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Network Edge Entropy from

Maxwell-Boltzmann Statistics

Jianjia Wang, Richard C. Wilson, and Edwin R. Hancock

Department of Computer Science,
University of York, York, YO10 5DD, UK

Abstract. In prior work, we have shown how to compute global network
entropy using a heat bath analogy and Maxwell-Boltzmann statistics. In
this work, we show how to project out edge-entropy components so that
the detailed distribution of entropy across the edges of a network can be
computed. This is particularly useful if the analysis of non-homogeneous
networks with a strong community as hub structure is being attempted.
To commence, we view the normalized Laplacian matrix as the network
Hamiltonian operator which specifies a set of energy states with the
Laplacian eigenvalues. The network is assumed to be in thermodynamic
equilibrium with a heat bath. According to this heat bath analogy, par-
ticles can populate the energy levels according to the classical Maxwell-
Boltzmann distribution, and this distribution together with the energy
states determines thermodynamic variables of the network such as en-
tropy and average energy. We show how the entropy can be decomposed
into components arising from individual edges using the eigenvectors of
the normalized Laplacian. Compared to previous work based on the von
Neumann entropy, this thermodynamic analysis is more effective in char-
acterizing changes of network structure since it better represents the edge
entropy variance associated with edges connecting nodes of large degree.
Numerical experiments on real-world datasets are presented to evaluate
the qualitative and quantitative differences in performance.
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1 Introduction

There has been a considerable recent interest in computing the entropy associ-
ated with different types of network structure [2, 3, 5]. Network entropy has been
extensively used to characterize the salient features of the structure of static and
dynamic of network systems arising in biology, physics, and the social sciences
[1–3]. For example, the von Neumann entropy can be used as an effective char-
acterization of network structure, commencing from a quantum analog in which
the Laplacian matrix on graphs [1] plays the role of the density matrix. Further
development of this idea has shown the link between the von Neumann entropy
and the degree statistics of pairs of nodes forming edges in a network [2], which
can be efficiently computed for both directed and undirected graphs [3]. Since
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the eigenvalues of the density matrix reflect the energy states of a network, this
approach is closely related to the heat bath analogy in statistical mechanics.
This provides a convenient route to network characterization [3, 5]. By populat-
ing the energy states with particles which are in thermal equilibrium with a heat
bath, this thermalization, of the occupation statistics for the energy states can
be computed using the Maxwell-Boltzmann distribution [4, 5]. The properties of
this physical heat bath system are described by a partition function with the
energy microstates of the network represented by a suitably chosen Hamiltonian.
Usually, the Hamiltonian is computed from the adjacency or Laplacian matrix
of the network, but recently, Ye et al.[4], have shown how the partition function
can be computed from a characteristic matrix polynomial instead.

Although entropic analysis of the heat bath analogy provides a useful global
characterization of network structure, it does not allow the entropy of edge or
subnetwork structure to be easily computed. In this paper, we explore a novel
edge entropy projection which can be applied to the global network entropy com-
puted from Maxwell-Boltzmann statistics. We use this technique to analyze the
distribution of edge entropy within a network and explore how this distribution
encodes the intrinsic structural properties of different types of network.

The remainder of the paper is organized as follows. In Sec. II, we briefly intro-
duce the von Neumann entropy with its approximate degrees of nodes connected
by an edge. In Sec. III, we develop an entropic network characterization from
the heat bath analogy and Maxwell-Boltzmann statistics, and then describe our
edge entropy projection. In Sec. IV, we undertake experiments to demonstrate
the usefulness of this novel method. Finally, in Sec. V we conclude our paper
with a summary of our contribution and suggestions for future work.

2 Preliminaries

2.1 von Neumann Entropy

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let |V | represent the total number of nodes on graph G(V,E). The |V |× |V |
adjacency matrix A of a graph is defined as

A =

{

0 if (u, v) ∈ E

1 otherwise.
(1)

Then the degree of node u is du =
∑

v∈V Auv.

The normalized Laplacian matrix L̃ of the graph G is defined as

L̃ = D− 1

2LD
1

2 = ΦΛ̃ΦT (2)

where L = D − A is the Laplacian matrix and D denotes the degree diag-
onal matrix whose elements are given by D(u, u) = du and zeros elsewhere.
Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal matrix with the ordered eigenvalues as
elements and Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is the matrix with the ordered eigenvectors
as columns.



Network Edge Entropy from Maxwell-Boltzmann Statistics 3

In quantum mechanics, the density matrix is used to describe a system with
the probability of pure quantum states. Severini et al. [1] have extended this idea
to the graph domain. Specifically, they show that a density matrix for a graph
or network can be obtained by scaling the combinatorial Laplacian matrix by
the reciprocal of the number of nodes in the graph.

With this notation, the specified density matrix is obtained by scaling the
normalized Laplacian matrix by the number of nodes, i.e.

ρ =
L̃

|V |
(3)

When defined in this way the density matrix is Hermitian i.e. ρ = ρ† and
ρ ≥ 0,Trρ = 1. It plays an important role in the quantum observation process,
which can be used to calculate the expectation value of measurable quantity.

The interpretation of the scaled normalized Laplacian as a density operator,
opens up the possibility of characterizing a graph using the von Neumann entropy
from quantum information theory. The von Neumann entropy is defined as the
entropy of the density matrix associated with the state vector of a system. As
noted above, Severini et al. [1] suggest how the von Neumann entropy can be
computed by scaling the normalized discrete Laplacian matrix for a network. As
a result the von Neumann entropy is given in terms of the eigenvalues λ1, .....,
λ|V | of the density matrix ρ,

S
V N

= −Tr(ρ logρ) = −

|V |
∑

i=1

λ̂i

|V |
log

λ̂i

|V |
(4)

The von Neumann entropy [1] computed from the normalized Laplacian spec-
trum has been shown to be effective for network characterization. In fact, Han et
al.[2] have shown how to approximate the calculation of von Neumann entropy
in terms of simple degree statistics. Their approximation allows the cubic com-
plexity of computing the von Neumann entropy from the Laplacian spectrum,
to be reduced to one of quadratic complexity using simple edge degree statistics,
i.e.

S
V N

= 1−
1

|V |
−

1

|V |
2

∑

(u,v)∈E

1

dudv
(5)

This expression for the von Neumann entropy allows the approximate entropy
of the network to be efficiently computed and has been shown to be an effective
tool for characterizing structural property of networks, with extremal values for
the cycle and fully connected graphs.

Thus, the edge entropy decomposition is given as

S
V N

edge
(u, v) =

1

|E|
−

1

|V ||E|
−

1

|E||V |2
1

dudv
(6)
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where S
V N

=
∑

(u,v)∈E S
V N

edge
(u, v). This expression decomposes the global pa-

rameter of von Neumann entropy on each edge with the relation to the degrees
from the connection of two vertexes.

3 Network Entropy in Maxwell-Boltzmann Statistics

3.1 Thermodynamic Representation

Thermodynamic analogies provide powerful tools for analyzing complex net-
works. The underpinning idea is that statistical thermodynamics can be com-
bined with network theory to characterize both static and time-evolving networks
[6].

Here we consider the thermodynamic system specified by a system of N
particles with energy states given by the network Hamiltonian and immersed
in a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β = 1/kBT is an inverse of temperature parameter [5].

When specified in this way, the various thermodynamic characterizations of
the network can be computed. For instance, the average energy of the network
can be expressed in terms of the density matrix and the Hamiltonian operator,

〈U〉 = 〈H〉 = Tr (ρH) =

[

−
∂

∂β
logZ

]

N

(7)

and the thermodynamic entropy by

S = kB [logZ + β〈U〉] (8)

Both the energy and the entropy can be regarded as weighted functions of
the Laplacian eigenvalues which characterize the network structure in different
ways. In the following sections, we set the Boltzmann constant to the unity, i.e.,
kB = 1, and explore the thermodynamic entropy in more detail to represent the
intrinsic structure of networks.

3.2 Maxwell-Boltzmann Statistics

The Maxwell-Boltzmann distribution relates the microscopic properties of par-
ticles to the macroscopic thermodynamic properties of matter [4]. It applies to
systems consisting of a fixed number of weakly interacting distinguishable parti-
cles. These particles occupy the energy levels associated with a Hamiltonian and
in our case the Hamiltonian of the network, which is in contact with a thermal
bath [7].

Taking the Hamiltonian to be the normalized Laplacian of the network, the
canonical partition function for Maxwell-Boltzmann occupation statistics of the
energy levels is

Z
MB

= Tr

[

exp(−βL̃)N
]

=





|V |
∑

i=1

e−βλi





N

(9)
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where β = 1/kBT is the reciprocal of the temperature T with kB as the Boltz-
mann constant; N is the total number of particles and λi denotes the microscopic
energy of system at each microstate i with energy λi. Derived from Eq.(8), the
entropy of the system with N particles is

S
MB

= logZ − β
∂ logZ

∂β
= −NTr

{

exp(−βL̃)

Tr[exp(−βL̃)]
log

exp(−βL̃)

Tr[exp(−βL̃)]

}

= −N

|V |
∑

i=1

e−βλi

∑|V |
i=1 e

−βλi

log
e−βλi

∑|V |
i=1 e

−βλi

(10)

For a single particle, the density matrix is

ρ
MB

=
exp(−βL̃)

Tr[exp(−βL̃)]
(11)

Since the density matrix commutes with the Hamiltonian operator, we have
∂ρ/∂t = 0 and the system can be viewed as in equilibrium. So the entropy in
the Maxwell-Boltzmann system is simply N times the von Neumann entropy of
a single particle, as we might expect.

3.3 Edge Entropy Analysis

Our goal is to project the global network entropy onto the edges of the network.
In matrix form for Maxwell-Boltzmann statistics in Eq.(10), the entropy can be
written as,

S
MB

= −Tr
[

ρ
MB

logρ
MB

]

= −Tr[Σ
MB

] (12)

Since the spectral decomposition of the normalized Laplacian matrix is

L̃ = ΦΛ̃ΦT (13)

We can decompose the matrix Σ
MB

as follows

Σ
MB

= Φσ
MB

(Λ̃)ΦT (14)

where

σ
MB

(λi) = −N
e−βλi

∑|V |
i=1 e

−βλi

log
e−βλi

∑|V |
i=1 e

−βλi

for Maxwell-Boltzmann statistics. As a result, we can perform edge entropy pro-
jection of the Maxwell-Boltzmann statistical model using the Laplacian eigen-
vectors, with the result that the entropy of edge (uv) is given as,

S
MB

edge
(u, v) =

|V |
∑

i=1

σ
MB

(λi)ϕiϕ
T
i (15)

Thus, the global entropy can be projected on the edges of the network sys-
tem. This provides useful measures for local entropic characterization of network
structure in a relatively straightforward manner.
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4 Experiments and Evaluations

4.1 Data Sets

Data-set 1: The PPIs dataset extracted from STRING8.2 [8] consisting of net-
works which describe the interaction relationships between histidine kinase and
other proteins. There are 173 PPIs in this dataset and they are collected from 4
different kinds of bacteria with the following evolution order (from older to more
recent). Aquifex and Thermotoga-8 PPIs from Aquifex aelicus and Thermotoga
maritima, Gram-Positive-52 PPIs from Staphylococcus aureus, Cyanobacteria-
73 PPIs from Anabaena variabilis and Proteobacteria-40 PPIs from Acidovorax
avenae [9].

Data-set 2: The New York Stock Exchange dataset consists of the daily
prices of 3,799 stocks traded continuously on the New York Stock Exchange
over 6000 trading days. The stock prices were obtained from the Yahoo! finan-
cial database (http://finance.yahoo.com) [10]. A total of 347 stock were selected
from this set, for which historical stock prices from January 1986 to February
2011 are available. In our network representation, the nodes correspond to stock
and the edges indicate that there is a statistical similarity between the time series
associated with the stock closing prices [10]. To determine the edge structure of
the network, we use a time window of 20 days to compute the cross-correlation
coefficients between the time-series for each pair of stock. Connections are cre-
ated between a pair of stock if the cross-correlation exceeds an empirically deter-
mined threshold. In our experiments, we set the correlation coefficient threshold
to the value to ξ = 0.85. This yields a time-varying stock market network with a
fixed number of 347 nodes and varying edge structure for each of 6,000 trading
days. The edges of the network, therefore, represent how the closing prices of
the stock follow each other.

4.2 Experimental Results

We first investigate the temperature dependence of edge entropy for the PPI
networks. We select three different types of edges with different values of degrees
at the vertices and explore how the entropy changes with temperature.

Fig.1(a) plots three selected edge entropies versus temperature with Maxwell-
Boltzmann occupation statistics. The three edges show a similar dependence of
entropy on the temperature. As the inverse of temperature (β) increases, the
edge entropy reaches a maximum value. The edge entropy for vertices with the
high degree increases faster than that for the low-degree in the high-temperature
region. In the low-temperature limit, entropy approaches zero. This is because
when the temperature decreases the configuration of particle occupation be-
comes identical as the particles always state at the low energy levels since the
thermalization effects vanish.

Fig.1(b) shows the the relationship between the edge entropies in the Maxwell-
Boltzmann and von Neumann cases. There is a transition in the relationship
between two entropies with temperature. At high temperature (i.e., β = 0.1),
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Fig. 1. (a) Edge entropy with a different degree on both nodes for Maxwell-Boltzmann
statistics. The red line represents the high-degree edge; the blue line is the low-degree
edge and the black line is the median value of degree on the edge ends; (b) Scatter plot
of edge entropies from Maxwell-Boltzmann vs. von Neumann entropy with different
value of temperatures.

the Maxwell-Boltzmann entropy is roughly in linear proportion to von Neumann
entropy. However, as the temperature reduces, it takes on an approximately ex-
ponential dependence. The Maxwell-Boltzmann edge entropy decreases mono-
tonically with the von Neumann edge entropy in the low-temperature region
(β = 10).
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Fig. 2. (Color online) 3D scatter plot of edge entropy from Maxwell-Boltzmann statis-
tics and von Neumann entropy. (a) Edge entropy in Maxwell-Boltzmann statistics. (b)
Edge entropy from von Neumann formula. (c) The comparison of edge entropy between
Maxwell-Boltzmann statistics and von Neumann entropy.

Further exploration of the relationship between Maxwell-Boltzmann edge
entropy and von Neumann entropy is shown in Fig.2, which shows the 3D plots
of edge entropy with the vertex degree. The figure compares the edge entropy
between Maxwell-Boltzmann statistics and von Neumann entropy with node
degree connection for each edge in the network. The observation is that both
entropies have a similar tendency with the degrees at the end. The Maxwell-
Boltzmann edge entropy is more sensitive to the degree variance than the von
Neumann entropy in the high degree region. The reason for this is the constant
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term in the von Neumann entropy formula dominates the value of edge entropy
when the degrees are large. Thus, the Maxwell-Boltzmann edge entropy is better
suited to represent the differences in graph structure associated with large degree
nodes.

PPI Networks
Maxwell-Boltzmann Statistics 

Distribution

von Neumann Entropy 

Distribution

Fig. 3. (Color online) Examples of protein-protein interaction networks with the edge
entropy distribution from von Neumann entropy and Maxwell-Boltzmann statistics.

When compared to the von Neumann edge entropy, the Maxwell-Boltzmann
edge entropy is distributed rather differently. Fig.3 shows two examples of PPI
networks, namely Anabaena variabilis and Aquifex aelicus together with their
associated edge entropy histograms. The Maxwell-Boltzmann edge entropies are
more sensitive to the presence of edges associated with high degree nodes, which
provides better edge discrimination. This effect is manifest in the differences of
edge entropy histograms. In the Maxwell-Boltzmann case, the histogram shows
two peaks in the edge entropy distribution, while the von Neumann edge entropy
is concentrated at low values and has just a single peak. In other words, the von
Neumann edge entropy offers less salient structure.

Next, we turn our attention to the time evolution of networks. We take the
NYSE network as an example to explore the entropic characterization in the
network structure. Fig.4 plots the total network for the Maxwell-Boltzmann and
von Neumann cases. Both entropies reflect the positions of significant global
financial events such as Black Monday, Friday 13th mini-crash, Early 1990s Re-
cession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial
Crisis, the Bankruptcy of Lehman Brothers and the European Debt Crisis. In
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Fig. 4. (Color online) Entropy from Maxwell-Boltzmann statistics and von Neumann
entropy for NYSE (1987-2011). Number of particle is N = 1 and temperature is β = 10.

Before Black Monday During Black Monday After Black Monday

Fig. 5. (Color Online) Visualization of network structure before, during and after Black
Monday. The edge entropy distribution is computed from von Neumann entropy and
Maxwell-Boltzmann statistics. The statistical model such as Maxwell-Boltzmann case
is more sensitive to represent the dynamic structure in the networks.
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each case, the entropy undergoes significant fluctuations during the financial
crises, associated with dramatic structural changes. Compared to the von Neu-
mann entropy, the Maxwell-Boltzmann case is more sensitive to fluctuations in
the network structure. A good example is Black Wednesday in 1992, which is
obvious in the Maxwell-Boltzmann entropy but is not clear in the von Neumann
case.

We now focus in detail on one critical financial event, i.e., Black Monday
in October 1987, to explore the dynamic structural difference with the entropic
variance. We visualize the network structure at three-time epochs, i.e., before,
during and after Black Monday, and compare the Maxwell-Boltzmann with von
Neumann edge entropy. Fig.5 shows the network structure and edge entropy dis-
tribution during the crisis. Before Black Monday, the stocks are highly connected
with a large number of densely connected clusters of stocks following the same
trading trends. This feature is also reflected in the Maxwell-Boltzmann edge en-
tropy distribution. However, during Black Monday, the number of connections
between stock decrease significantly with large numbers of nodes becoming dis-
connected. Some stocks do though slightly increase their number of links with
other stocks. This manifests itself as a shift of the peak to the high entropy
region of the distribution. After Black Monday, the stocks begin to recover con-
nections with another. The node degree distribution also returns to its previous
shape. In contrast, the von Neuman edge entropy distribution does not com-
pletely reflect the details of these critical structural changes. Compared to the
Maxwell-Boltzmann edge entropy, the distribution of von Neumann edge en-
tropy does not change significantly during Black Monday and hence does not
effectively characterize the dynamic structure on the network.

In conclusion, both the Maxwell-Boltzmann and von Neumann edge entropies
can be used to represent changes in network structure. Compared to the von
Neumann edge entropy, the Maxwell-Boltzmann edge entropy is more sensitive to
variance associated with the degree distribution. In the low-temperature region,
the Maxwell-Boltzmann edge-entropy has similar degree sensitivity to the von
Neumann edge entropy. However, it is more sensitive to high degree variations.

5 Conclusion

This paper has explored the thermodynamic characterizations of networks re-
sulting fromMaxwell-Boltzmann statistics, and specifically those associated with
the thermalization effects of the heat bath on the occupation of the normal-
ized Laplacian energy states. We view the normalized Laplacian matrix as the
Hamiltonian operator of the network with associated energy states which can be
occupied by classical distinguishable particles. This extends the use of entropy
as a tool to characterize network structures in both static and time series data.
To compare with the extensively studied von Neuman entropy, we conduct the
experiments which demonstrate that the thermodynamic edge entropy is better
suited to represent the intrinsic structural properties associated to long-tailed de-
gree distributions. Future work will focus on exploring non-classical alternatives
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to the Maxwell-Boltzmann occupation statistics and the detailed distribution of
the entropic characterization for different types of complex networks.
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