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Running title - Stromal morphometry in stage II colorectal cancer 

 

Abstract 

Introduction: The biological importance of tumour-associated stroma is increasingly apparent, yet 

clinical utility remains ill-defined. In stage-II / Dukes B colorectal cancer (CRC), clinical biomarkers are 

urgently required to direct therapeutic options. We report here prognostic/predictive analyses, and 

molecular associations, of stromal morphometric quantification in the Quick and Simple and Reliable 

(QUASAR) trial of CRC. Materials and methods: Relative proportions of tumour epithelium (PoT) or 

stroma (PoS) were morphometrically quantified using digitised haematoxylin and eosin sections 

derived from 1,800 patients enrolled in QUASAR which randomised 3,239 (91% stage II) CRC patients 

between adjuvant fluorouracil/folinic acid (FUFA) chemotherapy and observation. The 

prognostic/predictive value of PoT/PoS measures were determined by stratified log-rank analyses. 

Results: High tumour stroma (ш50%) was associated with increased recurrence risk: 31.3% (143/457) 

recurrence for ш50% versus 21.9% (294/1,343) if <50% [Rate ratio (RR)=1.62; 95%CI 1.30-2.02, 

p<0.0001)]. For stromal proportions of ш65%, 40% (46/115) of patients had recurrent disease within 

10 years. The adverse prognostic effect of high stroma was independent of established prognostic 

variables, and maintained in stage II / Dukes B patients (RR=1.62; 95%CI=1.26-2.08; p=0.0002). KRAS 

mutation in the presence of high stroma augmented recurrence risk (RR=2.93; 95%CI=1.87-4.59; 

p=0.0005). Stromal morphometry did not predict response to FUFA chemotherapy. Discussion: 

Simple digital morphometry applied to a single representative H&E section identifies CRC patients 

with over 50% higher risk of disease recurrence. This technique can reliably partition patients into 

sub-populations with differential risks of tumour recurrence in a simple and cost-effective manner. 

Further prospective validation is warranted. 
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INTRODUCTION 

The use of adjuvant chemotherapy in colorectal cancer (CRC) following presumptive curative 

resection is directed by high-quality pathological assessment.
1-3

 Detection of tumour within lymph 

nodes (stage III disease) is generally regarded as an absolute indication for adjuvant therapy
1,4,5

 

because of significant clinical benefit (~10% absolute improvement in overall survival [OS].
6,7

 The 

value of adjuvant chemotherapy in locally advanced, node-negative (stage II) disease is less clear 

because the more modest benefits (~4% improvement in OS),
8
 may not outweigh the toxicity and 

patient inconvenience.
1,9,10

  

 

Thus, adjuvant chemotherapy is generally restricted to a minority of stage II patients with �high-risk� 

pathological features including extra-mural vascular and/or peritoneal invasion.
1,11,12

 Such features 

impart a recurrence risk of similar magnitude to that associated with lymph node metastasis
2
 and so 

serve to identify stage II patients who may derive worthwhile benefit from adjuvant regimens.
1,4,5

 A 

limitation of this approach is that identification of such features is subjective with variability in 

reporting quality and reproducibility.
3,13

 Also, only a minority of recurrences among these �high-risk� 
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patients will be prevented by �appropriate� chemotherapy,
8,10,14

 and it is not currently possible to 

identify who is more or less likely to benefit.
15

 Consequently, identification and clinical validation of 

effective prognostic and, in particular, predictive biological indicators would help facilitate 

therapeutic decisions.  

 

Mismatch repair (MMR) / microsatellite instability (MSI) testing can identify CRC patients at a 

reduced risk of recurrence for whom adjuvant therapy is usually not indicated.
14,16-18

 However, only a 

minority of CRC patients, 12-15% at most, demonstrate MSI and/or attenuated expression of one or 

more MMR proteins.
16,17

 The Oncotype DX
® 

recurrence score has been prospectively validated for 

assessment of recurrence risk in post-operative stage II colon cancer patients but is of only modest 

prognostic value and is not predictive of chemotherapy benefit.
19

 Widely applicable biomarkers are 

thus required, particularly ones that negate the need for expensive molecular testing,
20-23

 for cost-

effective application in a diverse, non-specialist setting. 

 

Associations between disease recurrence and cancer-associated stromal gene
23-27

 or protein
28-35

 

expression has been reported in a variety of malignant conditions with some evidence of differential 

chemotherapeutic response defined by stromal gene expression profiles.
36-38

  In CRC, the potential 

prognostic value of stromal gene expressional analysis is highlighted by inclusion in the Oncotype 

DX
® 

colon recurrence score.
23

 Whilst the majority of studies have been performed at the 

transcriptomic or proteomic level, several studies indicate that,  using established mathematical 

principles,
39-42

 simple, inexpensive, visual evaluation of tumour composition
43-47

 or stromal 

phenotype
48,49

 may yield equally valuable prognostic information.  
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Studies by Mesker et al,
50,51

, West et al,
52

 and Huijbers et al,
47

 suggest that simple visual
47,50,51

 or 

morphometric
52

 assessment of CRCs provides independent prognostic information, a premise 

recently tested in the VICTOR CRC trial.
47

 To improve on the reproducibility of these visual 

estimation methods described by Huijbers et al (2013),
47

 we have developed a quantitative 

compositional analysis technique utilising digital pathology.
53

 This methodology, however, has so far 

only been tested in a small cohort of 145 all-stage CRC patients.
52

 

 

Given biological plausibility, existing literature, and the recent recognition of CRCs with 

mesenchymal/stroma rich gene signatures as biologically distinct and clinically significant tumour 

sub-populations
54

, we hypothesise that quantitative tumour-stromal compositional analysis might 

represent a simple yet powerful methodology to determine risk of disease recurrence and 

differential response to adjuvant chemotherapy in CRC. We report here results of a test of this 

hypothesis utilising digitised material and clinicopathological data from the QUASAR trial, which 

randomised 3,239 predominantly stage II (91%) CRC patients between 6 months of fluorouracil and 

folinic acid (FUFA) chemotherapy and observation.
8
  

 

MATERIALS AND METHODS  

Ethics 

Ethical approval was obtained from both the West Midlands Multi-Centre Research Ethics 

Committee (JR/MT/MREC/02/7/56a) and the Northern and Yorkshire Research Ethics Committee 

(08/H0903/62).  
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Patients 

The design and details of QUASAR (ISRCTN82375386) are reported elsewhere.
8
 Briefly, 3,239 

patients (post-curative resection for colon or rectal cancer, 91% stage II disease) were randomized to 

FUFA chemotherapy (n=1622) or observation only (n=1617) with chemotherapy considered in the 

event of recurrence.  

 

Study design 

Datasets were randomly partitioned into exploratory and validatory groups (figure 1). For initial 

analyses, an exploratory dataset (n=399), representative of the entire study cohort, was used to 

develop a priori prognostic
50-52

 and predictive hypotheses using data derived from 3 specific 

analytical tumour regions (figure 2). Independent validation was performed using a separate 

validatory patient cohort dataset (n=1,800). All pathological and laboratory assessments were 

undertaken blind to the patients� treatment allocation and clinical outcomes. 

Clinicopathological data 

Pathological data (TNM 5) were abstracted by central review of anonymised histopathological 

reports collected from local units.  

 

Morphometric analysis of tumour components 

One tumour block per patient was selected for analyses. When more than one block was available, 

blocks were chosen to optimally represent the area of maximal tumour infiltration of the bowel wall. 

Histological sections (5ʅm thick) were cut from selected tumour blocks and stained with 

haematoxylin and eosin (H&E) using standard methodologies.  
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H&E sections were digitised at x20 magnification (0.46 ʅm per pixel) using an automated scanning 

system (Aperio XT, Aperio Technologies, Vista, CA, USA). Slide viewing for quality control (QC) and all 

subsequent quantification processes were performed using open source slide viewing software 

(Aperio ImageScope v10.2.2.2352, Aperio Technologies, Vista, CA, USA). Following image QC, and 

methodological and statistical validation using existing datasets, a systematic random sample of 50 

points was superimposed on selected areas (figure 2) using web-based virtual graticule software 

(RandomSpot, University of Leeds, Leeds, UK).  

 

For exploratory analyses (figure 1), three areas from each selected H&E section were identified for 

random point grid application (figure 2). The luminal tumour area (LT) was defined as a 9mm
2
 area of 

greatest tumour epithelial cell density at the luminal surface of the tumour (figure 2A). The highest 

tumour density (HT) area was defined as a 9mm
2
 area of highest tumour cell density (if not located 

at the luminal surface); figure 2B. The whole tumour (WT) area included the total area of tumour 

infiltration extending from the luminal surface and encompassing the lateral and deep invasive 

fronts of tumour (figure 2C). For 9mm
2
 regions, large areas of necrosis and mucin were avoided if 

possible. 

 

Tumour morphometry was determined by counting the frequency of occurrence of specific 

phenotypic categories underlying each of the 50 points. The following categories were used; 1: 

tumour epithelium, 2: tumour-associated stroma, 3: necrosis, 4: vessel, 5: inflammation, 6: tumour 

lumen, 7: mucin, 8: muscle and 0: non-informative / unclassifiable. Tumour morphometry was 

performed by technical staff under direct supervision of experienced pathologists (GH / PQ).  

 

 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

For final outcome analyses, relative tumour composition was expressed as a percentage of total 

informative points for tumour epithelium (PoT � phenotype category 1 only) or stroma (PoS � 

phenotype category 2 only) or other categories (phenotype categories 3-8). 

 

Determination of morphometric stratification cut-off points 

For prognostic / predictive analyses, we applied the �pool adjacent violators� algorithm to the 

continuous variables PoT or PoS to determine points where the relationship between the measured 

variable (e.g. stroma) and the recurrence risk demonstrated a distinct change
55-59

. Analyses were 

performed (by KH/RG) across all tumour / stromal measurements derived from each area within the 

training set (n=399) indicating the most appropriate cut-off values to stratify scores into two (<50%, 

ш50%) or four groups (<35%, 35-49%, 50-64%, ш65%).  

 

Statistics and bioinformatics 

The prognostic/predictive value of PoT/PoS measures were determined by stratified log-rank 

analyses.
60

 For analyses of the prognostic value of PoT or PoS, recurrence was used as outcome 

measure. Recurrence is a reliable marker of the natural history of the cancer and correlates well with 

the effects of adjuvant chemotherapy on survival.
61

 Recurrence was calculated as the time elapsed 

from randomisation to recurrence with censoring at last contact with patient or death without 

recurrence. For assessment of the prognostic value of variables, recurrence rates over the whole 

follow-up period were analysed. Because adjuvant FU/FA reduces the risk of recurrence only in the 

first two years following randomisation with no further benefit, or loss of benefit, thereafter,
8
 

investigations of differential treatment efficacy within subgroups included recurrences over the first 

two years only. Analyses were generally performed using SAS version 9.2 (SAS Institute Inc., Cary, 

NC) by biostatisticians within the Birmingham Clinical Trials Unit, University of Birmingham, UK (KH) 
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and The Nuffield Department of Population Health, University of Oxford, Oxford, UK (RG). 

Integrity of scoring data was validated by inter-observer comparison analysis of scores generated by 

2 independent observers using kappa statistics on 2,975 individual data points. Inter-observer 

variability analyses were discontinued after 10 cases because of extremely high inter-observer 

agreement (see below).  Subsequent to inter-observer analyses, all generated data were visually 

screened by experienced pathologists (GH/PQ).  

 

RESULTS  

Tumour tissue was obtained for 75% (2,439/3,239) of QUASAR participants with material 

from 2,199 patients suitable for analysis (figure 1). Comparisons of morphometry scores 

generated by two independent observers on 2,975 informative data points confirmed high 

agreement of 99.1%, Cohen�s kappa=0.986 (95%CI=0.985-0.990; p<0.001). 

Exploratory dataset analyses 

Analyses of the 399-patient exploratory dataset provided no indication of any 

significant association between tumour or stroma density and chemotherapeutic 

efficacy (Supporting information, figure S1); prognostic analyses of the exploratory 

dataset therefore included both treated and control patients. A higher percentage of 

stroma cells was associated with worse prognosis in the exploratory data set, 

particularly in the ‘highest’ and ‘whole’ stroma categorisations (Supporting 

information, figures S2-S7). A lower percentage of tumour cells was also associated 

with worse prognosis in the exploratory data set, particularly in the ‘highest’ and 

‘lumenal’ tumour categorisation. 
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Validatory dataset analyses 

Analyses of the 1800-patient validatory dataset also provided little evidence for any association 

between tumour or stroma density and chemotherapy efficacy (see below). Therefore, prognostic 

analyses of the validatory data again included both chemotherapy treated and control patients. 

 

There was a highly significant trend of increasing 10-year recurrence risk with increasing stromal 

proportions in the whole tumour area in the test data set (log-rank p<0.0001; figure 3). By contrast, 

other stromal and tumour scores were only weakly associated with worse prognosis (Supporting 

information, figures S8-S12). This highly significant association in the whole stroma categorisation is 

consistent with the exploratory data analyses where the association was strongest in the whole and 

highest stroma categories, whereas the lack of association in the highest stroma category is not. 

  

For stromal proportions of ш65% in the whole tumour region, the 10-year risk of recurrent disease 

was 43% compared to 25% for tumours with <50% scores. The adverse prognostic impact of higher 

whole tumour PoS scores remained highly significant (p=0.0002) in analyses restricted to stage II / 

Dukes B patients only (figure 4). Notably, there was no association between the pattern of 

recurrence (local versus distant) and increasing stromal proportions within the whole tumour region 

(p=0.105). 

 

The distribution of PoS risk categories derived from the WT region differed significantly by tumour 

site, stage, histological subtype and MMR phenotype (table 1). There were significantly more 

tumours classified as PoS ш65% in the rectum than colon: 11.4% (43/377) compared to 5.1% 

(72/1,423), p<0.0001. There were more low (<35%) PoS scores in Dukes� B than Dukes� C lesions 

41.1% (658/1,603) versus 26.7% (43/161), p=0.002. Predictably, there was a lower frequency of PoS 

ш65% lesions in mucinous tumours when compared to adenocarcinomas 1.9% (3/162) versus 6.4% 
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(95/1,473) respectively, p<0.0001). The weak (p=0.012) association of lower scores in the dMMR 

phenotype is also unsurprising given the previously reported interactions between dMMR, 

anatomical location and mucinous and medullary histology. 

  

To investigate whether confounding with other pathological prognostic variables might at least 

partly explain the association of high stroma counts with recurrence, we undertook analyses 

stratified by these other variables using a binary dichotomisation (<50% low, ш50% high) of PoS 

scores.  The risk of recurrence was over 50% higher in the 25% (457/1,800) of patients with high 

(ш50%) PoS scores than in patients with low (<50%) PoS scores: [Rate ratio (RR)=1.61; 95%CI 1.30-

2.00, p<0.0001)]; figure 5. Analyses stratified by chemotherapy allocation, tumour site and stage did 

not indicate any significant variability in the prognostic importance of stroma. Nor did any other of 

the variables tested except for the analyses stratified by KRAS mutation status where significant 

(p=0.001) heterogeneity was seen with a stronger prognostic association seen in KRAS mutant 

tumours (RR=2.93; 95%CI=1.85-2.55) than in KRAS wild-type tumours (RR=1.14; 95%CI=0.60-1.62), 

(figure 5).  

 

We investigated any differential chemotherapeutic response by PoS measurements using 2 year 

disease recurrence as outcome (figure 6). There were one third fewer recurrences with 

chemotherapy than control within the 2 year post-randomisation period [unstratified analyses; 

RR=0.64; 95%CI=0.49-0.84; p=0.001]. Analyses sub-stratified by increasing WT PoS measures, failed 

to demonstrate a significant interaction between chemotherapy benefit and PoS measurements 

(ptrend=0.22; figure 6). 
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Unexpectedly, the beneficial effect of chemotherapy was as strong in analyses of all recurrences as 

in analyses of 2-year recurrence (Supporting information, figures S13-S16): 20.8% (183/880) of 

adjuvant treated patients recurred at 10 years compared to 27.6% (254/920) of untreated patients 

[RR=0.71; 95%CI=0.59-0.85; p=0.0003]. There was a suggestion (ptrend=0.039) that the reduction in 

10-year recurrence with chemotherapy increased with increasing stromal proportions (PoS) in the 

WT region (Supporting information, figures S13-S16).  

 

Analysis of other prognostic variables were performed to compare the prognostic strength of these 

variables with that of stroma count, and to determine if their prognostic value was independent of 

stromal count. (Supporting information, figures S17-S23) A borderline significant interaction 

between stroma and Dukes stage (ptrend=0.032) was seen with no apparent prognostic effect of nodal 

status in tumours with ш65% PoS values. No interactions between TNM T-category (TNM 5) and 

increasing PoS values were identified with the favourable prognostic effect of T3 versus T4 disease 

appearing similar across PoS subgroups (Supporting information, figure S18). Small subgroup 

numbers (2 recurrences in 5 patients with dMMR tumours with ш65% PoS measurements) precluded 

any meaningful investigation of potential interactions (Supporting information, figure S20). KRAS 

mutation was associated with a higher disease recurrence rate when compared to KRAS wild-type 

tumours [115/401; 28.7% versus 170/780; 21.8% recurred (RR=1.39; 95%CI=1.09-1.78, p=0.009); 

(Supporting information, figure S21) with the adverse prognostic effect of tumour PoS appearing 

greater in KRAS-mutant than KRAS wild-type tumours (Supporting information, figure S21). These 

observations parallel the analysis of dichotomised stroma stratified by KRAS mutation status (figure 

5). BRAF status was non-prognostic (Supporting information, figure S22). 
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DISCUSSION 

By applying simple digital morphometry  to tumour blocks from 2,199 QUASAR CRC trial patients,
8
 

we have demonstrated the powerful prognostic value of tumour-stromal counts; our division of 

tumours into four prognostic groups based on cut-offs in the validatory cohort was confirmed in the 

test data with high intra-tumoural stroma (>65%) being associated with a disease recurrence risk 

approximately twice that of patients whose tumours contained low intra-tumoural stroma (<50%).  

 

Our primary analysis with 2-year disease recurrence as outcome failed to substantiate any predictive 

chemotherapeutic effect of stroma count (figure 6). However, benefits of chemotherapy appeared 

to increase with increasing stroma count and this trend reached statistical significance in analyses of 

all recurrence stratified by intra-tumoural stromal proportion, suggesting that the benefits of 

chemotherapy are at  least as good in the higher risk stroma groups. This contrasts with previous 

reports suggesting that tumour associated stroma may attenuate the efficacy of chemotherapeutic 

agents.
62-70

 Although some propose pharmacological targeting of tumour associated stroma as a 

mechanism of countering chemoresistance (and thus enhancing chemotherapeutic efficacy) in 

cancer 
70-73

 the present study provides no support for this approach, at least in CRC. 

 

The mechanism by which varying proportions of intra-tumoural stroma influence clinical outcome 

(also reported in breast,
43,46

 lung,
44,74

 ovarian,
75

 cutaneous,
45

 and prostatic
76

 neoplasia) is unknown. 

Postulated theories commonly relate to stroma-associated cellular phenotypes and include 

enhanced pro-invasive signalling by intra-stromal myofibroblasts
77

 or growth factor/cytokine 

production by cancer associated fibroblasts (CAF) inducing angiogenesis, increased tumour growth 

and invasion.
71,78-81

 Other possible explanations may involve mechanisms relating to tumour 

hypoxia
82

 and/or tumour associated inflammation.
71,83

 The possibility that differential proportions of 
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tumour and stroma may simply indirectly reflect the stage of disease has been previously 

suggested.
51,52

 We found no evidence for this potential explanation of the prognostic effect of 

stroma with similar findings in stratified and unstratified analyses and no interaction between 

stromal proportions, Dukes or TNM T categories.  

 

Stromal TGFɴ,
84,85

 a critical regulator of epithelial-mesenchymal transition,
86

 is required to support 

metastatic dissemination when mutational inactivation of TGFɴ has occurred, as is common in CRC.
87

 

In view of the possible role of stromal-derived TGFɴ in the promotion of metastases in CRC,
87

 the 

observation that KRAS mutant, high stromal tumours had a significantly more elevated recurrence 

risk than KRAS wild-type high stromal lesions is noteworthy. There is abundant evidence indicating 

that RAS signalling operates in unison with TGFɴ to enhance tumour cell invasiveness, either 

directly
88,89

 or by suppressing TGFɴ mediated growth inhibitory signals.
90,91

 A note of caution, 

however, is that the association between stroma and KRAS mutation was unanticipated, so our 

findings need confirming, but should encourage further investigation. 

 

In summary, our analyses of the largest reported validation dataset  confirm the prognostic value of 

simple morphometric analyses and reciprocate similar findings of morphological / morphometric 

prognostic studies in CRC reported by Mesker et al
50,51

, Huijbers et al
92

 and West et al.
52

 Collectively, 

our data and that of others
50-52,92

 adds substance to the concept that simple morphometric appraisal 

of the quantitative relationship of tumour and / or tumour stroma can reliably identify patient sub-

populations with differential risks of tumour recurrence in a simple and cost-effective manner. Our 

group (led by AW/DT) are now in the process of using the described dataset to develop an 

automated computational analytical platform for CRC prognostication. 
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Figure legends  

Figure 1 - Study schema.  

Figure 2 - Tumour regions for morphometric analysis. (A) Selected tumor block representing maximal 

lateral and deep tumor infiltration; (B) �Luminal� 9mm2 area; (C) �Highest� 9mm2 area of maximal 

tumor epithelial density (if away from luminal surface; (D) �Whole� tumor area encompassing lateral 

and deep invasive fronts. Scale bars=5mm  

Figure 3 - Recurrence risk stratified by proportion of stroma (PoS) in the whole tumour (WT) region � 

validatory dataset, stage II / III patients (n=1,800). 

Figure 4 - Recurrence risk stratified by proportion of stroma (PoS) in the whole tumour (WT) region � 

validatory dataset, stage II patients only (n=1,603) 
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Figure 5 - Recurrence risk by dichotomised proportion of stroma (PoS) stratified by 

clinicopathological variables in the whole tumour (WT) region. Validatory dataset (n=1,800); (O-

E)=observed minus expected; Var=variance 

 

Figure 6 - Recurrence risk by chemotherapy (2 years) sub-stratified by tumour morphometric 

subgroups. Validatory dataset (n=1,800); (O-E)=observed minus expected; Var=variance. 

 

List of online supporting information 

 

Figure S1 - Recurrence risk (2 years) by chemotherapy, stratified by sub-stratified by tumour 

morphometric subgroups 

 

Figure S2 - Recurrence risk by proportion of stroma (PoS) in highest tumour (HT) area 

 

Figure S3 - Recurrence risk by proportion of stroma (PoS) in the luminal tumour (LT) area 

 

Figure S4 - Recurrence risk by proportion of stroma (PoS) in whole tumour (WT) area 

 

Figure S5 � Recurrence risk by proportion of tumour (PoT) in the highest tumour (HT) area 
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Figure S6 � Recurrence risk by proportion of tumour (PoT) in the luminal tumour (LT) area 

 

Figure S7 - Recurrence risk by proportion of tumour (PoT) in whole tumour (WT) area 

 

Figure S8 - Recurrence risk by proportion of stroma (PoS) in highest tumour (HT) area 

 

Figure S9 - Recurrence risk by proportion of stroma (PoS) in luminal tumour (LT) area 

 

Figure S10 - Recurrence by proportion of tumour (PoT) in highest tumour (HT) area 

 

Figure S11 - Recurrence by proportion of tumour (PoT) in luminal tumour (LT) area 

 

Figure S12 - Recurrence by proportion of tumour (PoT) in whole tumour (WT) area 

  

Figure S13 - Recurrence risk by chemotherapy stratified by proportion of stroma (PoS) in the whole 

tumour (WT) region across clinicopathological sub-groups 

 

Figure S14 - Recurrence risk by chemotherapy stratified by proportion of stroma (PoS) in the whole 

tumour (WT) region across clinicopathological sub-groups 
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Figure S15 - Recurrence risk by chemotherapy stratified by proportion of stroma (PoS) in the whole 

tumour (WT) region across clinicopathological sub-groups 

 

Figure S16 - Recurrence risk by chemotherapy stratified by proportion of stroma (PoS) in the whole 

tumour (WT) region across molecular sub-groups 

 

Figure S17 � Recurrence risk by AJCC stage stratified by proportion of stroma (PoS) in the whole 

tumour (WT) region 

 

Figure S18 � Recurrence risk by T-stage (TNM 5) stratified by proportion of stroma (PoS) in the whole 

tumour (WT) region 

 

Figure S19 � Recurrence risk by lymph node yield stratified by proportion of stroma (PoS) in the 

whole tumour (WT) region 

 

Figure S20 � Recurrence risk by extra-mural vascular invasion stratified by proportion of stroma 

(PoS) in the whole tumour (WT) region 

 

Figure S21 � Recurrence risk by mismatch repair status stratified by proportion of stroma (PoS) in the 

whole tumour (WT) region 
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Figure S22 � Recurrence risk by KRAS mutation status stratified by whole tumour PoS 

 

Figure S23 � Recurrence risk by BRAF mutation status stratified by whole tumour PoS 
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Table 1 � Patient characteristics by proportion of stroma (whole tumour area)  

 

% PoS categories 

<35%  

n, (%) 

35%-49%  

n, (%)] 

50%<65%  

[n, (%)] 

ш65%  

[n, (%)] 

p-value 

All patients 

(n=1,800) 

716 

(39.78) 

627 

(34.83) 

342 

(19.0) 

115 

(6.39) 

n/a 

Colon 

(n=1,423) 

597 

(41.95) 

497 

(34.93) 

257 

(18.06) 

72 

(5.06) 

<0.0001 

Rectum 

(n=377) 

119 

(31.56) 

130 

(34.48) 

85 

(22.55) 

43 

(11.41) 

Dukes B / Stage II 

(n=1,603) 

658 

(41.05) 

553 

(34.50) 

295 

(18.40) 

97 

(6.05) 

0.0019 

Dukes C/Stage III 

(n=161) 

43 

(26.71) 

62 

(38.51) 

40  

(24.84) 

16  

(9.94) 

T3 

(n=1,362) 

545 

(40.01) 

481 

(35.32) 

259 

(19.02) 

77 

(5.65) 

0.865 

T4 

(n=217) 

82 

(37.79) 

76 

(35.02) 

45 

(20.74) 

14 

(6.45) 

EMVI 

(n=161) 

51 

(31.68) 

58 

(36.02) 

41 

(25.47) 

11 

(6.83) 

0.078 

No EMVI 

(n=1468) 

594  

(40.76) 

517  

(35.22) 

271  

(18.46) 

86 

(5.86) 

Well diff. 

(n=151) 

70 

(46.36) 

51 

(33.77) 

26 

(17.22) 

4 

(2.65) 

0.159 

Moderately diff. 

(n=1,343) 

521 

(38.79) 

485 

(36.11) 

256 

(19.06) 

81 

(6.03) 

Poor diff. 

(n=139) 

57 

(41.01) 

40 

(28.78) 

30 

(21.58) 

12 

(8.63) 
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Mucinous 

(n=162) 

100 

(61.73) 

47 

(29.01) 

12 

(7.41) 

3 

(1.85) 

<0.0001 

AdenoCa, NOS 

(n=1,473) 

548 

(37.20) 

530 

(35.98) 

300 

(20.37) 

95 

(6.45) 

<12 lymph nodes 

(n=999) 

398 

(39.84) 

346 

(34.63) 

193 

(19.32) 

62 

(6.21) 

0.699 

12+ lymph nodes 

(n=544) 

217 

(39.89) 

199  

(36.58) 

101 

(18.57) 

27 

(4.96) 

Female 

(n=705) 

289 

(40.99) 

248 

(35.18) 

130 

(18.44) 

38 

(5.39) 

0.481 

Male 

(n=1,113) 

427 

(39.0) 

379 

(34.61) 

212 

(19.36) 

77 

(7.03) 

Chemotherapy 

(n=880) 

353 

(40.11) 

290 

(32.95) 

178 

(20.23) 

59 

(6.70) 

0.330 

Observation 

(n=920) 

363 

(39.46) 

337 

(36.63) 

164 

(17.83) 

56 

(6.09) 

MMR deficient 

(n=162) 

85 

(52.47) 

48 

(29.63) 

24 

(14.81) 

5 

(3.09) 

0.012 

MMR proficient 

(n=1,290) 

508 

(39.38) 

468 

(36.28) 

241 

(18.68) 

73 

(5.66) 

BRAF-mutant 

(n=92) 

41 

(44.57) 

29 

(31.52) 

17 

(18.48) 

5 

(5.42) 

0.821 

BRAF wild-type 

(n=1,091) 

434 

(39.78) 

389 

(35.66) 

205 

(18.79) 

63 

(5.77) 

KRAS mutant 

(n=401) 

167 

(41.65) 

134 

(33.42) 

76 

(18.95) 

24 

(5.99) 

0.816 

KRAS wild-type 

(n=780) 

307 

(39.36) 

282 

(36.15) 

146 

(18.72) 

45 

(5.77) 
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