compared to
the inertial term uuu · ∇uuu.

Appendix 2. Numerics: discretizing the
topographic source term

In Audusse et al. (2004), a well-balanced scheme is derived
for solving the SWEs with non-flat topography. The two main
developments to achieve this are: (i) using reconstructed com-
putational states U−

k and U+
k to the left and right of an element

edge in the numerical flux instead of cell-centred values Uk−1
and Uk ; and (ii) discretizing the topographic source term by
considering the leading order balancing requirement for nearly
hydrostatic flows. A summary is given here; for full details the
reader is referred to Section 2 of Audusse et al. (2004).

In the asymptotic limit for nearly hydrostatic flows the lead-
ing order fluid depth h adjusts so as to satisfy the balance of
momentum flux and momentum source terms:

∂x (p(h)) = ∂x

(
1

2
gh2

)
= −gh∂x b. (B1)
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This also ensures that the ‘lake at rest’ property (i.e. the trivial
steady-state solution u = 0 and h + b = constant) is satisfied.
Integrating over element Kk yields an approximation to the
topographic source term in the form of a flux:

−
∫

Kk

gh∂x bdx = 1

2
g(h−

k+1)2 − 1

2
g(h+

k )2

= p(h−
k+1) − p(h+

k ). (B2)

The reconstructions for the leading order fluid depth:

h−
k = hk−1 + bk−1 − max(bk−1, bk), (B3a)

h+
k = hk + bk − max(bk−1, bk), (B3b)

are truncated to ensure non-negativity of the depth: h±
k =

max(0, h±
k ). Note that a modifed CFL condition imposes a time

step restriction also required to ensure non-negativity. Thus, the
reconstructed computational states U±

k to the left and right of
node xk are:

U−
k =

⎡⎢⎢⎢⎣
h−

k
h−

k uk−1
h−

k vk−1
h−

k rk−1

⎤⎥⎥⎥⎦ , U+
k =

⎡⎢⎢⎢⎣
h+

k
h+

k uk
h+

k vk
h+

k rk

⎤⎥⎥⎥⎦ . (B4)

The fluxes in (13) and (14) are evaluated using these reconstruc-
tions and the discretized topographic source term S B

k in (17) is:

S B
k =

⎡⎢⎢⎢⎣
0

P(h−
k+1, b−

k+1) − P(h+
k , b+

k )

0
0

⎤⎥⎥⎥⎦ , (B5)

for P defined in (3).

Appendix 3. Numerics: NCP flux derivation

Here, we derive fully the NCPflux (18) and (19) for the modRSW
model (2). A linear Lipschitz continuous path φφφ : [0, 1] →
R

4 is defined which connects the left state to the right state:
φφφ(τ ;UUU L ,UUU R) = UUU L + τ(UUU R − UUU L ). The model states are
approximated elementwise by piecewise constant (DG0) basis
functions: UUU ≈ UUU h = Uk(t). The average of a quantity is
denoted by {{·}} = 1

2 ((·)L + (·)R) and the jump of a quantity
across a node is denoted by �·� = (·)L − (·)R . For hyperbolic
systems with NCPs of the form (5), the NCP numerical flux is
(Equation (44) in Rhebergen et al., 2008):

P NC
i (U L , U R)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F L

i − 1
2

∫ 1
0 Gi j (φφφ)

∂φ j
∂τ

dτ, if SL > 0;
{{Fi }} + 1

2 [(SL + SR)U∗
i − SLU L

i − SRU R
i ],

if SL < 0 < SR;
F R

i + 1
2

∫ 1
0 Gi j (φφφ)

∂φ j
∂τ

dτ, if SR < 0;
(C1)

where SL and SR are the fastest left- and right-moving signal
velocities in the solution of the Riemann problem, and the Rie-
mann ‘star-state’ U∗

i is given by:

U∗
i = SRU R

i − SLU L
i + F L

i − F R
i

SR − SL

− 1

SR − SL

∫ 1

0
Gi j (φφφ)

∂φ j

∂τ
dτ. (C2)

The integrands involve calculations from the rows of the ‘non-
conservative’ GGG matrix in Equation (6). We define P = P(h, b)

and Q = Q(h, b) in terms of the Heaviside function (�(x) =
1 if x > 0; and 0 if x ≤ 0):

P(h, b) = 1

2
g
[
h2 + ((Hc − b)2 − h2)�(h + b − Hc)

]
(C3a)

Q(h, b) = g [h + (Hc − b − h)�(h + b − Hc)] (C3b)

and use the following properties of � in the derivation:

d

dτ
[τ�(τ)] = �(τ),

d

dτ

[
1

2
τ2�(τ)

]
= τ�(τ). (C4)

For i = 1, 3, the NCPs are zero since the first and third rows of
the matrix GGG have zero entries only. In this case the integrals in
the flux (C1) are zero. Thus, when SL > 0 and SR < 0 the flux
is P NC

i = F L
i and P NC

i = F R
i , respectively. The middle state,

SL < 0 < SR , requires further manipulation after substituting
(C2) into (C1):

P NC
i = {{Fi }} + 1

2
[(SL + SR)U∗

i − SLU L
i − SRU R

i ]

= 1

2
(F L

i + F R
i ) + 1

2

×
[
(SL + SR)

SRU R
i − SLU L

i + F L
i − F R

i

SR − SL

− SLU L
i − SRU R

i

]
= 1

2

1

SR − SL[
(F L

i + F R
i )(SR − SL ) + (SL + SR)(SRU R

i
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− SLU L
i + F L

i − F R
i )

− (SR − SL )(SLU L
i + SRU R

i )

]
= F L

i SR − F R
i SL + SL SR(U R

i − U L
i )

SR − SL
=: F H L L

i .

(C5)

The NCP flux reduces to the well-known HLL flux for conser-
vative systems, as alluded to in Section 3.

For i = 2, the integrand to be calculated is:

G2 j (φφφ)
∂φ j

∂τ
= G21(φφφ)

∂φ1

∂τ
+ G24(φφφ)

∂φ4

∂τ

= −c2
0(r L + τ(r R − r L ))(h R − hL )

+ c2
0(h Rr R − hLr L )

= c2
0

(
�h�(r L − τ�r�) − �hr�

)
, (C6)

where we recall that �·� denotes the jump of a quantity across a
node, �·� = (·)L − (·)R . Integrating over τ ∈ [0, 1] yields the
hu component of VVV NC (19):

∫ 1

0

(
c2

0�h�(r L − τ�r�) − c2
0�hr�

)
dτ

= c2
0�h�

∫ 1

0
(r L − τ�r�)dτ − c2

0�hr�

∫ 1

0
dτ

= c2
0

(
�h�(r L + 1

2
(r R − r L )) − �hr�

)
= −c2

0�r�{{h}}. (C7)

The expression to be inserted in the flux function (C1) then
becomes:

∫ 1

0
G2 j (φφφ)

∂φ j

∂τ
dτ = −c2

0�r�{{h}}. (C8)

Thus, for SL > 0, the numerical flux is:

P NC
2 = F L

2 + 1

2
c2

0�r�{{h}}, (C9)

while for SR < 0:

P NC
2 = F R

2 − 1

2
c2

0�r�{{h}}. (C10)

Noting from (C5) that the NCP flux for SL < 0 < SR reduces
to the HLL flux when the integrand is zero, an expression is
obtained from (C1) and (C2) for the cases when there are non-
zero NCPs:

P NC
2 = F H L L

2 − 1

2

SL + SR

SR − SL

∫ 1

0
G2 j (φφφ)

∂φ j

∂τ
dτ

= F H L L
2 − 1

2

SL + SR

SR − SL

(
− c2

0�r�{{h}}
)

. (C11)

For i = 4, the integrand includes the β̃ term, the switch depen-
dent on model variables h, u and topography b. We have that:

G4 j (φφφ)
∂φ j

∂τ
= G41(φφφ)

∂φ1

∂τ
+ G42(φφφ)

∂φ2

∂τ

= −β̃
(

uL + τ(u R − uL ))(h R − hL )
)

+ β̃(h Ru R − hL uL )

= β̃
(
�h�(uL + τ(u R − uL )) − �hu�

)
, (C12)

and so the integral to be computed in the flux is:

∫ 1

0
G4 j (φφφ)

∂φ j

∂τ
dτ

=
∫ 1

0
β̃
(
�h�(uL + τ(u R − uL )) − �hu�

)
dτ

= �h�

∫ 1

0
β̃(uL + τ(u R − uL ))dτ − �hu�

∫ 1

0
β̃dτ

=
(
�h�uL − �hu�

) ∫ 1

0
β̃dτ − �h��u�

∫ 1

0
τ β̃dτ. (C13)

To proceed, we set z = h+b and consider β̃ defined by Equation
(4) but with z = zL + τ(z R − zL ) and u = uL + τ(u R − uL ),
so that β̃ is a function of τ :

β̃ = β�(zL + τ(z R − zL ) − Hr )�(−∂x u). (C14)

It is apparent that �(−∂x u) depends on the end points of φ only,
and is therefore independent of τ . If uL < u R then ∂x u > 0,
and if uL > u R then ∂x u < 0. Thus, �(−∂x u) is equivalent to
�(uL − u R) = �(�u�). It should be noted that this argument
is valid for piecewise constant numerical profiles only, i.e. cell
averages. A scheme that approximates continuous profiles using
means and slopes would require greater consideration.
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First, we compute the integral of β̃ over [0, 1]:

∫ 1

0
β̃dτ =

∫ 1

0
β�(zL + τ(z R − zL ) − Hr )�(−∂x u)dτ

= β�(�u�)

∫ 1

0
�(zL + τ(z R − zL ) − Hr )dτ

= β�(�u�)

∫ 1

0
�(Xτ + Y )dτ︸ ︷︷ ︸

Iβ

, (C15)

where X = z R − zL = −�z� and Y = zL − Hr . When X = 0,
this integral is trivial:

∫ 1

0
β̃dτ = β�(�u�)

∫ 1

0
�(Y )dτ = β�(�u�)�(Y ). (C16)

For X 
= 0, a change of variable ξ = Xτ + Y and integration
yields:

∫ 1

0
β̃dτ = β

X
�(�u�)

∫ X+Y

Y
�(ξ)dξ

= β

X
�(�u�) [ξ�(ξ)]X+Y

Y

= β

X
�(�u�) [(X + Y )�(X + Y ) − Y�(Y )] . (C17)

Hence,

∫ 1

0
β̃dτ = β�(�u�)Iβ, where:

Iβ =
{

�(Y ), if X = 0;
(X+Y )

X �(X + Y ) − Y
X �(Y ) if X 
= 0.

(C18)

Intuitively, this makes sense: when X + Y < 0 and Y < 0
(i.e. z R < Hr and zL < Hr ), the rain threshold has not been
exceeded, meaning no rain is produced, and the above integral
is zero.

Proceeding in the same manner, we compute the integral of
the product τ β̃ over [0, 1]:

∫ 1

0
τ β̃dτ = β�(�u�)

∫ 1

0
τ�(Xτ + Y )dτ︸ ︷︷ ︸

Iτβ

. (C19)

Again, when X = 0, this integral is trivial:

Iτβ =
∫ 1

0
τ�(Y )dτ = 1

2
�(Y ). (C20)

For X 
= 0, a change of variable ξ = Xτ + Y and integration
yields:

Iτβ = 1

X2

∫ X+Y

Y
(ξ − Y )�(ξ)dξ

= 1

X2

[
1

2
ξ2�(ξ) − Y ξ�(ξ)

]X+Y

Y
, using (C4)

= 1

2
X−2

[(
X2 − Y 2

)
�(X + Y ) + Y 2�(Y )

]
. (C21)

Hence,

∫ 1

0
τ β̃dτ = β�(�u�)Iτβ , where:

Iτβ = 1

2

{
�(Y ), if X = 0;
X−2[(X2 − Y 2)�(X + Y ) + Y 2�(Y )], if X 
= 0.

(C22)

Equation (C13) now reads:

∫ 1

0
G4 j (φφφ)

∂φ j

∂τ
dτ

=
(
�h�uL − �hu�

) ∫ 1

0
β̃dτ − �h��u�

∫ 1

0
τ β̃dτ

= β�(�u�)
(
(�h�uL − �hu�)Iβ − �h��u�Iτβ

)
= −β�u��(�u�)

(
h R Iβ + �h�Iτβ

)
. (C23)

Thus, for SL > 0, the numerical flux is:

P NC
4 = F L

4 + 1

2
β�u��(�u�)

(
h R Iβ + �h�Iτβ

)
, (C24)

while for SR < 0:

P NC
4 = F R

4 − 1

2
β�u��(�u�)

(
h R Iβ + �h�Iτβ

)
, (C25)

and finally for SL < 0 < SR :

P NC
4 = F H L L

4 + 1

2

SL + SR

SR − SL
β�u��(�u�)

(
h R Iβ + �h�Iτβ

)
.

(C26)
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This completes the calculations; the NCP flux in vector form is
summarized as follows:

P NC (U L , U R)

=

⎧⎪⎪⎨⎪⎪⎩
FFF L − 1

2 VVV NC , if SL > 0;
FFF H L L − 1

2
SL+SR

SR−SL VVV NC , if SL < 0 < SR;
FFF R + 1

2 VVV NC , if SR < 0;
(C27)

where FFF H L L is the HLL numerical flux:

FFF H L L = FFF L SR − FFF R SL + SL SR(U R − U L )

SR − SL
, (C28)

and VVV NC arises due to the NCPs:

VVV NC =

⎡⎢⎢⎢⎣
0

−c2
0�r�{{h}}

0

−β�u��(�u�)
(

h R Iβ + �h�Iτβ
)
⎤⎥⎥⎥⎦ . (C29)

Appendix 4. Numerics: steady-state modRSW
solutions

Here, we derive a system of ODEs in h and r to be solved for
non-trivial steady states for flow over topography. To facilitate
this, we consider a system of equations for h, u, and r :

∂t h + ∂x (hu) = 0, (D1a)

∂t u + u∂x u + ∂x = 0, (D1b)

∂t r + u∂xr + β̃∂x u + αr = 0, (D1c)

where:

 =
{

c + c2
0r, for h + b > Hc,

g(h + b) + c2
0r, otherwise.

(D2)

Steady-state solutions are found by considering time-
independent flow (∂t (·) = 0):

∂x (hu) = 0, u∂x u + ∂x = 0, u∂xr + β̃∂x u + αr = 0,

(D3a)

The first of these steady-state equations gives immediately a
solution of u in terms of h:

∂x (hu) = 0 =⇒ hu = K , for constant K =⇒ u = K

h
,

(D4)
which is then substituted into the remaining equations, yielding
a system of 2 ODEs to solve for h and r . Using (D4) and noting
that:

∂x u = ∂x

(
K

h

)
= − K

h2
∂x h, (D5)

the system in terms of h and r reads:

− K 2

h3
∂x h + ∂x = 0, (D6a)

K

h
∂xr − K

h2
β̃∂x h + αr = 0. (D6b)

We seek a system of the form MMMXXX ′ = YYY , where XXX = (h, r)T ,
prime denotes derivative with respect to x , and MMM ∈ R

2×2, YYY ∈
R

2 are given from the equations set. If MMM is non-singular (and
hence invertible), then we can solve XXX ′ = MMM−1YYY numerically
for XXX using, e.g. a simple finite difference scheme.

The system (D6) is expanded as follows:

[
− K 2

h3
+ g|Hc

]
∂x h +

[
c2

0

]
∂xr = −

[
g|Hc∂x b

]
, (D7a)[K

h

]
∂xr −

[ K

h2
β̃
]
∂x h = −

[
αr
]
, (D7b)

where g|Hc = g if h +b ≤ Hc and zero otherwise and the terms
in square brackets are components of MMM and YYY :

MMM =
[
− K 2

h3 + g|Hc c2
0

− K
h2 β̃ K

h

]
, YYY =

[
−g|Hc∂x b

−αr

]
. (D8)

The β̃ term (given in (4)) requires further manipulation; re-
writing in terms of the Heaviside function we have:

β̃ = β�(−∂x u)�(h + b − Hr )

= β�(K/h2∂x h)�(h + b − Hr ), using (D4),

= β�(∂x h)�(h + b − Hr ). (D9)

Thus, the system reads XXX ′ = f (XXX) where f (XXX) = MMM−1YYY and is
solved using an explicit forward Euler finite difference scheme:
XXX j+1 = XXX j +�x f (XXX j , XXX j−1). The value at j −1 is required to
compute the Heaviside of the height gradient in (D9); all other
components in f (XXX) = MMM−1YYY are evaluated using values at
level j . To start marching through space, note that XXX1 = XXX2, so
that β̃ = 0. Then proceed as usual for j ≥ 1.
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