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Abstract 

In this paper, a hybrid model based on physical and data interpretations to investigate 

the high shear granulation (HSG) process is proposed. This model integrates three separate 

component models, namely, a computational fluid dynamics model, a population balance 

model and a radial basis function model, through an iterative procedure. The proposed hybrid 

model is shown to provide the required understanding of the HSG process, and to also 

accurately predict the properties of the granules. Furthermore, a new fusion model based on 

integrating fuzzy logic theory and the Dempster-Shafer theory is also developed. The 

motivation for such a new modelling framework stems from the fact that integrating predictions 

from models which are elicited using different paradigms can lead to a more robust and 

accurate topology. As a result, significant improvements in prediction performance have been 

achieved by applying the proposed framework when compared to single models. 

Keywords: Hybrid model; Data fusion; Fuzzy logic; Dempster-Shafer theory; High shear 

granulation.  

Introduction 

In the pharmaceutical, chemical, food, agricultural and many other industries, granulation 

is a key unit operation of the manufacturing cycle and the development of the final product1. 
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In particular, high shear granulation (HSG) has been extensively used because of its short 

processing time due to the fast growth and densification processes2. In general, granulation is 

recognised as being a complex process with three distinct mechanisms taking place all inside 

the granulator itself, namely: 1. Wetting & nucleation, 2. Growth & consolidation, and 3. 

Breakage & attrition3. Despite the huge body of research addressing the different issues of the 

granulation process, it remains a subject of active research. The reason behind this can be 

attributed to the inherent complexity of such a process which results in the poor understanding 

of the process and its mechanisms and, consequently, leading to a high recycling ratio and 

significant wastes in the related industries4. Consequently, recent studies have focused on the 

understanding, the modelling and the simulating of the granulation process. The various 

modelling paradigms that have been developed and applied are either data-driven (e.g. neural 

network) or physical based models (e.g. population balance model)1, 5-7. 

Data-driven models have been mainly utilized to predict the properties of the granules using 

different granulation equipment and materials8. There are however some significant advantages 

of using these paradigms. The number of properties to be monitored can be large compared to 

physical based models, where studying more than three properties can be computationally 

taxing. Furthermore, these models map the granulation inputs to the outputs without the need 

for representation of the complex nature of the process and the interactions among its 

mechanisms. Thus, they can successfully predict the properties of the granules and can simply 

interpret the relationships between the inputs and the outputs in a way that one can easily 

understand and relate to1.  

Physical based models have also been utilized to gain a deeper insight into the physics 

behind the granulation process. In particular, population balance models (PBMs) have received 

a great deal of interest when it comes to modelling such a process5. One dimensional PBM was 

more commonly used, where the size of the granules was investigated, assuming that the size 



has the main effect and it may affect other properties9. However, the consideration of the binder 

content and the porosity of the granules is crucial. Likewise, the one dimensional model is 

unable to capture the complex interactions among the granulation mechanisms9. These 

limitations reinforce the need to develop a multi-dimensional model. Three-dimensional 

models have been employed to predict the main properties of the granules, whereas the three 

granulation mechanisms have been represented by developing various kernels, which are either 

empirically or semi-mechanistically derived5. Modelling the granulation process using the 

PBMs has hitherto provided a good understanding of the process at the micro-level10. These 

models depend mainly on the impact velocity which is a function of the granule position from 

the impeller. They also depend on the overall flow pattern of the granules inside the mixer. 

However, such parameters cannot be extracted from these models. Moreover, one of the main 

difficulties that has been addressed is the representation of the interactions among the 

mechanisms which play a crucial role in shaping the properties of the granules1. Thus, various 

stochastic and mechanistic models have been utilized to provide the necessary understanding 

of the flow pattern and the impact velocity of the granules11-12. The discrete element method 

(DEM), as a stochastic approach, tracks every single particle in the mixer. In practice, such a 

method may however be computationally taxing since more than a billion particles have to be 

considered, which is the case for the HSG mixer12. Recently, a computational fluid dynamics 

(CFD) model has been utilized to model a multiphase flow11. In particular, the so-called 

Eulerian multiphase model has been widely employed to simulate flow with both dispersed and 

continuous phases, and also to take account of the interactions between these phases13. In this 

model, the mean diameter is used to represent the size distribution of the dispersed phase. Such 

an assumption may lead to inaccurate modelling results when the size distribution is 

multimodal or wide. Therefore, incorporating the CFD model with the PBM would circumvent 

the limitations of employing each model separately11.  



In the granulation process, the successful model is one that (i) can accurately predict the 

properties of the granules, (ii) can provide the required understanding of the process and its 

mechanisms, and (iii) can be used reliably and efficiently by the relevant industries. In fact, all 

of the above objectives may not be achievable by using one single model. Therefore, in this 

research, a hybrid model integrating both data and physical based models is developed. Such a 

model integrates three separate but synergetic models through an iterative procedure. The 

hybrid model consists of three models, namely; a CFD model, the three-dimensional PBM and 

a radial basis function (RBF) model. These models are integrated in such a way that the outputs 

from one of these models are used as inputs to the other model. In order to improve the 

modelling performance of the hybrid model, a new fusion model based on fuzzy logic theory 

and the Dempster-Shafer theory is also proposed. The main idea behind this model is to 

combine the predicted outputs from different models to obtain more accurate predictions, 

which may not be obtainable using a single model. Thus, the predicted outputs from the hybrid 

model are combined with the ones from the model incorporating the integrated network and 

the Gaussian mixture model. This model, which will be from now on referred to as the 

incorporated model, is a data-driven model that was previously developed to predict the 

properties of the granules produced by the same equipment and materials, which were used in 

this research1, the integrated network is described in Appendix. The remainder of the paper is 

organized as follows: first, the experimental work that was conducted using the Eirich high 

shear mixer is described. The hybrid model and the related theoretical background are then 

presented, the results are also presented and discussed, followed by presenting the new fusion 

approach and its results. Finally, concluding remarks summarise the work with 

recommendations for future research. 

Experimental Work 



The high shear Eirich mixer (1 Litre vertical axis granulator with a top-driven impeller, 

Maschinenfabrik Gustav Eirich GmbH & Co KG, Germany) was used to granulate Calcium 

Carbonate (D50=85µm) by adding Polyethylene Glycol (PEG 1000). This mixer is equipped 

with a scrapper and impellers with different shapes. It is worth mentioning at this stage that 

only two impellers were used in this research, as shown in Figure 1; the two impellers not being 

in the centre of the 16cm diameter vessel. Before the start of the granulation experiment, the 

binder was melted (the melting point is approximately 40oC), followed by pouring-in the binder 

on the powder bed while both the vessel and the impeller were rotating in the same direction 

(clockwise). For all experiments, the binder addition lasted for approximately three minutes. 

Once the granulation experiment was completed, the granules were left at room-temperature to 

allow the binder to solidify. Finally, these granules were characterized in terms of size, which 

was measured using the Retsch camsizer (Retsch Technology GmbH, Germany), binder 

content and porosity, which were measured in the size range (180-2000µm) as described in1. 

 

Figure 1. CAD drawing of the impeller types (a) impeller type I, bin impeller, and (b) 

impeller type II, star impeller (Reproduced with Permission from Maschinenfabrik Gustav 

Eirich GmbH & Co KG., January 2017). 

Four input variables were investigated, namely, impeller speed (from 1000 to 6000 rpm), 

granulation time (6, 10 and 15 minutes), L/S ratio (13, 14 and 15%) and impeller shape (two 



impeller shapes were used). The granulation vessel was at the horizontal position during the 

granulation process (i.e. tilt angle was zero) and its speed was kept constant (170rpm). 

Generally, many input variables can affect the granulation process, however, the specifically 

investigated variables proved to have the most significant effects, which were measured via the 

correlation coefficient, in terms of the final properties of the granules produced using Calcium 

Carbonate. The aforementioned variables were systematically studied using a full factorial 

design of experiments; the total number of experiments being 108.   

The Hybrid Model 

The Hybrid Model: Model Development    

Granulation is a complex process due to the different interactive mechanisms occurring 

inside the granulator. Such a process is also influenced by many controllable and uncontrollable 

factors which may possibly have conflicting effects. In addition to the ones mentioned in1, 

these are some of the serious difficulties that may limit the performance of a single model. In 

this research, a hybrid model consisting of both data and physical based models has been 

developed. Figure 2 illustrates the simple iterative scheme of the hybrid model. Based on the 

granulation input variables and the mixer geometry, a CFD model is developed to analyse the 

overall flow pattern of the granules, their distribution and the velocity inside the mixer. The 

output parameters from this model (e.g. impact velocity) are crucial to predict the main 

properties of the granules using a PBM such as the granule size. It is well-known that some 

empirical parameters are required to implement the PBM6. Therefore, a radial basis function 

(RBF) model is included to estimate these parameters by mapping them directly to the 

granulation input variables. Such a model can implicitly compensate for the assumptions that 

have been made to simplify the computational efforts required by the physical models, for 

instance, the homogeneous mixing features of the overall flow of the granules. In addition, this 



model is used to express these parameters as a function of the input variables, therefore, a better 

knowledge relating the effects of the input variables on these parameters and on the final 

properties of the granules is gained. The size of the granules predicted by the PBM is then used 

to re-evaluate the parameters obtained from the CFD model, followed by re-estimating the 

outputs of the PBM and RBF model. The steps above are repeated until a satisfactory 

performance is reached, or alternatively the difference between the predictions for two 

consecutive steps becomes asymptotically small. It is worth emphasising at this stage that the 

performance of the hybrid model depends on the performances of the models included.  

Figure 2. The hybrid model for the HSG process. 

The mathematics behind the single models presented have already been well-

publicised. Readers may refer to various research papers and books for further readings, in 

particular references3-7, 9-25. In this paper, only the key developments are included to in order 

to help the reader get to grips with the algorithms presented.  

Population Balance Model 



As already stated, a three-dimensional PBM provides a deeper insight into the 

granulation process by representing its three main mechanisms. This is because it follows the 

evolution of the granules with time by virtue of the granule size, the binder content and the 

porosity. The 3D population balance equation is usually written as follows14: 

(1) 

 

where F(s, l, g, t) represents the density function such that F(s, l, g, t)ds dl dg is the mass of 

granules when solid (s), liquid (l) and gas (g) are in the ranges (s, s+ds), (l, l+dl) and (g, g+dg), 

respectively. The partial derivatives with respect to s, l and g account for layering, drying and 

re-wetting, and consolidation, respectively. The terms in the right hand-side of (1) stand for the 

rates of nucleation, aggregation and breakage. Various nucleation rates have been developed, 

however, the majority of these assumes that one droplet forms a nucleus. However, the latter 

assumption is not always valid10. Since the breakage of nuclei plays a significant role in the 

nucleation mechanism15, an empirical nucleation rate was used in this study. The aggregation 

rate consists of two terms, formation and depletion, which can be written as follows10: 
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where nuc
s  is the volume of the nucleus, and ( ', ', ', ', ', ')s s s l l l g g g     is the aggregation 

kernel which governs the rate at which two granules with internal coordinates ( ', ', ')s l g  and 

( ', ', ')s s l l g g    agglomerate. In fact, the coalescence of two granules depends on the 
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granules size and the availability of the binder on their surfaces. The semi-mechanistic 

aggregation kernel that describes these two factors and the coalescence types has been already 

presented in16. Such a kernel can be expressed as follows16: 
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where Ri is the radius of the ith particle, u0 and W are the initial velocity of the particle and the 

Fuch stability ratio, respectively. The parameters k and T represent the Boltzmann constant and 

the temperature, respectively. The parameter   refers to the net attractive potential for 

coalescence, and   is a tuneable parameter.     

The consolidation mechanism takes account of the compaction process that increases 

the binder on the surface of granules and leads to a decrease in the porosity. The consolidation 

process has been empirically expressed by the following set of equations: 
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 where   and min  are the porosity and its minimum value, respectively. The constant c is the 

compaction rate constant. The breakage rate was stochastically estimated based on the 

algorithm developed in17. Such an algorithm is based on determining the likelihood that a 

granule in a specific size class breaks to form a number of granules in smaller size classes.  



Computational Fluid Dynamics 

Generally, numerical simulation techniques of a system can be classified into two types; 

continuum and discrete. As the names indicate, the former views the system as a continuous 

flow (i.e. fluid), while the latter deals with an individual particle. An Eulerian multiphase model 

is used to simulate the particulate phase as a continuous flow18. Two phases; solid and gas, are 

considered. The mass and momentum of these two phases are governed by the following set of 

equations19: 
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where  ,   and u are the volume fraction, density and velocity, respectively. The subscripts 

are used to distinguish the parameters of the gas (g) phase from the ones of the solid (s) phase. 

The volume fractions must sum to unity. The parameters P and F represent the pressure and all 

the forces acting on the system under investigation, respectively. The interphase momentum 

exchange coefficient ( ) is calculated using the equation presented in20. The viscous stress 

tensor ( ) can simply be written as follows19: 
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where   and  represent the bulk and dynamic viscosity of the kth phase, respectively. The 

parameter S represents the strain rate tensor derived in19, and I is the second invariant of the 

strain rate tensor.  



By virtue of extension of the kinetic theory of dense gas, one would develop the kinetic 

theory behind the granular flow (KTGF) model. Such a theory depends on statistical mechanics 

to describe the velocity of a granular flow. As already outlined in21, the KTGF model assumes 

that particles interaction is binary as well as instantaneous21. At a high solid fraction, this may 

result in high particles/granules stresses. Therefore, the frictional term, or the so-called 

frictional stress model, should be taken into account when the pressure and the dynamic 

viscosity of the solid phase are evaluated: the model is further detailed in19. It is worth 

mentioning at this stage that, in this study, the angle of internal friction was 44o. 

Various boundary conditions have been used in the open literature19. In this research 

paper, the ‘no slip’ boundary condition at the vessel, impeller and scraper wall was used for 

the gas phase. For the solid phase, the ‘partial slip’ model proposed in22 was utilized. The 

coefficient of restitution was chosen to be 0.5. Such a model is a combination of both ‘no slip’ 

and ‘free slip’ conditions.       

Radial Basis Function Model 

RBF model usually maps a set of inputs to an output. RBF network consists of three 

layers: an input, hidden including basis functions, and an output layer. Such a mapping can be 

generally given as follows23: 
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where wi and w0 denote the weights and bias, respectively. x is the input vector and y is the 

predicted output which is expressed as a linear combination of the basis functions. RBF is a 

function of the radial distance from a centre (µ i). Such function can usually be expressed as 

follows: 
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where fi is the basis function. Because of its ability to approximate any function with a 

reasonable accuracy using a sufficient number of components, the Gaussian form is a popular 

choice for such a function23. The predicted outputs in this research are the empirical parameters 

that are required to implement the PBM. Typically, the available data are divided into training 

and testing data sets. The training data are used for identifying the relationships between the 

inputs and the outputs, while the testing data are used to ensure good generalization capabilities 

measured via the root mean square error (RMSE). The model parameters (e.g. mean) were 

optimized using the scaled conjugate gradient algorithm23. The best network structure (i.e. the 

number of basis functions) is the one that corresponds to the minimum RMSE.  

The Hybrid Model: Results and Discussions 

To study the flow of the granules inside the granulation vessel, two CFD models were 

developed using ANSYS software (ANSYS Inc., US, Release 16.1) for simulation of the Eirich 

mixer with two impellers differing in shape, as shown in Figure 1. Accordingly, two fine-

meshing schemes differing in the number of cells were generated. For each model, three 

different meshing schemes were initially tested, the ones presented in this study are the schemes 

that led to acceptable solutions. In each model, the gas-solid flow was analysed using a two-

fluid model inspired from the KTGF model. The material properties were selected so as to 

reproduce as closely as possible the properties of air and the properties of the granules produced 

using 500gm of Calcium Carbonate and different mass values of Polyethylene Glycol. The 

vessel speed was kept constant during the simulation of all experiments (at 170rpm clockwise), 

while the values of the impeller speed were assigned corresponding to the operating conditions. 

The granules were assumed to have initially settled at the bottom of the granulation vessel. A 

second-order upwind scheme was utilized to solve all the partial differential equations, while 

the volume fraction equation was solved using a first-order scheme. The model was stopped 

once it converged, or alternatively a stable flow was observed.  



Figure 3. ANSYS based profiles: the velocity profiles of the granules (a) using impeller 

type II, speed=2000rpm, L/S ratio (w/w)=14%; (b) using impeller type II, speed=6000rpm, 

L/S ratio (w/w)=15%; (c) using impeller type I, speed=4000rpm, L/S ratio (w/w)=13%. 

Figure 3 shows the velocity profiles of the granules for three different experiments. 

Although the vessel itself was rotating during the experiments, the highest velocities (i.e. radial 

and tangential velocities) and their gradients can be observed around the impeller area, 

specifically when the granules are close to both the impeller and the vessel this being due to 

the values of the tip speed and also to the fact that both of them rotate in the same direction. 

Such a phenomenon was observed during experiments where the velocity of the impeller is 

high. It was also observed that the velocity of the granules is still highly dependent on the 

spatial position of the granules from the impeller, similarly to what was previously reported 

in11. Thus, different areas have different velocity values, as shown in Figure 3 (b) and (c). 

However, such a behaviour cannot be observed when the impeller speed is low, which can 

probably lead to relatively homogeneous mixing features11, as presented in Figure 3 (a). It is 

worth noting that the velocity scale shown in Figure 3 (a) is wider compared to Figure 3 (b) 

and (c), however, the granule velocity value in (a) is smaller and it reflects the impeller and the 

vessel speed value (i.e. tip speed). Under the same operating conditions, the range of the 



velocity values for impeller type II model is wider than the one for impeller type I, which may 

be due to the difference in the geometry and contact area.  

Figure 4. ANSYS based profiles: the concentration of the granules: top (at approximately 

3cm from the base) and side view (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14%; (b) using impeller type II, speed=6000rpm, L/S ratio (w/w)=15%; (c) using 

impeller type I, speed=4000rpm, L/S ratio (w/w)=13%. 



The concentration of the granules (volume fraction) inside the mixer is shown in Figure 4. 

The flow regime of the granules shows that the bed surface undulates as the granules are closer 

to the impeller. A similar behaviour was observed around the scrapper but the bed height is 

lower. A maximum bed height occurs when the impeller speed is high (at 6000rpm). Spikes in 

the concentration of the granules were observed during the experiments, which were carried 

out using impeller type I, as shown in Figure 4 (c). This may be due to the presence of pins on 

the upper surface of the impeller. As expected, a heterogeneous distribution of the granules is 

shown in the figure. It is worth noting at this stage that the concentration of the granules is 

relatively high around the scrapper area in some experiments, which can be explained if one 

considers the scrapper as a hindrance, especially, at low impeller speed.  A low concentration 

of the granules appears around the impeller; this is the result of the force that is applied by the 

impeller driving the granules towards the vessel wall. In addition, low concentration of the 

granules can also be observed in the upper volume of the vessel, where the gas phase dominates. 

Such a behaviour is noticeable when the impeller speed is relatively low. Moreover, such a low 

concentration appears around the centre of the vessel in some experiments as a result of the 

centrifugal force. In fact, this should be in the centre of the vessel, however, the presence of 

the impeller, which is not in the centre, and the scrapper may have shifted the force effect.  

The initial results of the CFD model prove that the velocity and the concentration of the 

granules and, accordingly, the granulation rates (e.g. growth and breakage) are indeed 

dependent on the spatial position of the granules themselves, as also previously reported in the 

literature11. A compartmental model has already been developed for similar cases in the 

literature. This model can lead to better results if a sufficient number of compartments is used. 

However, it is considered to be a computationally-taxing model11. Therefore, the average 

velocity was instead used to evaluate the parameters of PBM in this study. In fact, such an 

assumption may have a negative effect on the final predictions of the granule properties if the 



empirical parameters were not systematically estimated. However, in this work, this did not 

seem to have a significant effect since the RBF-based model will internally compensate for 

this.  

 

Figure 5. The RBF model for the empirical parameter that is used to estimate the aggregation 

kernel (normalized): (a) training, (b) testing (with 10% bands) (RBF Network Weights= [1 

0.5 0.4 1.5 0.8 1.3 1.3 0.9], and Bias=0.58). 

A three-dimensional PBM was also developed, as discussed in ‘The Hybrid Model’ 

Section. In order to solve the integro-differential equations, a hierarchical algorithm presented 

in24 was employed in this research paper. This algorithm is based on discretising the three-

dimensional population into a number of bins represented as finite volumes. This hierarchical 

framework enables the user to pre-calculate the time-independent terms of the kernels. As 



stated previously, estimating the kernels (e.g. aggregation kernel) depends on empirical 

parameters. These parameters were evaluated to match the experimental results, followed by 

mapping the parameters to the granulation input variables by using the RBF model. A single 

RBF model was developed to learn the relationships among all the input variables (i.e. 

operating conditions) and the empirical parameters of PBM. For the empirical parameter ( ) 

that is used to estimate the size dependent aggregation kernel presented in (3), 8 RBFs, which 

correspond to the minimum error calculated using the RMSE, were selected. The prediction 

performance is presented in Figure 5. The RMSE values (training=0.055, testing=0.035) 

indicate that the model can be used successfully to predict this parameter. Similarly, the model 

led to a good performance for all the empirical parameters considered. 

Using the estimated empirical parameters, the properties of the granules were predicted. 

Since the granule size has a significant effect on the granule velocity and its distribution, the 

predicted size was then used to update the parameters of the CFD model. These steps were 

repeated until the difference between the predictions for two consecutive steps became very 

small. Figure 6 shows the prediction results for three experiments carried-out under varying 

operating conditions. In a similar manner, the properties of the granules were predicted for all 

experiments. The number of iterations for the experiments varied, and generally this numbers 

was in the range of 6 to 10. The predictive performances for all experiments demonstrate the 

ability of the hybrid model to predict the properties successfully and to implicitly compensate 

for the assumptions that have been made about the granulation process. Moreover, the 

presented model outperformed the three-dimensional PBM. Figure 7 shows an example of the 

predictive performance of PBM. The PBM performances for the binder content and porosity 

are not as good as the hybrid model ones, and it is apparent that these performances are worse 

than the ones for size. 



Figure 6. The hybrid model: the predicted (o) and the experimental (*) distributions for the 

size, binder content and porosity (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min; (b) using impeller type II, speed=6000rpm, L/S 

ratio (w/w)=15% and granulation time=15min; (c) using impeller type I, speed=4000rpm, L/S 

ratio (w/w)=13% and granulation time=6min. 

 

 



 

Figure 7. The population balance model: the predicted (o) and the experimental (*) 

distributions for the size, binder content and porosity using impeller type II, speed=2000rpm, 

L/S ratio (w/w)=14% and granulation time=10min. 

Although, the hybrid model satisfactorily modelled the granulation process, such a model 

can be further improved. This model initiated the simulation process using the nuclei instead 

of the particles, this being due to the difficulty of taking account of three phases in the CFD 

model. Therefore, the hybrid model can be implemented in two stages; the first stage considers 

the binder and the particles, whereas the second stage considers the granules and gas, followed 

by integrating the two stages together. Moreover, further investigations will need to be 

performed to explore the advantages and the limitations of developing such a complex model.    

Model Fusion 

Model Fusion: The Basic Idea  

One of the basic concepts of cognitive process used by human is information fusion. In 

simple terms, fusion is integrating information from various sources to realise effective 

inferences and generate optimal decisions25. The motivation for this process lies in the fact that 

the information provided from one source are, more often than not, limited and with limited 

accuracy25. Therefore, information fusion has been extensively applied in many areas, 

including marine technology, manufacturing as well as health care, to ultimately improve the 



reliability of information. Various approaches have been developed and used such as Bayesian 

inference, neuro-fuzzy and the Dempster-Shafer (DS) theory26-27. The latter approach has 

attracted a lot of interest; this being due to its ability to explicitly estimate imprecision and 

conflict that may exist between two or more sources of information. However, in order to 

develop a more reliable fusion model, one should consider three types of uncertainties; 

uncertainty due to probabilities, uncertainty due to lack of specification and uncertainty due to 

fuzziness28. The first two types can usually be tackled via DS theory, while the third type can 

be successfully handled using fuzzy logic. Therefore, a new approach that integrates both the 

DS theory and fuzzy logic has been presented in this research paper. The motivation for such 

an algorithm stems from the strong need to improve the output predictions of the granulation 

process which is considered to be one of the complex process to be modelled and predicted. 

The proposed algorithm integrates the predicted outputs from both the hybrid model and the 

incorporated model. The fusion model was developed not only to obtain more accurate 

predictions, which may not be obtainable by using a single model, but also to resolve any 

conflict that may exist between the two models. Figure 8 summarises the main steps of the 

proposed fusion model. 

First of all, the number of clusters is defined. Generally, clustering is an unsupervised 

learning process that aims to discover groups of similar data points within the data set. The 

optimal number of clusters is subjective, in other words, it depends on the application. In this 

study, the best number of clusters is the one that corresponds to the maximum improvement in 

the predictive performance (i.e. the minimum RMSE). This step is followed by clustering the 

input variables and the error residuals that result from both the hybrid model and the 

incorporated model. The membership function value is defined for each data point as follows29: 
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Figure 8. Flow chart of the fusion model. 



where i
  is the membership function of the ith data point. The parameters M and   represent 

the mean and the standard deviation of a cluster, respectively, and 
e

i
x  is the residual error.  

In order to combine the predicted outputs of the hybrid model with the ones of the 

incorporated model, the DS theory is utilized. One of the main challenges in implementing the 

DS theory is assigning the mass function for all the examined hypotheses. In fact, the mass 

function can be derived using different algorithms such as probabilities or distance from the 

centre of a cluster30. In this research, the mass function has been evaluated using the fuzzy 

membership function, which is calculated in (9). The mass function is generally governed by 

the following set of equations28: 
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where t
m  is the mass function for the tth hypothesis, and   is the maximum membership 

function. If the number of clusters is less than or equal to three, then special cases are 

considered28. The hypotheses are merged using the Dempster’s rule of combination as follows: 
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where the mass functions for the hypotheses of the fusion, hybrid and incorporated models are 

distinguished by the subscripts FM, HM and IM, respectively. The parameter K measures the 

conflict between two sources, and it is also used to estimate the normalization factor, which is 

equal to (1-K). A hypothesis of the hybrid model is usually combined with the hypotheses of 

the incorporated model that have the same or better degree of accuracy, and vice versa. To 



elucidate, assume that the number of clusters for both models is three (i.e. good, satisfactory 

and bad), as presented in Figure 9. To estimate the mass function for the ‘satisfactory’ 

hypothesis of the fusion model, the ‘satisfactory’ hypothesis of the incorporated model should 

be combined with the ‘good’ and ‘satisfactory’ hypotheses of the hybrid model, and the 

‘satisfactory’ hypothesis of the hybrid model should be combined with the ‘good’ one of the 

incorporated model, note that the combination of the ‘satisfactory’ hypotheses has already been 

considered. A high degree of conflict between a hypothesis and another less accurate one is 

assumed, thus, the fusion model can lead to a better performance compared to both the hybrid 

model and the incorporated model. 

 

Figure 9. Example of combining the clusters. 

Once the mass functions of the fusion model are estimated, the membership functions 

can be calculated by solving the set of equations in (10), which is reversed to calculate the 

membership functions, which need to be weighted and normalized28. Finally, the height 

defuzzifier is utilized to evaluate the outputs of the fusion model29. 

Model Fusion: Results and Discussions 

 The algorithm relating to the fused model was implemented to improve the performance 

of the two models; the hybrid model and the incorporated model, especially, in those areas 

where the performance of one of the models or both was not as close to the target as desired. 

Thus, the granulation input variables and the error residuals have been used to identify these 



areas. For instance, Figure 10 shows how the hybrid model performs in one of the space areas 

(i.e. clusters) of the binder content. Such a figure indicates that the hybrid model performance 

measured via the error residuals is satisfactory when the impeller is of type I, the impeller speed 

is medium, the granulation time is small and the L/S ratio is medium. It is worth mentioning 

that the impeller shape was considered as a crisp variable instead of a singleton, as shown in 

Figure 10.  

Figure 10. An example of the hybrid model performance in the space area of the binder 

content. 

As summarised in Figure 8, the estimated membership functions were used to assign 

the mass functions for the hypotheses of both models. Next, the mass functions were combined 

using the set of equations in (11). This led to the mass functions for the hypotheses of the fusion 

model. To estimate the membership functions of the fusion model clusters, the set of equations 

in (10) were solved numerically, since the analytical solution (i.e. closed form solution) may 

be computationally taxing, in particular, when the number of clusters is large. After the 

defuzzification step, the outputs from the fusion model for three experiments are shown in 

Figure 11, where different numbers of clusters were assigned to the various size classes, these 

numbers laying in the range of 5 to 9.  



 

Figure 11. The fusion model: the predicted (o) and the experimental (*) distributions for the 

size, binder content and porosity (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min; (b) using impeller type II, speed=6000rpm, L/S 

ratio (w/w)=15% and granulation time=15min; (c) using impeller type I, speed=4000rpm, L/S 

ratio (w/w)=13% and granulation time=6min. 



The predictive performance of the fused model for all experiments is similar to the one 

presented in Figure 11, which shows a good performance. In the size class (1180µm), the 

predictive performance is not as good as for the other size classes, because the performance of 

the incorporated model was slightly lower for this size class. However, the overall 

improvement is noticeable. Table 1 includes the average coefficients of determination (R2) and 

the RMSE performance values of the RBF model (standalone model), which was used here to 

predict the properties of the granules, PBM (standalone model), the previous model presented 

in1, referred to in the table as ‘the incorporated model’, the hybrid model presented in ‘The 

Hybrid model’ Section, and the fusion model described in ‘Model Fusion’ Section. As shown 

in this table, the fusion model outperformed both the incorporated and the hybrid models. 

Furthermore, this table shows that the predictive performance for the size was better than that 

for the binder content and porosity. This may be due to the heterogeneity and the high 

uncertainties in the measurements of these properties. However, most of the predictions from 

the incorporated, hybrid and fusion models lay within the 95% confidence interval.             

Table 1. The performances of the models represented by R2 and RMSE. 

Model RBF1 PBM2 
Incorporated 

Model3 
Hybrid Model4 Fusion Model5 

Output R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Size 53.65 0.0098 75.84 0.0076 87.83 0.0055 88.49 0.0017 91.28 0.0008 

Binder Content 46.8 1.2792 67.53 1.0252 74.04 0.9352 76.06 0.6316 80.30 0.5577 

Porosity 36.99 1.6457 65.49 1.23 74.02 1.0879 75.67 0.9208 79.54 0.5508 
1. The RBF standalone model was utilized to predict the granule properties. 

2. The PBM was used as a stand-alone model. 

3. The incorporated model includes the integrated network and the Gaussian mixture model as presented in1. 

4. The hybrid model as presented in ‘The Hybrid Model’ Section. 

5. The fusion model as described in ‘Model Fusion’ Section.   

Assessing the generalization capabilities of the developed models is an important step 

to prove their effectiveness and efficiency. Thus, the hybrid model has been utilized to predict 

the properties of the granules produced using different operating conditions but within the 

investigated ranges. Figure 12 (a) shows the predicted outputs for a new experiment. The 

predictive performance values for the three properties are comparable to the ones that obtained 



using the training data. Similarly, the fused model has been validated using the operating 

conditions of the new experiment and the predictions from both the hybrid and the incorporated 

models. The predicted outputs obtained by the fused model are presented in Figure 12 (b). The 

predictive performance and the generalization capabilities prove the abilities of the hybrid and 

the fusion models to be used successfully to understand the granulation process and to 

accurately predict the properties of the granules produced by the HSG process.  

 

Figure 12. The validation experiment: the predicted (o) and the experimental (*) distributions 

for the size, binder content and porosity using impeller type I, speed=4400rpm, L/S ratio 

(w/w)=13.6% and granulation time=12min (a) the hybrid model and (b) the fusion model. 

The proposed modelling framework, i.e. the hybrid model followed by the fusion model 

architecture, successfully modelled the granulation process. This has been achieved by 

providing good predictions for the properties of the granules and an understanding of the 



process and its mechanisms. Generally, one develops models either to predict 

properties/behaviours or to control a process. The former, which is the main aim of this 

research, paves the way for the latter. In the future, the developed framework will be exploited 

in a reverse-engineering framework to identify the optimal operating conditions for granules 

with predefined properties. This can be achieved by, for instance, embedding the multi-

objective optimization paradigms to ensure the right-first-time production.  

Conclusions  

In this research, a hybrid model based on both physical and data-based models was 

presented to model the high shear granulation process. The model consisted of three 

components, namely, a computational fluid dynamics (CFD) model, a population balance 

model (PBM) and a radial basis function (RBF) model. These models were integrated through 

an iterative procedure, where the outputs from one of these models are used as inputs to the 

model architecture. The hybrid model combined the strengths of the single models involved in 

a way that any potential limitations may be circumvented. Consequently, this model was able 

to provide a deeper insight into the granulation process and its mechanisms, and also the flow 

of the granules. It was also capable of interpreting the relationships between the inputs and the 

outputs, hence it can be used to predict the properties of the granules with a good degree of 

accuracy. In addition, the model was able to implicitly compensate for some of the basic 

assumptions normally used in physical models, which were previously reported in the 

literature. Furthermore, the new model expressed the empirical parameters as a function of the 

granulation input variables. Although, the RBF model cannot physically interpret the 

relationship between the inputs and the outputs, these parameters can easily be predicted if one 

knows the operating conditions of the experiment. The effectiveness and efficiency of the 

hybrid model was demonstrated and validated by predicting the properties for the training 



experimental data and subsequently newly acquired data successfully. By utilizing the scaling-

up methods presented in the related literature31 and by training the RBF network, the hybrid 

model can be exploited on a relatively larger scale. However, many aspects need to be 

considered (e.g. mixer geometry) to ensure that it will be implemented correctly.  

Accurate predictions of the properties of the granules are more often than not required. 

Accordingly, a new fusion model based on integrating fuzzy logic theory and Dempster-Shafer 

theory was developed. This model combined the predicted outputs from the hybrid model with 

the corresponding ones from the model incorporating the integrated network and the Gaussian 

mixture model; such a model is a data-based model that had been developed previously1. The 

main motivation behind such a model was, in addition to accurate predictions, to resolve any 

conflict(s) that may exist between the various model formalisms. Significant improvements 

were achieved by using this new approach over the hybrid and the incorporated models.  

In summary, a good modelling performance was achieved by the hybrid model, followed 

by the fusion model. Such a framework is considered to be a promising development in those 

industries where the granulation process is considered to be one of the most crucial unit 

operations that determine the quality of the final product. In the future, such a framework can 

be exploited within a reverse-engineering framework that can achieve right-first time 

production of granules.  
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