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Abstract 18 

Hepatitis C Virus (HCV) affects about 170 million people worldwide. The current treatment has 19 

a high cost and variable response rates according to the virus genotype. Acridones, a group of 20 

compounds extracted from natural sources, showed potential antiviral actions against HCV. 21 

Thus, this study aimed to evaluate the effect of a panel of 14 synthetic acridones on the HCV life 22 

cycle. The compounds were screened using an Huh7.5 cell line stably harboring the HCV 23 

genotype 2a subgenomic replicon SGR-JFH1-FEO. Cells were incubated in the presence or 24 

absence of compounds for 72 hours and cell viability and replication levels were assessed by 25 

MTT and luciferase assays, respectively. The acridone Fac4 at 5 µM inhibited approximately 90 26 

% of HCV replication with 100 % of cell viability. The effects of Fac4 on virus replication, entry 27 

and release steps were evaluated in Huh7.5 cells infected with the JFH-1 isolate of HCV 28 

(HCVcc). Fac4 inhibited approximately 70 % of JFH-1 replication, while no effect was observed 29 

on virus entry. The antiviral activity of Fac4 was also observed on the viral release, with almost 30 

80% of inhibition. No inhibitory effect was observed against genotype 3 replication. Fac4 31 

demonstrated 40% of intercalation into dsRNA, however did not inhibit T7 polymerase activity, 32 

as well as translation by IRES interaction. Although its mode of action is partly understood, the 33 

Fac4 presents significant inhibition of Hepatitis C virus replication and can therefore be 34 

considered as a candidate for the development of a future anti-HCV treatment. 35 
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Introduction 40 

Hepatitis C virus (HCV) is a global health problem, widely distributed, that affects 41 

approximately 170 million people around the world (Alter & Seeff, 2000; Houghton, 2009). 42 

HCV, the causative agent of this disease, is a single stranded RNA positive genome virus that 43 

belongs to Flaviviridae family and is classified as a group IV virus, according to Baltimore 44 

classification (Baltimore, 1971; Penin et al., 2004). With a genome of 9.6 kb, flanked by 3’ and 45 

5’ untranslated regions, the open reading frame codes for a polyprotein of about 3000 amino 46 

acids (Suzuki et al., 2007). Viral and host proteases cleave this polyprotein, producing 3 47 

structural proteins (Core, E1 and E2) and 7 non-structural proteins (p7, NS2, NS3, NS4A, NS4B, 48 

NS5A and NS5B) (Dustin & Rice, 2007; Lindenbach & Rice, 2005; Penin et al., 2004).   49 

Due to the high genetic variability, mainly derived from the lack of proof-reading activity of 50 

RNA-dependent RNA polymerase NS5B and high replication rate during infection (Argentini et 51 

al., 2009), HCV is divided into genotypes (1 to 7) and subtypes (classified by lowercase letters – 52 

a, b, c) (Murphy et al., 2007; Simmonds et al., 2005; Simmonds et al., 1993). Furthermore, in an 53 

infected individual it circulates as a pool of variants genetically related, named quasispecies 54 

which provides a favorable environment for the emergence of mutations resulting in drugs 55 

resistance  (Cristina et al., 2007; Davis, 1999; Martell et al., 1992; Pawlotsky, 2006). Therefore, 56 

the quasispecies nature of HCV has a direct impact in the effectiveness of treatment with usual 57 

medications, as well as the development of new antivirals (Le Guillou-Guillemette et al., 2007). 58 

With the current development of the Direct Acting Antivirals (DAAs) such as protease, 59 

polymerase and NS5A inhibitors, the most effective treatment is the administration of DAAs 60 

with or without pegIFN-Į and ribavirin (Gao et al., 2010; Lawitz et al., 2013; Rosenquist et al., 61 

2014). Treatment strategy is designed based on virological, clinical and liver pathology aspects.  62 

The SVR is variable and dependent on virus genotype and the stage of liver disease. Jacobson et 63 



 
 

al. evaluated two groups of patients during 12 weeks of treatment with sofosbuvir and ribavirin. 64 

The group infected with HCV genotype 2 presented around 90% of SVR, while patients infected 65 

with genotype 3 showed only 61% of SVR (Jacobson et al., 2013).  This reduced efficacy in 66 

genotype 3, coupled with potential side effects such as anemia, autoimmune disorders, diarrhea, 67 

rash, retinopathy and weight loss, as well as the elevated cost, means that additional therapeutic 68 

options are still required (Munir et al., 2010).  69 

Alkaloids is a central class of natural products, which have been extensively used as modern 70 

drug prototypes and drugs (Newman & Cragg, 2016). Among these, acridones are planar 71 

compounds isolated from Rutaceae plants, and exhibited several bioactivities, including; 72 

antimicrobial, cytotoxic, algicidal, moluscicidal, anti-allergic and antidiabetic (Michael, 2008). 73 

Also, synthetic compounds containing acridone framework have demonstrated correlated 74 

bioactivities to their natural analogues (Alwan et al., 2015). The antiviral action of acridones is 75 

well known in literature against HSV-2 and CMV replication and inhibiting HIV-1 transcription 76 

(Fujiwara et al., 1999; Turpin et al., 1998; Yamamoto et al., 1989). Recent studies revealed the 77 

potential anti-HCV effect of acridone derivatives as NS3 helicase inhibitor and as dsRNA 78 

intercalant, inhibiting viral replication (Stankiewicz-Drogon et al., 2010; Stankiewicz-Drogon et 79 

al., 2008). 80 

Considering the high cost and several side effects of current HCV treatment, the development of 81 

new drugs against the virus remains an important subject of research. The aim of this study was 82 

to investigate the effects of synthetic acridone Fac4 on HCV life cycle by the use of in vitro 83 

approaches.  84 

  85 



 
 

Results 86 

Inhibitory activity of Fac4 on JFH1 replication. 87 

We performed a screening with a panel of 14 synthetic acridones to select those with potential 88 

antiviral activity on HCV replication. Huh 7.5 cells stably harboring SGR-Feo-JFH-1 were 89 

treated with compounds at 50, 10, 2 and 0.4 µM. After 72 h incubation, luciferase and MTT 90 

assays were performed in parallel to evaluate the replication inhibition and cell viability under 91 

the treatment with the compounds, respectively. Among tested acridones, Fac4 presented a 92 

potential activity against HCV replication. This acridone at 10 µM presented cell viability of 85 93 

% with inhibition of viral replication by approximately 89 %. Fac4 inhibited replication in a 94 

concentration-dependent manner (data not shown) with EC50 of 1.33uM and SI (CC50/EC50) of 95 

42.14. To find the useful selectivity index (favorable ratio of cytotoxicity to antiviral potency), a 96 

screening was performed with Fac4 at concentrations from 1 to 10 µM. We observed that Fac4 at 97 

5 µM inhibited 92 % of HCV replication (Fig. 2a). Therefore, this concentration was selected to 98 

the further experiments.   99 

Thus, we evaluate the effects of Fac4 on the HCV replication in the context of full length virus. 100 

Huh 7.5 cells were infected with JFH1 HCVcc and after 4h, viral supernatant was removed and 101 

cells were treated with Fac4 for 72 hours. Cells were fixed, stained and titrated. Fac4 inhibited 102 

approximately 70 % of HCV replication (Fig. 2b), corroborating the potential antiviral activity 103 

against HCV observed in the preliminary replicon assays. As expected, protein expression levels 104 

were also significantly reduced in the presence of Fac4 since NS5A was undetectable when cells 105 

were treated with Fac4 (Fig. 2b). 106 

Once Fac4 presented a potential inhibition of HCV genotype 2a JFH1 replication, we decided to 107 

test if these results are genotype-specific. For that, Huh 7.5 cells stably harboring the genotype 3 108 



 
 

subgenomic replicon S52/SG-Feo were treated with Fac4 at 5µM and replication levels were 109 

analyzed by luciferase assay. No inhibition of genotype 3 replication was observed (Fig. 2c). 110 

Fac4 as a dsRNA intercalator.  111 

To further investigate the antiviral mode of action of Fac4, we analyzed the capacity of this 112 

compound to intercalate into dsRNA. Using the 3’UTR region of JFH1 HCV as a template, we 113 

produced an amplicon flanked by T7 promoter that was used for in vitro transcription, 114 

synthesizing a dsRNA molecule of 273 bp.  This dsRNA was incubated with Fac4 at 5µM or the 115 

controls (DMSO 0.1% and Doxorubicin at 100µM) and was analyzed by a migration retardation 116 

assay. Fac4 presented 40% of dsRNA intercalation when compared to the DMSO negative 117 

control, quantified by densitometry (Fig. 3a). Notice that the sample treated with Doxorrubicin 118 

(positive control of intercalation) does not appear in the image, reasserting the observed result. 119 

T7 RNA polymerase inhibition assay 120 

In order to investigate if Fac4 has an inhibitory effect on the polymerase activity, we performed 121 

an in vitro transcription of HCV JFH-1 RNA in the presence of Fac4. For that, T7 RNA 122 

polymerase was used, which as stated earlier, is similar to NS5B viral polymerase(Stankiewicz-123 

Drogon et al., 2010; Stankiewicz-Drogon et al., 2008). Fac4 did not present any activity on T7 124 

enzymatic process since no difference was observed when compared to the control (Fig. 3b). 125 

The results suggest it is unlikely that Fac4 has an effect on NS5B, however this possibility 126 

cannot be completely discarded. 127 

 128 

Fac4 and IRES-mediated translation. 129 

 130 



 
 

An IRES-mediated translation assay was carried out to investigate a possible interaction between 131 

Fac4 and IRES and therefore to evaluate if the inhibition of viral replication is related to the 132 

IRES-mediated translation. Cells electroporated with SGR-Feo-JFH-1 or SGR-luc-JFH1/GND 133 

were immediately incubated with Fac4 or controls and RNA replication was estimated after 4h 134 

by luciferase expression analysis. Fac4 did not influence the viral RNA translation, since 135 

luciferase values of both wild type replicon and the GND replication defective replicon at 4h 136 

were not reduced, demonstrating the input RNA was translated in to the cells (Fig. 3c). 137 

Fac4 does not block virus entry.  138 

To evaluate whether Fac4 possess antiviral activity on HCV entry, Huh 7.5 cells were infected 139 

with JFH1 virus in the presence or absence of Fac4 for 4 h. Viral inoculum was replaced by fresh 140 

media and intracellular virus was quantified72 h.p.i.. No blockage of viral entry was observed 141 

(Fig. 4). 142 

Fac4 inhibits HCV release 143 

 144 

Since Fac4 has antiviral activity against HCV replication but does not act during viral entry 145 

process, we decided to analyze the release step. We observed that intracellular RNA in Fac4-146 

treated cells displayed similar values as the non-treated cells. However, a pronounced effect on 147 

virus release (extracellular RNA) is observed since there was 80% of difference in the amount of 148 

intra and extracellular HCV RNA (Fig. 5). 149 



 
 

Discussion 150 

The antiviral effect of acridones has been described in literature and the activity spectrum of this 151 

class of alkaloids varies depending on the type of viral genome (double-stranded DNA genome 152 

or RNA viruses) (Sepulveda et al., 2013). Some acridones from Rutaceae plants showed great 153 

antiviral activity against viruses with DNA genomes like herpes simplex virus serotypes 1 and 2 154 

(HSV-1 and HSV-2), human cytomegalovirus (HCMV) and Epstein-Barr virus (Chansriniyom et 155 

al., 2009; Itoigawa et al., 2003; Takemura et al., 1995; Yamamoto et al., 1989). For RNA 156 

viruses, acridones presented activity against HIV-1, bovine viral diarrhea virus (BVDV), all 157 

serotypes of dengue virus (DENV) and HCV, the last three belonging to the Flaviviridae family 158 

(Fujiwara et al., 1999; Houe, 2003; Mazzucco et al., 2015; Raney et al., 2010; Sepulveda et al., 159 

2008; Stankiewicz-Drogon et al., 2010; Stankiewicz-Drogon et al., 2008; Tabarrini et al., 2006; 160 

Turpin et al., 1998).   161 

Our results showed that Fac4 inhibited up to 92% of HCV replication in the context of either the 162 

subgenomic replicon or full length JFH1 HCVcc. Also, NS5A viral protein expression could not 163 

be detected after the treatment with this compound. Despite its considerable effect on HCV 164 

genotype 2, inhibition was not observed on HCV genotype 3 replication. So far, all NS3 protease 165 

inhibitors available have also no effect on HCV genotype 3 (Gentile et al., 2014; Hayashi et al., 166 

2014; Rosenquist et al., 2014; Summa et al., 2012). Altogether, the hypothesis that Fac4 is 167 

interfering with NS3 protease is strengthened. However, to determine whether Fac4 is inhibiting 168 

NS3 protease activity further functional studies are needed. 169 

Despite the observed inhibition of replication, Fac4 had no activity on HCV viral entry. This 170 

could be explained by the way acridones usually act against virus infection. Some authors argue 171 

that their nucleic acid intercalation ability and interaction with viral enzymes are the main 172 

mechanisms by which these compounds act (Adams, 2002; Stankiewicz-Drogon et al., 2010; 173 



 
 

Stankiewicz-Drogon et al., 2008). For HCV, data presented by Stankiewicz-Drogon and co-174 

workers (Stankiewicz-Drogon et al., 2010; Stankiewicz-Drogon et al., 2008) reinforces this 175 

assumption. Acridones showed inhibition of NS3 helicase, T7 RNA polymerase (topology and 176 

function similar to HCV NS5B) and strong double-stranded RNA intercalation property. All 177 

these elements are involved in the replication step.  178 

It is not clear yet if there is a combination of the reported effects of acridones on the inhibition of 179 

replication. Some acridones described in the literature present dsRNA intercalation property, 180 

others show inhibition of NS3 helicase and NS5B polymerase, and some present both effects 181 

(Manfroni et al., 2009; Stankiewicz-Drogon et al., 2010). However, all these studies performed 182 

in isolated assays, evaluating inhibition of enzymatic activity or dsRNA intercalation 183 

individually. According to our results, Fac4 presented the ability to partially intercalate in 184 

dsRNA, however it does not inhibit T7 RNA polymerase. As reported before (Stankiewicz-185 

Drogon et al., 2010; Stankiewicz-Drogon et al., 2008), it is presumed that HCV replication 186 

cannot be inhibited by dsRNA intercalation alone, and probably it is due to a combined effect 187 

between different modes of action. Therefore, replication inhibition by Fac4 may be somewhat 188 

related to dsRNA intercalation, which is a replication intermediate. However it is likely that 189 

other mode of action, such as enzymatic inhibition is also involved (Stankiewicz-Drogon et al., 190 

2010; Stankiewicz-Drogon et al., 2008; Tabarrini et al., 2006). Another possible explanation for 191 

the antiviral activity of Fac4 is the targeting of cellular components. Some acridone derivatives, 192 

such as cycloferon (CMA), are described as compounds which can induce the interferon pathway 193 

(Kovalenko et al., 2000; Storch et al., 1986). However, these assumptions remain to be 194 

investigated. 195 

 196 

The result observed in viral release assay reinforces the antiviral activity of Fac4. The compound 197 

presented almost 80% of inhibition in HCV release step (extracellular RNA level). This assay is 198 



 
 

performed 24h after treatment and to explain the lack of effect in the intracellular levels, we 199 

performed a replication assay 24h after treatment, where luciferase levels were similar to the 200 

control (data not shown). The inhibition of replication was observed 72h after treatment. These 201 

results could indicate that, after 24h, Fac4 has not yet influenced HCV replication in a significant 202 

way, however some interaction between the acridone and the viral RNA is occurring in a way 203 

that prevents the release of new viral particles. 204 

Herein, we reported the acridone Fac4 as a potent inhibitor of in vitro HCV genotype 2 205 

replication and release. This inhibition was correlated to dsRNA intercalation possibly associated 206 

with other mechanisms. Although the mode of action of this compound is partly understood, this 207 

drug is candidate for further studies as a future anti-HCV agent.   208 

209 



 
 

Materials and Methods 210 

 211 

Synthesis and Identification of Fac4 212 

The trihydroxylated acridone Fac4 was synthesized as the protocol previously described by 213 

Herath and co-authors (Herath et al., 2004). A mixture of phloroglucinol (19 mmol), 2-amino-3-214 

hydroxybenzoic acid (13 mmol), and para-toluenosulphonic acid (0.5 mmol) in 1-hexanol (65 215 

mL) was refluxed for 8 h. The heterogenous mixture was stirred with cold hexane. The crude 216 

pale yellow product was recrystallized from mixture of ethanol and acetone (1:1), yielding 43% 217 

of Fac4. The structure of Fac4 was elucidated by analysis of Nuclear Magnetic Resonance 218 

(NMR) spectra, including NMR 1H and 13C NMR. Chemical shifts (į) were expressed in ppm. 219 

Coupling constants (J) were expressed in Hz, and splitting patterns are described as follows; s = 220 

singlet, d = doublet and dd = double of doublets (Fig. 1a).  221 

1,3,5-trihydroxy-9(10H)-acridinone. 1H NMR (11.7 T;DMSO-d6): 5.98 (d; 2.0; H-2), 6.67 (d; 222 

2.0; H-4), 7.14 (dd; 2.5 and 7.5; H-6), 7.05 (dd; 8.0 and 7.5; H-7), 7.61 (dd; 2.5 and 8.0; H-8), 223 

11.1 (s; H-10); 14.3 (s; 1-OH), 10.3 (s; 3-OH), 10.6 (s; 5-OH). 13C NMR (11.7 T; DMSO-d6): 224 

163.8 (C-1), 95.6 (C-2), 163.4 (C-3), 91.9 (C-4), 145.4 (C-5), 115.9 (C-6), 120.9 (C-7), 114.8 225 

(C-8), 180.0 (C-9), 143.2 (C-4a), 131.4 (C-5a), 119.8 (C-8a), and 103.4 (C-9a).      226 

Virus Constructs 227 

The HCV subgenomic replicon SGR-Feo-JFH-1 was used in initial screening to evaluate the 228 

effect of the compounds on virus replication (Wyles et al., 2009). This construct carries the 229 

phosphotransferase luciferase-neomycin fusion gene. To evaluate if the inhibitory effect was 230 

genotype-specific, the genotype 3 subgenomic replicon S52/SG-Feo was used (Saeed et al., 231 



 
 

2012). For replication, entry, release and for virus protein expression analysis, infection assays 232 

were carried out with full length HCV JFH-1 isolate (Wakita et al., 2005) (Fig. 1b).   233 

Cell culture 234 

Huh 7.5 cells and Huh 7.5 stably harboring subgenomic replicons SGR-Feo-JFH-1 and S52/SG-235 

Feo were cultured in Dulbecco’s modified Eagles Medium (DMEM; Sigma-Aldrich) 236 

supplemented with 100 IU penicillin mL-1, 100 µg streptomycin mL-1, 0.5 mg mL-1 of geneticin 237 

(G418), 10% fetal calf serum and incubated at 37 ºC and 5% CO2. 238 

Experimental delineation for initial screening 239 

An initial screening was performed to test a panel of acridones for their antiviral activity on 240 

HCV replication. Compounds were dissolved in DMSO (Dimethyl sulfoxide – Sigma Aldrich) 241 

and diluted in media immediately prior the assay. The final concentration of DMSO in all assays 242 

was 0.1 %. For each compound, cytotoxicity and replication assays were performed. Huh 7.5 243 

cells harboring SGR-JFH1-FEO were seeded in 96 well plates at the density of 3 × 103 and 244 

incubated in the presence or absence of compounds for 72h. Cyclosporine A at 1 µM was used as 245 

a control for replication inhibition and DMSO 0.1% as non-treated control. Assays were 246 

performed in triplicates and a minimum of three times. Four concentrations were tested (50, 10, 247 

2 and 0.4 µM).  248 

Replication assay for subgenomic replicons 249 

After treatment, cells were harvested with Passive Lysis Buffer (PLB) (Promega). Replication 250 

levels were quantified by measuring luciferase activity with the Luciferase Assay System 251 

(Promega) in a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany). Data 252 

was normalized by DMSO control. 253 



 
 

Cytotoxicity assay 254 

After 72h of treatment, the media was removed, cells were incubated at 37ºC with DMEM 255 

containing MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (Sigma-256 

Aldrich) at 1 mg mL-1. After 30 minutes, MTT was removed and 100 µL of DMSO was added to 257 

solubilize formazan crystals. Cell viability was determined by measuring optical density in the 258 

microplate reader. Compounds were classified as non-toxic, when cells presented viability over 259 

80%. 260 

Effective Concentration 50% (EC50) 261 

The effective concentration 50% (EC50) was calculated using Prism (GraphPad) and cytotoxicity 262 

assays were carried out in parallel to determine the cytotoxic concentration 50% (CC50) using a 263 

MTT-based system as described in cytotoxic assay section. The values of CC50 and EC50 were 264 

used to calculate the selectivity index (SI = CC50/EC50), which suggests the potential antiviral 265 

activity of the compounds. 266 

Viral production 267 

HCV JFH1 RNA was electroporated into Huh 7.5 cells at 270 V, 950 µF and ∞ resistance, using 268 

a 4 mm cuvette in the Gene PulserXcell Electroporation System (Bio-Rad, Philadelphia, PA, 269 

USA). Fifteen days after electroporation supernatant was collected, concentrated with PEG 8000 270 

(Polyethylene glycol) (Sigma-Aldrich) and titrated by focus formation unit assay. 271 

JFH1 Replication assay  272 

Huh 7.5 cells were seeded in 96 well plates the day before the assay. Cells were infected with 273 

JFH1 virus (MOI of 0.2) for 4 h at 37ºC and 5% CO2, washed extensively to remove virus and 274 

subsequently treated with Fac4 (5 µM). After 72 h, cells were fixed with 4% PFA (Synth) and 275 



 
 

stained for NS5A using sheep anti-NS5A (Macdonald et al., 2003) and Alexa Fluor anti-sheep 276 

594 secondary antibody. Virus titers were obtained by focus formation unit analysis. Data was 277 

normalized by DMSO control and cyclosporine at 1µM was used as a control of inhibition of 278 

replication. 279 

Viral entry  280 

For virus entry experiments, infectious supernatant and Fac4 were added simultaneously to Huh-281 

7.5 cells. Four hours post-infection (h.p.i), supernatant was removed, washed extensively and 282 

replaced with fresh medium. Cells were incubated for 48 hours. DMSO and (–)-epigallocatechin 283 

gallate (EGCG, Sigma-Aldrich) were used as negative and positive controls, respectively. Cells 284 

were fixed and intra cellular virus was titrated. 285 

Viral release analysis  286 

To analyze Fac4 effect on HCV secretion, 2 × 105 JFH-1 infected cells were seeded 48 h before 287 

treatment. Then, the medium was replaced by fresh medium supplemented with Fac4 was added 288 

at 5 µM or controls as previously described (Nahmias et al., 2008). DMSO 0.1 % was used as 289 

non-treated control and naringenin (NR) at 400 ȝM was used as control of HCV secretion 290 

inhibition (Nahmias et al., 2008). After 24 h of incubation, RNA was extracted from the 291 

supernatant and from the cells using TRIzol reagent (Life Technologies), and cDNA was 292 

synthesized with High-Capacity cDNA Archive (Applied Biosystems). HCV expression analysis 293 

was performed by TaqMan Universal PCR Master Mix no AmpErase UNG (Applied 294 

Biosystems) detecting the amplification of the HCV 5’UTR region (Forward: 295 

CGGGAGAGCCATAGTGG; Reverse: AGTACCAACAAGGCCTTTCG). The samples quality 296 

and normalization of levels of expression were obtained by amplification of the endogenous gene 297 

GAPDH. JFH1 release inhibition was calculated as a percentage of negative control.  298 

 299 



 
 

Western blotting 300 

Cells were lysed using Cell Lytic (Sigma-Aldrich) and protein was quantified with PierceTM 301 

BCA Protein Assay Kit (Thermo Scientific), following the manufacturers protocol. 302 

Approximately 10 µg of protein was resolved in SDS-PAGE electrophoresis, transferred to a 303 

nitrocellulose membrane and blocked with nonfat milk 10% in TBS-T solution. The membrane 304 

was probed at 4ºC with sheep Anti-NS5A antibody overnight (Macdonald et al., 2003) and then 305 

with secondary Anti-sheep IgG antibody conjugated with HRP (Sigma-Aldrich) at room 306 

temperature for 1h. The membrane was washed in TBS-T, exposed to ECL (Enhanced 307 

Chemiluminescent) and chemiluminescence was captured by ChemiDoc equipment (Bio-Rad, 308 

Philadelphia, PA, USA). After stripping, membrane was probed for 1h at room temperature with 309 

Anti-GAPDH antibody conjugated with HRP. After exposure to ECL, the blotting was analyzed 310 

in ChemiDoc.  311 

dsRNA intercalation assay 312 

To analyze the ability of Fac4 to intercalate in dsRNA, a migration retardation assay was 313 

performed based on the previously described protocol of Krawczyk et al.(Krawczyk et al., 314 

2009). The HCV JFH1 3’ untranslated region (UTR) (accession no. AB047639) was amplified 315 

by PCR using primers flanked by a T7 promoter site 316 

(Forward:TAATACGACTCACTATAGGGGGCACACACTAGGTACA; Reverse: 317 

TAATACGACTCACTATAGGGACATGATCTGCAGAGAG; T7 promoter regions are 318 

underlined). The reaction product (273 bp) was purified by ZymocleanTM Gel DNA recovery Kit 319 

(Zymo Research) and used for in vitro transcription by the T7 Ribomax Express kit (large scale 320 

RNA production system) (Promega). The dsRNA molecule was obtained by complementary 321 

annealing and incubated at 15 nM with Fac4 (5µM) for 45 min, and analyzed in 1% agarose 1X 322 

TAE gel stained with ethidium bromide. Since an intercalating compound competes with 323 



 
 

ethidium bromide, the intercalation of dsRNA is confirmed when the band of the treated sample 324 

is not visualized in the gel. Doxorubicin (100 µM) was used as positive control of intercalation.  325 

T7 RNA polymerase inhibition assay 326 

The T7 polymerase presents similar topology and function to the HCV RdRp NS5B 327 

(Stankiewicz-Drogon et al., 2010; Stankiewicz-Drogon et al., 2008). In order to evaluate 328 

whether Fac4 interacts with T7 consequently inhibiting viral replication, we tested the effects of 329 

FAC4 on in vitro RNA transcription.  Five in vitro transcription reactions for JFH1 RNA were 330 

performed, using the T7 RiboMAX™ Express Large Scale RNA Production System (Promega). 331 

The compound was tested in three different concentrations (0.5 µM, 5µM and 50µM). The 332 

experiment was set up according to manufacturer instructions apart to the addition of acridone 333 

Fac4. For controls, we performed a standard reaction for JFH1 RNA synthesis and a reaction 334 

adding only DMSO, the solvent of the compounds. Synthesized RNA was quantified and 335 

analyzed in a RNA denaturant 1 % agarose gel.  336 

IRES interaction assay 337 

Huh7.5 cells were electroporated with SGR-Feo-JFH-1or SGR-luc-JFH1/GND. Immediately 338 

after electroporation, cells were seeded in 96 well plates and incubated with Fac4 (5µM) or 339 

DMSO. Cells were harvested by lysis with PLB (Promega) 4h post-electroporation and HCV 340 

RNA replication/translation was quantified by measuring luciferase activity using the Luciferase 341 

Assay System (Promega). 342 

Data analysis 343 

Cytotoxicity, subgenomic replicon and complete viral genome (JFH1) assays were performed in 344 

triplicate and a minimum of three times. All data originated from these assays were evaluated 345 



 
 

using software GraphPad Prism 5 (GraphPad Software, San Diego - CA, USA). Average and 346 

standard deviation were represented in each graph. Statistical analyses were done using ANOVA 347 

test and Dunnett's Multiple Comparison Test, considering P < 0.05 as significant. The statistical 348 

analyses from the release assay were performed by two-way ANOVA with Bonferroni’s post test 349 

using GraphPad Prism 5.0 software. All data was normalized by the non-treated control and 350 

multiplied by a hundred to obtain values in percentage.  351 
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Figure legends 

 

 

Figure 1. Structure of Fac4 and constructs: A) Structure of acridone Fac4; B) Subgenomic Replicon SGR-
JFH1-FEO, which express the genotype 2 non-structural viral proteins and the phosphotransferase fusion protein 
luciferase-neomycin, and JFH-1 replicon, which express all viral proteins. Subgenômic Replicon S52/SG-Feo 
express the genotype 3 non-structural viral proteins.  

Figure 2. Fac4 effect on HCV replication: A) Fac4 concentration screening, determining 5µM as working 
concentration (the lower concentration with best inhibitory effect and cell viability). B) Replication assay in Huh 
7.5 infected with JFH1 HCVcc and Western Blot for NS5A viral protein detection. C) Replication assay in Huh 
7.5 stably expressing genotype 3 subgenomic replicon S52/SG-Feo. Cyclosporin (CsA) used as positive control. 
The three asterisks represent a significant difference between control group and treated group at p< 0,001.  
  
Figure 3. Fac4 possible mechanisms of action: A) Intercalation assay, evaluating Fac4 dsRNA intercalation 
property. Doxorrubicin (Doxo) was used as positive control. B) Evaluation of Fac4 effect over T7 RNA 
polymerase activity during in vitro transcription. Above the RNA bands are the quantification values, in µg/µl. 
C) : IRES interaction assay in Huh 7.5 cells. Replication rate 4h after electroporations. Subgenomic replicon 
SGR-JFH1-FEO (SGR); Defective mutated subgenomic replicon SGR-luc-JFH1/GND (GND);  

Figure 4. Fac4 effect on HCV entry step: Entry assay in Huh 7.5 infected with JFH1 HCVcc. EGCG ((-)-
epigallocatechin gallate – positive control).  

Figure 5. Fac4 effect on HCV release step: Viral release assay based on HCV  5’UTR qPCR. Cells Huh 7.5 
JFH1-infected were treated with FAC-4 along 24h. DMSO was used as negative control and Naringerin 400 ȝM 
(NR) used like positive control for release inhibition. The bars present the triplicate of two independent assays. 
The three asterisks represent a significant difference between control group and treated group at p< 0,001. 
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