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Abstract

We present a theoretical method to simulate the electronic dynamics and two-dimensional ul-

traviolet spectra of the nucleobase adenine in water. The method is an extension of the hierarchy

of equation of motion approach to treat a model with one or more conical intersections. The ap-

plication to adenine shows that a two-level model with a direct conical intersection between the

optically bright state and the ground state, generating a hot ground state, is not consistent with

experimental observations. This supports a three-level model for the decay of electronically excited

adenine in water as was previously proposed in [Prokhorenko et al., J. Phys. Chem. Lett. 7, 4445

(2016)].
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I. INTRODUCTION

An important goal of spectroscopic and theoretical studies on DNA nucleobases, one of

which is adenine, and DNA itself has been the elucidation of the decay mechanism after

absorption of ultraviolet (UV) light.1 It has been speculated that DNA is intrinsically pho-

tostable due to the presence of ultrafast deactivation channels, and that this photostability

is important for its biological function as the storage system of the genetic code.2

The resolution of the decay mechanism after photoexcitation would be much easier if one

could reliably determine the excited state potential energy surfaces. This is in essence a

problem of electronic structure. Several groups have calculated these potential surfaces and

their intersections for adenine,3–9 however, no consensus has been reached on their exact

shape or topology.10 Calculations are complex because of the number of electrons that needs

to be accounted for, even for a small molecule, the inherent difficulty in reliably computing

excited state properties, and the presence of a water solvent in natural systems.

In this situation, it is valuable to derive information from an experiment. Optical mea-

surements directly probe the electronic response of nucleobases after absorption of light.

It turns out that linear UV spectra of these molecules in water are very broad. This can

be explained by rapid pure dephasing contributions to the line shape, which basically hide

all information about slower relaxation processes. It is then natural to employ nonlinear

optical measurements to measure these ultrafast processes. Several groups have been using

time-resolved transient absorption (TA), fluorescence and photoelectron spectroscopies to

study the dynamics of excited electrons in nucleobases11–13 and larger complexes.14,15 Mea-

surements have been interpreted with the help of models that imply the presence of conical

intersections between the excited state and the ground state,16 and of a resultant hot ground

state.17

Very recentely, Prokhorenko et al.18 have collected TA and electronic two-dimensional

(2D) UV spectra of adenine in water. These measurements offer new information on the

electronic excited state dynamics through their extremely high time resolution and through

analysis of the 2D line shape.

In order to interpret these TA and 2DUV spectra, and relate them to the underlying

potential energy surfaces, a theoretical method was developed. Here, we will introduce

a new technical development in our numerical approach that allow simulations at lower
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temperatures, and compare the calculated spectra for different potential energy surfaces.

The two crucial ingredients of the model are potential energy surfaces which are connected

through conical intersections, and dissipative dynamics induced by a quantum bath.

Many molecules of interest in spectroscopy exhibit conical intersections.19–26 In order

to numerically model the electronic dynamics in a system with a conical intersection, one

needs to propagate coupled electronic and nuclear degrees of freedom beyond the adiabatic

approximation. This approximation clearly breaks down because the energy separation

between electronic states becomes arbitrarily small close to the intersection. This makes

the calculation of dynamics a difficult problem. Often, the nuclei are treated classically27

or the diabatic coupling is treated using perturbation theory.28 Stueckelberg oscillations

can occur near a conical intersection,29 which make a treatment of the problem even more

complicated. Therefore, rich two-dimensional spectra are expected for systems with conical

intersections.30,31

A series of seminal papers on two-dimensional optical spectra of nucleobases was re-

cently presented by Garavelli and co-workers.32–35 The methodology that was developed by

this group combines electronic structure calculations with the sum over states approach to

calculate nonlinear optical signals. In this way, information from quantum chemical com-

putation can be compared directly with the experiment, and predictions on the electronic

structure corresponding to a certain nonlinear spectrum can be made.

UV and visible 2D and TA spectroscopic signals were calculated for zero waiting time for

several nucleobases, employing complete active space methods to characterize the electronic

transitions.32,34 Calculations were done in vacuum, and it was shown that the excited state

absorption contributions can be used to identify the electronic states in nucleobases. Dimers

of stacked nucleobases were also considered. Relaxation mechanisms and their effect on the

nonlinear signal were studied as well.33 In this study, a QM/MM approach with explicit

solvent was used.

Besides conical intersections, the second crucial ingredient of the model discussed in

this work is dissipative dynamics. Numerically exact methods that can be used to cal-

culate nonlinear spectra in this field include the quasi adiabatic path integral algorithm

(QUAPI)36 and the hierarchy of equations of motion,37 an extension of which we will use

here. Nonadiabatic coupling between an excited state and the ground state was considered

for a one-dimensional model by Tanimura.38 In such a one-dimensional model coupling be-
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tween diabatic states leads to an avoided crossing of the adiabatic surfacaces. To go one

step further and properly account for a conical intersection of these surfaces, the standard

model needs the introduction of at least two vibrational modes.39

In the present work, we aim at interpreting the experimentally measured electronic 2D

spectrum of adenine in water. We use and develop a hierarchy of equations of motion method

for potential energy surfaces which cross at conical intersections, which includes effects such

as decoherence and dephasing. In addition to the above mentioned calculations of 2DUV

spectra for different potential energy surfaces, we introduce a new procedure to terminate

the hierarchy, which improves the numerical efficiency at low temperature.

II. MODEL

Although several excited states play a role in the wavepacket dynamics of photoexcited

adenine,40 we focus here on a minimal model that corresponds to the kinetic model derived

from experimental results. The key aim of our paper is to distinguish between two models - a

two-state model with a direct conical intersection between the optically bright state and the

ground state, and a three-state model with an intermediate state. We analyse 2D spectra for

both models and discuss how nonlinear optical spectroscopy can distinguish between them.

A. Two- and three-state models

A minimal model for a conical intersection is the linear vibronic coupling model30. In

this work, we will compare this model, which has an excited state and a ground state, with

a generalization with three potential energy surfaces: the ground state, a bright ππ∗ state

and a dark state. This model is derived from a kinetic model that can explain experimental

data.18

In these models, two types of coordinates play a role. The so-called tuning coordinate,

along which the diabatic state energies vary, and the coupling coordinate(s), along which

the coupling between diabatic states changes. In the linear vibronic coupling model, the

potential energy curves are harmonic along the tuning coordinate, and the dependence of

the diabatic coupling on the coupling coordinate is linear.

Two-level model - the Hamiltonian for the two-level model contains the two electronic
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states |g〉 and |e〉, a tuning mode Q2 and a coupling mode Q1. It is given by

HP = ǫe|e〉〈e|

+ M2Ω
2
2Q2deD2|e〉〈e|

+ M1Ω
2
1Q1D1(dV |g〉〈e|+ h.c.), (1)

where ǫe is the vertical excitation energy of the excited state and Mi, Di and Ωi are masses,

characteristic length scales and frequencies of the modes with coordinates Qi, and di are the

dimensionless displacements. The potentials for the tuning coordinate Q2 and the coupling

coordinate Q1 are both harmonic.

Damping is included in the model by linear coupling of the system coordinates Qi to

a bath of infinitely many harmonic oscillators, which are indexed by an index α. The

interaction of the coupling and tuning modes with the bath is given by the Hamiltonian

HSB =
∑

α

{
p2α
2mα

+
1

2
mαω

2
α(xα −

g1α
mαω2

α

Q1)
2

+
1

2
mαω

2
α(xα −

g2α
mαω2

α

Q2)
2}, (2)

where mα, ωα, xα and pα are the masses, frequencies, coordinates and momenta of the

harmonic bath oscillators, and giα are their coupling strengths to the system.

Because of the assumed linear coupling to a harmonic bath, all necessary information

about the bath and the system bath coupling is present in the spectral densities. The

spectral densities are defined as

Ji(ω) =
∑

α

g2iα
2mαωα

δ(ω − ωα). (3)

In order to be able to treat the coupling and tuning modes as bath modes rather than as

system modes and to obtain a practical spectral density for the extended bath, we choose

these to be Ohmic,

Ji(ω) = Miηiω exp (−ω/Λ), (4)

where we will take the cut-off Λ larger than all other frequencies in the system, so that

it can be set to infinity. The parameters ηi measure the strength of the damping. The

physical picture is that the motion on the harmonic coupling and tuning modes is damped

by coupling to the bath of harmonic oscillators, and this damping is Ohmic. The problem

is then transformed by including the coupling and tuning modes into the bath. This new
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bath is then affecting the system through a transformed spectral density, which is of the

Brownian oscillator type.

Through a canonical transformation the Hamiltonian is rewritten as41,42

H = ǫe|e〉〈e|

− (de|e〉〈e|)
∑

α

g′2αx
′
α

− (dV |g〉〈e|+ h.c.)
∑

α

g′1αx
′
α. (5)

In the following, we will use the notation HS = ǫe|e〉〈e| and V2 = de|e〉〈e| and V1 = |g〉〈e|+

h.c.. The transformed spectral density, defined for the couplings to the transformed bath

g′iα is of the Brownian oscillator form.

In the overdamped case, we approximate the spectral density by the Debye form

JiOD(ω) = 2λiωc,i

ω

ω2 + ω2
c,i

, (6)

where ωc,i is the cut-off frequency and λi the reorganization energy. We note that this

approximation is not a formal limit of the Brownian oscillator spectral density, as can be seen

from different contributions to the imaginary part of the correlation function (dissipation)

as well as to the real part (fluctuations) at low temperature. The correlation function is

connected to the spectral density by the standard formula43

C(t) =
1

π

∫ ∞

0
dωJ(ω)(coth βω/2 cosωt− i sinωt), (7)

where β = 1/kBT is the inverse thermal energy, which is given as the product of the

Boltzmann constant kB and the temperature T .

Three-level model - In a similar way, we derive the Hamiltonian for a three-level model,

which consists of a ground state, a bright state |e〉 and a dark state |d〉. The bright state is

connected to the dark state via a conical intersection. Excitations can reach the ground state

from the dark state through a second conical intersection. The transformed Hamiltonian is

now

H = ǫe|e〉〈e|+ ǫd|d〉〈d|

− (de|e〉〈e|+ dd|d〉〈d|)
∑

α

g′2αx
′
α

− (dV |g〉〈d|+ h.c.)
∑

α

g′1αx
′
α.

− (dV ′ |d〉〈e|+ h.c.)
∑

α

g′1′αx
′
α. (8)
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In this model, there are three spectral densities and therefore three correlation functions, one

for the tuning mode and one for each of the two coupling modes. The system Hamiltonian

is now HS = ǫe|e〉〈e| + ǫd|d〉〈d| and we define V2 = de|e〉〈e| + dd|d〉〈d|, V1 = dV |g〉〈d| + h.c.

and V1′ = dV ′ |d〉〈e|+ h.c..

B. Hierarchy and terminator

The hierarchy of equations of motion has quickly become the method of choice for sim-

ulating non-Markovian quantum dynamics in open quantum systems. Initially proposed

by Tanimura and Kubo in 1989,37 it was developed over the following 20 years. In 2009,

the method was applied to photosynthetic light harvesting by Ishizaki and Fleming.44 They

showed that properly treating the time scale of the environment, which is similar to the typ-

ical time scale of the system’s dynamics, leads to prolonged quantum coherent oscillations,

which are missed in simplified treatments of this problem. In recent years, this method has

been applied to study various problems such as two-dimensional optical spectroscopy of light

harvesting complexes,45 DNA,46, electron transfer systems,47 quantum impurity systems,48

and fermionic systems.49

The correlation function for the Debye spectral density is of the form

Ci(t) =
∑

k

cike
−γik|t|. (9)

For the two-level model, there are two baths, which we labeled i = 1 and i = 2, while for the

three-level model there are three baths with i = 1, i = 1′ and i = 2. The sum of exponentials

can be obtained by a Matsubara expansion50 or by Padé approximation.51–53

The hierarchy of equations of motion is given by54

ρ̇n(t) = −

(

iH×
S +

∑

i

M
∑

k=0

nikγik

)

ρn(t)

−
∑

i

(

2λi

βiωc,i

− λi cot
βiωc,i

2
−

M
∑

k=1

cik
γik

)

V ×
i V ×

i ρn(t)

− i
∑

i

M
∑

k=0

V ×
i ρn

+

ik(t)

− i
∑

i

M
∑

k=0

nik

(

cikViρ
n−

ik(t)− c∗ikρ
n−

ik(t)Vi

)

. (10)

Here, we use the Matsubara expansion and the notation γi0 = ωc,i. The system Hamiltonian

HS and the system-bath coupling operators Vi are used as defined above. The notation
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V ×A = [V,A] denotes the commutator. The index n is a multi-index, which is composed

of 2(M + 1) indices for the two-level model, and of 3(M + 1) indices for the three-level

model. All indices are non-negative whole numbers and M is the number of Matsubara

frequencies taken into account. The notation n+
ik and n−

ik denotes the increase or decrease

of the respective index by one. When all the indices are zero, the object ρn is equal to the

physical reduced density matrix. All other matrices ρn, called auxiliary density matrices,

are introduced to keep track of the state of the bath and the system-bath correlations. All

these matrices are of the same dimension as HS.

For deep enough layers of the hierarchy, where nikγik is large compared to the typical

energy scales in the system Hamiltonian and in the system bath coupling, the Markovian

approximation can be made, and the equations of motion can be closed.55,56 The terminators

are normally applied when
∑

ik nik > N for a chosen N . Shi-Yan filtering has been proposed

as a way to reduce the size of the hierarchy.57 In this paper, we propose and apply a rig-

orous and efficient termination criterion that uses
∑

ik nikγik > Γ, where Γ is a convergence

parameter that should be chosen to be large compared to the energy scales in the system

Hamiltonian and the system bath coupling. Implementation of this criterion results in a

much smaller hierarchy than the original criterion. If the number of Matsubara frequencies

included, M is taken large enough, so that 2(M +1)π/β > Γ, while larger Matsubara terms

are included in the Markovian approximation, the cut-off energy Γ is the only convergence

parameter (in addition to the time step). While we use the Matsubara expansion of the

correlation function here, this terminator can be applied to other expansions, including the

Padé approximation or fitting methods, as well.

2DUV spectra were calculated using the response function formalism, in which the optical

pulses are approximated as delta functions in time. Broad band pump-probe spectra were

calculated by setting t1 = 0 in the response function.

III. RESULTS AND DISCUSSION

A. Linear spectra and the role of low-temperature terms

At the ground state geometry, where excited states are populated after vertical excitation,

the energy gaps between the states are on the order of electron Volts. Because it takes some
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time for the excited state wave packet to reach the conical intersection, the dynamics between

states happen on time scales of the order of hundreds of femtoseconds, as is known from the

experimental pump probe spectra. Dephasing of the optical coherence, however, happens

in tens of femtoseconds, as is clear from the line width of the linear spectrum. Therefore,

population relaxation doesn’t play a role in the linear spectrum, which can be understood

completely by pure dephasing in a two-level model.

As is shown in Figure 1, we indeed get a very good fit of the experimental spectrum using

a pure dephasing calculation with the Debye spectral density. The temperature was set to

290 K (β = 40 eV−1). The parameters used in the figure are ωc,2 = 0.12 eV (fluctuation

time scale 34 fs), de = −0.8 and λ2 = 0.87 eV (reorganization energy d2eλ2 = 0.56 eV). The

reorganization energy that we used here to match the experimental spectrum, of more than

half an electron Volt, is considerable.

The linear spectrum was calculated directly from the lineshape function, which gives the

exact response in the pure dephasing limit.58 We found that the inclusion of both dissipation

and Matsubara terms is crucial in this parameter regime. The model depends only on the

tuning coordinate and does not involve the coupling coordinate(s).

We changed the parameters to understand their effect on the line shape. In brief, larger

values of ωc,2 lead to a more asymmetric line shape. Lowering the temperature also causes

this effect, which is in particular visible in the steep rise at the low energy edge of the

spectrum. The reorganization energy simply broadens the spectrum. Because the linear

spectrum can be fitted with a pure dephasing model, and is not sensitive to the population

relaxation, it cannot be used to distinguish between the two- and three-level models, which

give identical linear spectra.

B. Population dynamics and two-dimensional spectra

The population dynamics of the excited state for the two-level model is shown in figure

3. Calculations were performed at a temperature of 1/β = kBT = 0.1 eV and parameters

for the tuning mode were obtained by calculating the linear spectrum at this temperature.

In the experimental two-dimensional spectra of nucleobases in water, a strong negative

peak is observed, with an intensity that first grows with increasing waiting time and then

decreases.18 In principle, this observation could be explained by the influence of the hot
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ground state as was proposed in Ref. 17. The spectra could be fully explained through the

two-level model without any higher lying states that lead to induced absorption. Briefly, in

this model,17 the initial excitation from the ground state creates a wave packet in the excited

state. At very short waiting time, there are bleaching and stimulated emission contributions

from the bright state, leading to a positive peak, but no process that leads to a negative

peak. As waiting time increases, the wave packet relaxes back to the ground state through

the conical intersection and forms a hot ground state. The hot ground state is reflected in

our model by a time-dependent displacement of the tuning coordinate. Relaxation to the

hot ground state followed by absorption to the bright state will lead to a negative peak

in the spectrum. This peak is red shifted with respect to the bleaching and stimulated

emission because the energy gap between the ground and excited states is smaller when

the tuning coordinate is displaced. Clearly, in this model the negative peak will increase in

intensity with waiting time, and then decrease and shift to higher energies as the ground state

wave packet cools down and the negative peak overlaps with the bleaching and stimulated

emission contributions. In this way, this model can qualitatively explain the experimental

observations. That this is indeed also the case in our numerical simulations of the calculated

2DUV spectra is shown in Fig. 2. These spectra were calculated using the standard response

function approach.58 Wide band pump-probe spectra were calculated by setting t1 = 0 when

evaluating the response function in the time domain.

However, we observe that the negative peak appears only if the reorganization energy or,

equivalently, the displacement of the tuning mode, is very large. In this case, the line width

of the linear and nonlinear spectra is also too large and incompatible with the experimental

data. In fact, the parameters leading to a good agreement with the experimental spectra do

not lead to a negative peak in the two-dimensional spectrum.

This observation is illustrated explicitly in Fig. 4, where we show electronic 2DUV spectra

as a function of waiting time with parameters that are in agreement with observed line

widths. These parameters also yield population dynamics consistent with the experimentally

observed time scales, as is shown in Fig. 3. We see that, apart from small spectral diffusion

effects at short waiting time, the spectral shape is almost independent of waiting time. This

can be explained as follows. If the reorganization energy is small, the ground and excited

states are displaced along the tuning coordinate by only a small amount. However, they

are offset vertically by the optical excitation energy. The small displacement then leads to
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a situation where the conical intersection has a larger energy than the vertical excitation

energy. Therefore, in these overdamped simulations, the wave packet never reaches the

conical intersection and therefore the hot ground state does not form.

From this analysis of the two-level model, we conclude that it cannot explain the ex-

perimental observations quantitatively. We considered the possibility that the dissipation of

excitation energy strongly increases the local temperature and therefore leads to a value of β

that increases with time. As long as ωc and λ do not change, this would lead to widening of

the pump-probe spectrum with increasing delay time, which is not observed in experiment.

C. Three-level model

By comparing simulated pump probe spectra with the experiment, we find that the bright

and dark state must have opposite displacement, so that the vertical excitation energy of

the dark state is smaller than the vertical excitation energy of the bright state.

We choose the parameters of our model by comparison with experiment as follows. The

product of the reorganization energy for the tuning coordinate and the squared value of

the displacement of the bright state is determined by the width of the linear spectrum.

The displacement of the dark state is determined from the line widths in the pump probe

spectrum. We restrict our parameter set by choosing the damping parameters ωc,i of all

three modes to be equal. The remaining parameters are then the vertical excitation energy

of the dark state, and the reorganization energy of the coupling modes, which determines

the strength of the coupling. We find that these parameters cannot be determined uniquely

from the observed spectra, but that we can choose them to obtain a reasonable agreement

with the experimental data.

As we have shown previously,18 simulations with a three-level model that also includes

excited state absorption to higher lying states can nicely explain the experimental data. In

this model, the wave packet relaxes from the bright state to a dark state, and then to the

ground state.

Figure 5 shows the calculated pump-probe and 2DUV spectra for our current three-level

model, which was calculated at a much lower (and therefore more realistic) temperature

than in our previous work.

The parameters used in this figure are ǫe = 5.0 eV, ǫd = 3.5 eV, for the tuning mode
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de = −0.8, dd = 1.0, λ2 = 0.68 eV and ωc,2 = 0.3 eV. For the coupling mode which connects

the bright and dark states, λ1′d
2
V ′ = 0.01 eV and ωc,1′ = 0.3 eV; for the coupling mode which

connects the dark state to the ground state, λ1d
2
V = 0.005 eV and again ωc,1 = 0.3 eV.

The transition dipole moment from the dark state to doubly excited states was set to 1.4,

while induced absorption from the bright state was not taken into account. The potential

energy surfaces for the ground, bright and dark states are shown in figure 6. Note that the

frequency of the harmonic potentials does not appear explicitly in the theoretical model in

the overdamped limit that we employ here.

The solid and dashed lines in panel (b) show the results for Γ = 5.0 eV and Γ = 4.0 eV.

They almost completely overlap, showing that convergence was reached.

The inverse temperature in these calculations was set to β = 10 eV−1 (kBT = 0.1 eV).

This is still much higher than room temperature, but far in the low temperature regime

compared with the vertical excitation energy of the bright state, as can be seen by evaluating

βǫe = 50, which is much larger than 1, and also in the low temperature regime compared to

the energy difference between the bright state and the dark state, β(ǫe − ǫd) = 15.

From these simulations on the three-level system, we conclude that it can fully explain

the experimental data.

D. Excited state coherence in a dimer

In this section, we briefly present results that go beyond the single nucleobase studied

so far and look at a dimer, which is a model of two stacked adenine bases. In order to

study the effect of pure dephasing on the decay of the coherence between the bases, we

consider coupled two-level systems. We set ωc = 0.12 eV, λd2e = 0.56 eV and a resonant

transfer interaction between the two monomers of 0.1 eV. We then calculate the resulting

time dependence of the intermolecular coherence for various temperatures. The coherence

is defined as the magnitude of the off-diagonal element of the density matrix for the singly

excited state. A coherent superposition of two excited monomers, as is prepared by optical

excitation, initially loses coherence very quickly, on a time scale around 10 fs. However,

significant coherence remains at much longer times which is stable against pure dephasing

at low temperature. Dephasing due to population relaxation will eventually destroys this

coherence, but this happens on the times scale of 100s of femtoseconds. These findings are
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illustrated in a numerical calculation in Figure 7. The relevance of these time scales can be

seen by comparing them with the typical time scale for the energy transport between two

monomers. Coherent energy transfer happens on a time scale dictated by 1/J , where J is

the resonant transfer coupling. For nucleobases, J is a few hundred wavenumbers.59 This

corresponds to time scales of around 100 fs. Therefore, we expect some degree of exciton

effects in stacked adenine bases.

IV. CONCLUSION

In this paper, we have compared two- and three-level models for the photophysics of

adenine in water. Based on calculated two-dimensional UV spectra, we have shown that

harmonic two-level models cannot explain the experimental spectra.

While a three-level model with a dark state fully explains the experimentally observed

negative peak in the 2DUV spectra and the time dependence of the TA spectrum, we cannot

rule out that the dark state is in fact the same state as the bright state. In this case, the

transition dipole to the ground state must decrease strongly along the tuning coordinate

(non-Condon behaviour), while a strong transition to high-lying excited states is possible.

This point requires further investigation.

Our work can be extended in several ways. Since the reorganization energy of the cou-

pling modes is small, one may consider treating them perturbatively while including the

tuning mode through a polaron transformation.28 The method that we use is not limited

to overdamped dynamics on the potential energy curves, but can also be used with under-

damped vibrations.60 Finally, based on our finding that some coherent energy transport is

possible, it will be interesting to investigate nucleobase oligomers. In such simulations one

should also consider possible intramolecular charge transfer states.

We expect that our work will generate new interest in the connection between ab-initio

calculated potential energy surfaces, fluctuations, and nonlinear optical spectra.
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V. FIGURES
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FIG. 1: Calculated and experimental UV absorption spectrum of adenine in water. The red circles

are the experimentally observed values,18 while the solid line is the simulation. Calculated results

used the Drude spectral density with parameters de = −0.8, λ2 = 0.87 eV, ωc,2 = 0.12 eV and a

temperature of 290 K.

The linear spectrum for the parameters used in Fig. 2 in the pure dephasing limit is shown as a

dashed line.
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FIG. 2: 2D spectra for the two-level model with parameters ǫe = 5.0 eV. de = −0.8 coupling mode:

λ2 = 2.0 eV, ωc,2 = 0.5 eV, β = 1.0 eV−1. tuning mode: λ1 = 1.0 eV, dV = 0.8, ωc,1 = 0.5 eV,

β = 1.0 eV−1.

For these parameters, the hot ground state effect leads to a negative peak. However, its line

width is much larger than in the experiment (See Fig. 1), and the time scales of dynamics are

much faster.
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FIG. 3: Dynamics for the two-level system with the parameters: coupling mode λ1 = 0.1 eV,

ωc,1 = 0.3 eV, β = 10.0 eV−1, dV = 0.8; tuning mode λ2 = 0.68 eV, ωc,2 = 0.3 eV, β = 10.0 eV−1,

de = −0.8.

(solid line) Γ = 6 eV, 10 Matsubara frequencies are included, (dashed line) Γ = 5 eV, 8

Matsubara frequencies. Plotted is the excited state population.
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FIG. 4: 2D spectra with the parameters from Figure 3
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FIG. 5: Calculated pump-probe and 2DUV spectra for the three-level model. (a) Broad band

pump probe spectrum. (b) Cuts through the pump-probe spectrum at the energies indicated with

black lines in panel (a). Solid and dashed curves show that convergence was reached with respect

to Γ. (c) 2DUV spectrum at zero waiting time. (b) 2DUV spectrum at a waiting time of 517 fs.
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FIG. 6: Model potential energy surfaces for the three-level model used in the present calculation.
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FIG. 7: Coherence (see main text) between two molecules in a dimer for different temperatures.

(cyan) β = 1, (blue) 2, (green) 5, (red) 10, (black) 20 eV−1. Lower temperature leads to a larger

value of the steady state coherence.
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